JPH038262A - Laminated battery - Google Patents

Laminated battery

Info

Publication number
JPH038262A
JPH038262A JP1141576A JP14157689A JPH038262A JP H038262 A JPH038262 A JP H038262A JP 1141576 A JP1141576 A JP 1141576A JP 14157689 A JP14157689 A JP 14157689A JP H038262 A JPH038262 A JP H038262A
Authority
JP
Japan
Prior art keywords
electrode
tablet
ion blocking
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1141576A
Other languages
Japanese (ja)
Other versions
JP2752158B2 (en
Inventor
Tetsuya Yoneda
哲也 米田
Mitsuharu Minamino
光治 南野
Motoo Mori
毛利 元男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1141576A priority Critical patent/JP2752158B2/en
Publication of JPH038262A publication Critical patent/JPH038262A/en
Application granted granted Critical
Publication of JP2752158B2 publication Critical patent/JP2752158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To increase a production yield and improve drop strength by laminating multiple layer tablets via ion blocking electrodes, and forming the ion blocking electrode with a conductor made of a protruded curved plate with a spring property. CONSTITUTION:A positive electrode 4, a separator material 5 and a negative electrode material 6 are pressurized and integrally molded to form a layer tablet. The above molded body is mounted in a battery container 9 welded with a current collecting net 7 and mounted with a gasket 8, then an electrolyte 10 is fed for impregnation. An ion blocking electrode 12 with a shape machined into a protruded curved face is put on the layer tablet in the battery container 9, and a layer tablet is put on the electrode 12. The second and following tablets are put so that the face with the polarity different from that of the preceding tablet in contact with the electrode 12 is brought into contact with the electrode 12, and the electrolyte 10 is fed. Finally, a battery container 9 and a cover 11 are caulked and sealed. The face pressure of spring stress is applied to the tablet, and the tablet can be fixed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、積層形電池に関する。さらに詳しくは、積
層形電池の電池要素間に配設するイオンブロッキング電
極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a stacked battery. More specifically, the present invention relates to improvements in ion blocking electrodes disposed between battery elements of a stacked battery.

(ロ)従来の技術 従来の積層形電池は、電池容器に、正極剤、セパレータ
剤及び負極剤からなる三層錠剤状電池要素(以下電池要
素という)の複数側を電解液に含浸し各電池要素間に平
面状イオンブロッキング電極を介在させて順次積層し、
封入して作製していfこ。
(B) Conventional technology Conventional laminated batteries are manufactured by impregnating multiple sides of a three-layer tablet-shaped battery element (hereinafter referred to as battery element) with an electrolytic solution in a battery container, which consists of a positive electrode material, a separator material, and a negative electrode material. The elements are stacked sequentially with a planar ion blocking electrode interposed between them.
It is made by enclosing it.

(ハ)発明が解決しようとする課題 上述の従来の積層形電池は、平面状イオンブロッキング
電極と電池要素との電気的接触性が不十分なため製造歩
留まりが低く、積層面と平行な方向の+*G(衝撃)に
対する強度(落下強度)の不足という問題がある。
(c) Problems to be Solved by the Invention The conventional stacked battery described above has a low manufacturing yield due to insufficient electrical contact between the planar ion blocking electrode and the battery element. There is a problem of insufficient strength (drop strength) against +*G (impact).

この発明は、これらの問題点を解消するためになされた
ものであって、イオンブロッキング電極と電池要素との
電気的接触性を向上して製造歩留まりを改善し、積層形
電池の落下強度の改善を目的とする。
This invention was made to solve these problems, and improves the electrical contact between the ion blocking electrode and the battery element to improve the manufacturing yield and improve the drop strength of the stacked battery. With the goal.

(ニ)課題を解決するための手段 この発明によれば、正極剤、セパレータ剤及び負極剤と
が頭に積層加圧されてなる層状タブレットの複数個が、
イオンブロッキング電極を介して積層され、必要に応じ
て電解液が含浸され、電池容器に封入されてなり、前記
イオンブロッキング電極がバネ性のある凸型曲面板状の
導電体からなることを特徴とする積層形電池が提供され
る。
(d) Means for Solving the Problems According to the present invention, a plurality of layered tablets in which a positive electrode material, a separator material, and a negative electrode material are laminated and pressurized on the head,
The batteries are laminated with an ion blocking electrode interposed therebetween, impregnated with an electrolytic solution if necessary, and sealed in a battery container, and the ion blocking electrode is made of a conductor in the shape of a convex curved plate with spring properties. A stacked battery is provided.

以下、負極活物質に水素貯蔵合金を用いた三層錠剤状電
池要素を用いる積層形電池を例にして述べるが、この例
に限定されるものではない。
Hereinafter, a stacked battery using a three-layer tablet-shaped battery element using a hydrogen storage alloy as the negative electrode active material will be described as an example, but the present invention is not limited to this example.

まず、この発明のイオンブロッキング電極について詳述
する。このイオンブロッキング電極は、前記層状タブレ
ット内の化学反応によって生じた電子を所定の電位差で
集電し、このタブレット間のイオンの移動を防止し、か
つこの層状タブレットに、例えば落下等の衝撃によって
生じやすい横移動を防止しうる面圧を付与するためのら
のであって、電解液等に存在するイオン種に対する絶縁
性と電子に対する導電性を有し、電解液もしくは固体I
I電解質反応せず、液体に対する不通過性を有し、かつ
弾力性を有するものが適しており、例えば金属、導電性
高分子化合物、導電性セラミックス、導電性プラスチッ
ク、導電性ゴム等の導電体を用いて、例えば第8図〜第
10図に示すようにバネ性のある凸型曲面板状に成形し
て作製することができる。
First, the ion blocking electrode of the present invention will be explained in detail. This ion blocking electrode collects electrons generated by a chemical reaction within the layered tablet at a predetermined potential difference, prevents the movement of ions between the tablets, and also prevents the movement of ions between the layered tablets due to an impact such as a fall. It is used to apply surface pressure that can prevent easy lateral movement, and has insulating properties against ionic species present in the electrolyte and conductivity against electrons.
I Electrolytes Suitable are materials that do not react, are impermeable to liquids, and have elasticity, such as conductors such as metals, conductive polymer compounds, conductive ceramics, conductive plastics, and conductive rubber. For example, as shown in FIGS. 8 to 10, it can be formed into a convex curved plate shape with spring properties.

前記イオンブロッキング電極用の材料は、具体的には、
例えばニッケル、チタン、カーボン系導電剤を分散した
合成ゴムを用いることができる。
Specifically, the material for the ion blocking electrode is:
For example, synthetic rubber in which nickel, titanium, or carbon-based conductive agents are dispersed can be used.

前記バネ性のある凸型曲面板状の導電体からなるイオン
ブロッキング電極は、前3己イオンブロツキング電極用
の材料を適宜選定して用い、例えばその平面状の材料の
絞り加工、射出成形、押出成形、圧縮成形等の金型成形
加工、切削加工又は金属、セラミックス等のバネ性のあ
る凸型曲面板状の基材上への塗膜形成加工等によって作
製することかできる。このイオンブロッキング電極!極
を用いた前記積層形電池の組立ては、前記電池容器に、
前記層状タブレットを載置し、この上に前記凸型曲面板
状のイオンブロッキング電極を配置しこの上に再び前記
層状タブレットを載置する工程を適宜くり返し、これを
押圧して前記イオンブロッキング′を極を凸型曲面板状
から平面板状にバネ変形した状態のバネ性凸型曲面板状
の導電体の押圧体とし、この電池容器に封入して行うこ
とができる。
The ion blocking electrode made of the conductor in the shape of a convex curved plate with spring properties is made by appropriately selecting the material for the ion blocking electrode, for example, by drawing or injection molding the planar material. It can be produced by mold forming processing such as extrusion molding or compression molding, cutting processing, or coating film formation processing on a convex curved plate-shaped base material with spring properties such as metal or ceramics. This ion blocking electrode! Assembling the stacked battery using electrodes includes:
The steps of placing the layered tablet, placing the convex curved plate-shaped ion blocking electrode on top of it, and placing the layered tablet again on top of it are repeated as appropriate, and this is pressed to remove the ion blocking electrode. This can be carried out by using a pressed body of a conductor in the form of a springy convex curved plate which has been spring-deformed from a convex curved plate shape to a flat plate shape and sealed in this battery container.

このバネ性のある凸型曲面板状の導電体の押圧体として
のイオンブロッキング電極は、この電極のバネ応力によ
って隣接する前記層状タブレットと電気的に十分に密着
することができ、かつ前記層状タブレットに衝撃による
横移動を防止しうる十分な面圧を付与することができる
This ion blocking electrode as a pressing body of a convex curved plate-shaped conductor having spring properties can be brought into sufficient electrical contact with the adjacent layered tablet due to the spring stress of this electrode, and the layered tablet Sufficient surface pressure can be applied to prevent lateral movement due to impact.

次に、この発明の積層形電池の構成を更に具体的に説明
する。この発明の積層形電池は、前記層状タブレットの
化学反応によって発生した電子を前記イオンブロッキン
グ電極又は集電体において授受しうる媒体として電解液
を用いてもよいが固体電解質を用いてもよい。
Next, the structure of the stacked battery of the present invention will be explained in more detail. In the stacked battery of the present invention, an electrolytic solution may be used as a medium capable of transferring electrons generated by the chemical reaction of the layered tablet to and from the ion blocking electrode or the current collector, or a solid electrolyte may be used.

まず電解液を用いて作製する航記積層形電池について説
明する。
First, a stacked battery manufactured using an electrolyte will be described.

この発明の積層形電池を構成する所定の電位差の電子を
発生させる前記層状タブレットは正極剤、セパレータ剤
及び負極剤を順に積層してなる。前記正極剤は、正極活
物質、導電剤及び結着剤を含む。正極活物質としては、
例えば、二酸化マンガン、酸化ニッケル、二酸化タング
ステン、二酸化鉛、二酸化モリブデン等の酸化剤1が挙
げられるが、二酸化マンガン及び酸化ニッケルが好適で
ある。
The layered tablet, which generates electrons with a predetermined potential difference and constitutes the stacked battery of the present invention, is formed by laminating a positive electrode material, a separator material, and a negative electrode material in this order. The positive electrode material includes a positive electrode active material, a conductive agent, and a binder. As a positive electrode active material,
Examples of the oxidizing agent 1 include manganese dioxide, nickel oxide, tungsten dioxide, lead dioxide, and molybdenum dioxide, with manganese dioxide and nickel oxide being preferred.

上記導電剤は、正極剤中の電子導電性を確保するために
加えられる電子導電性物質であり、例えばアセチレンブ
ラック、黒鉛、カーボンブラック、ニッケル粉末等が挙
げられるが、アセチレンブラック及び黒鉛が好適である
。上記結着剤は、上記二種の粉末の結着性を高めるため
に加えられる物質であり、例えばカルボキシメチルセル
ロース、ポリテトラフルオロエチレン、カルボキシメチ
ルセルロース塩、ポリビニルアルコール、ポリエチレン
、寒天、メチルセルロール等が挙げられる。前記導電剤
及び結着剤は正極剤中に通常3〜20重量パーセントず
つ配合されろ。前記セパレータ剤は、i解液支持体と必
要に応じて結着剤を含む。
The above-mentioned conductive agent is an electronically conductive substance added to ensure electronic conductivity in the positive electrode material, and examples thereof include acetylene black, graphite, carbon black, nickel powder, etc., with acetylene black and graphite being preferred. be. The above-mentioned binder is a substance added to improve the binding properties of the above-mentioned two kinds of powders, and examples thereof include carboxymethylcellulose, polytetrafluoroethylene, carboxymethylcellulose salt, polyvinyl alcohol, polyethylene, agar, methylcellulose, etc. Can be mentioned. The conductive agent and the binder are usually mixed in the positive electrode material in an amount of 3 to 20 weight percent. The separator agent includes a decomposition support and, if necessary, a binder.

電解液支持体は、絶縁性を有し、電解液を支持しうるも
のがよく、例えば二酸化ケイ素及び酸化アルミニウム等
が挙げられる。この結着剤としては、前記正極剤に用い
るものと同様なものが遊ばれる。
The electrolyte support preferably has insulating properties and can support the electrolyte, such as silicon dioxide and aluminum oxide. As this binder, the same binder as that used for the positive electrode material can be used.

この結着剤は電解液支持体100重量部に対し、必要に
応じて40重量部以下の量配合される。
This binder is added in an amount of 40 parts by weight or less to 100 parts by weight of the electrolytic solution support, if necessary.

負極剤は、負極活物質として水素貯蔵合金、例えば水素
を貯蔵したT r xN i (1≦X≦2)TiFe
、LaNi5、Mm N i s等を用いる。導電剤及
び結着剤の種類は前記正極剤と同様のものを用いること
ができ、その配合量は負極剤中にそれぞれ、通常20重
1パ一セント以下配合される。
The negative electrode material is a hydrogen storage alloy as a negative electrode active material, for example, T r xN i (1≦X≦2)TiFe that stores hydrogen.
, LaNi5, MmN i s, etc. are used. The conductive agent and the binder may be the same as those for the positive electrode material, and the amounts thereof are usually 20 parts by weight or less, respectively, in the negative electrode material.

前記正極剤、セパレータ剤及び負極剤は、例えば第1図
〜第4図に示すように、成形用金型l、金型内に投入し
た粉末を加圧して成形する押棒2及び成形用金型Iの深
さを調整するため、成形用金型1内において、上下に可
動となされている受台3からなる成形用金型1に、正極
剤4の粉末を投入しく第1図)、その後押棒2で正極剤
4を軽く加圧して整地し、続いてセパレータ剤5の粉末
を成形用金型i内に置かれた正極剤4の上に投入しくそ
の状態を第2図に示す)、その後押棒2でセパレータ剤
5を軽く加圧して整地し、次に、負極剤6の粉末を成形
用金型l内に置かれたセパレータ剤5の・上に投入しく
この状態を第3図に示す)、次いで成形用金型1内に置
かれた正極剤4、セパレータ剤5、負極剤6を押棒2に
よって加圧し、一体成形しくその状態を第4図に示す)
層状タブレットを形成することができる。尚、上記3種
の粉末を成形用金型l内に投入する順序は、正極剤4と
負極剤6を上述の逆にしてもよい。
The positive electrode material, separator material, and negative electrode material are, for example, as shown in FIGS. 1 to 4, in a molding mold 1, a push rod 2 that presses and molds the powder put into the mold, and a molding mold. In order to adjust the depth of the positive electrode agent 4, the powder of the positive electrode material 4 is poured into the mold 1, which consists of a pedestal 3 that is movable up and down within the mold 1 (Fig. 1). The positive electrode material 4 is lightly pressed with the push rod 2 to level the ground, and then the powder of the separator material 5 is poured onto the positive electrode material 4 placed in the molding die i (this state is shown in FIG. 2), After that, the separator material 5 is lightly pressed with the push rod 2 to level the ground, and then the powder of the negative electrode material 6 is poured onto the separator material 5 placed in the mold l. This state is shown in Fig. 3. Then, the positive electrode material 4, separator material 5, and negative electrode material 6 placed in the molding die 1 are pressurized by the push rod 2, and are integrally molded, the state of which is shown in FIG. 4).
Layered tablets can be formed. Incidentally, the order in which the three types of powders described above are introduced into the molding die 1 for the positive electrode material 4 and the negative electrode material 6 may be reversed to the above-mentioned order.

成形用金型lより取り出したこの層状タブレット(三層
錠剤状電池要素)を用いて、以下のように電池は組み立
てられる。第5図に示すように、集電用ネット7を溶接
し、ガスケット8を載置した電池容器9内に、上記成形
体を載置する。その後、電解液10を供給し、含浸させ
る。
Using this layered tablet (three-layer tablet-shaped battery element) taken out from the molding die 1, a battery is assembled as follows. As shown in FIG. 5, the molded body is placed in a battery container 9 in which a current collecting net 7 is welded and a gasket 8 is placed. After that, an electrolytic solution 10 is supplied and impregnated.

次に、凸型曲面状に加工された形状を有するイオンブロ
ッキング電極12を電、也容器内の前32層層状タブレ
ット上に入れる。第6図にその状態を示す。ついで前記
層状タブレットをイオンブロッキング電池12の上に投
入する。このとき、先に投入しである層状タブレットが
イオンブロッキング1を極12と接している面の極と異
なる極の面が、イオンブロッキング電極12と接するよ
うに2個目以降の11状タブレツトを入れる。電解液の
供給は上述と同様に行う。最後に、第7図に示すように
、電池容器9に、集電用ネット7を溶接した蓋11を上
述の電池容器内容物を押圧しながら取り付け、電池容器
9と蓋11とをかしめて封口する。
Next, the ion blocking electrode 12 having a convex curved shape is placed on the front 32 layered tablet in the container. FIG. 6 shows the state. The layered tablet is then placed on top of the ion blocking battery 12. At this time, insert the second and subsequent 11-shaped tablets so that the surface of the layered tablet that was introduced first is in contact with the ion blocking electrode 12, and the surface of the layer that is different from the surface that is in contact with the ion blocking electrode 12 is in contact with the ion blocking electrode 12. . The electrolytic solution is supplied in the same manner as described above. Finally, as shown in FIG. 7, the lid 11 to which the current collecting net 7 is welded is attached to the battery container 9 while pressing the contents of the battery container, and the battery container 9 and the lid 11 are caulked and sealed. do.

次に固体電解質を用いて作製するこの発明の積層形電池
について説明する。
Next, a stacked battery of the present invention manufactured using a solid electrolyte will be explained.

この層状タブレットは、正極活物質、導電剤、結着剤及
び固体電解質とからなる正極剤、固体電解質及び必要に
応じて結着剤とからなるセパレータ剤並びに負極活物質
、導電剤、結着剤及び固体電解質とからなる負極剤とで
構成され、後工程において電解液の添加を行われないで
積層形電池を構成することができる。面足固体電解質は
、例えば、S b20.−/nHto (2≦n−≦5
)、5nOz・3HtO等の酸水和物の水素イオン導電
性固体電解質を用いることができる。その配合量は、通
常正極剤が正極活物質40〜84重量%、導電剤3〜2
0重量%、結着剤3〜20重量%及び固体電解質10〜
60重量%、セパレータ剤が固体電解質50〜100重
量%及び必要に応じて結着剤50重量%未満、負極剤か
負極活物質40〜84重里%、導電剤3〜20重量%、
結着剤3〜20重量%及び固体電解質10〜60重量%
とすることができる。前記正極活物質、導電剤、結着剤
及び負極活物質は、上述の電解液を用いる積層形電池で
用いたものと同様のものを用いることができる。尚、こ
の層状タブレットを用いることにより、電解液の含浸工
程を除く以外は上述の積層形電池と同様にして積層形電
池を作製することができる。
This layered tablet consists of a positive electrode agent consisting of a positive electrode active material, a conductive agent, a binder, and a solid electrolyte, a separator agent consisting of a solid electrolyte and, if necessary, a binder, and a negative electrode active material, a conductive agent, and a binder. and a negative electrode agent consisting of a solid electrolyte, and a stacked battery can be constructed without adding an electrolyte in a subsequent step. The solid electrolyte is, for example, S b20. −/nHto (2≦n−≦5
), 5nOz·3HtO, or other acid hydrate hydrogen ion conductive solid electrolytes can be used. The amount of the positive electrode agent is usually 40 to 84% by weight of the positive electrode active material and 3 to 2% by weight of the conductive agent.
0% by weight, 3-20% by weight of binder and 10-20% of solid electrolyte
60% by weight, separator agent 50-100% by weight solid electrolyte and optionally less than 50% binder, negative electrode agent or negative electrode active material 40-84% by weight, conductive agent 3-20% by weight,
Binder 3-20% by weight and solid electrolyte 10-60% by weight
It can be done. The positive electrode active material, conductive agent, binder, and negative electrode active material may be the same as those used in the stacked battery using the electrolytic solution described above. By using this layered tablet, a layered battery can be produced in the same manner as the layered battery described above except for the electrolytic solution impregnation step.

(ホ)作用 電池容器に、層状タブレットを載置し、この上にバネ性
のある凸型曲面板のイオンブロッキング電極を配置し、
再び層状タブレットを載置する工程を適宜くり返しこの
積層物を押圧しながら封入することにより、前記イオン
ブロッキング電極が凸型曲面板状から平面板状にバネ変
形して積層形電池を構成することになり層状タブレット
にバネ応力の面圧を与えて電気的に密着して接続し、層
状タブレットを固定する。
(e) A layered tablet is placed in the working battery container, and an ion blocking electrode in the form of a convex curved plate with spring properties is placed on top of the layered tablet.
By repeating the process of placing the layered tablet again and enclosing the layered product while pressing it, the ion blocking electrode is spring-deformed from a convex curved plate shape to a flat plate shape, thereby forming a layered battery. Then, surface pressure of spring stress is applied to the layered tablet to connect the layered tablet in close electrical contact, thereby fixing the layered tablet.

(へ)実施例および比較例 以下、この発明を実施例及び比較例により更に詳細に説
明する。
(F) EXAMPLES AND COMPARATIVE EXAMPLES The present invention will now be explained in more detail with reference to Examples and Comparative Examples.

実施例I まず、γ−二酸化マンガンを20重量部、導電剤のアセ
チレンブラックを2重量部、結着剤のポリテトラフルオ
ロエチレン粉末およびカルボキシメチルセルロースナト
リウムを1重量部ずつ混合した正極剤の粉末で200m
9を内径13mxの成形用金型に投入し、上から押棒で
軽く押さえる。
Example I First, 200 m of positive electrode powder was prepared by mixing 20 parts by weight of γ-manganese dioxide, 2 parts by weight of acetylene black as a conductive agent, and 1 part by weight of polytetrafluoroethylene powder and sodium carboxymethylcellulose as binders.
9 into a mold with an inner diameter of 13 mx, and press lightly with a push rod from above.

次に、電解液支持体のα−アルミナの粉末を20重量部
および結着剤のカルボキシメチルセルロースを1重量部
混合したセパレータ剤の粉末20019を成形用金型内
に置かれた前記正極刑の上に投入し1.Eから押棒で軽
く押さえる。
Next, separator agent powder 20019, which is a mixture of 20 parts by weight of α-alumina powder as an electrolytic solution support and 1 part by weight of carboxymethyl cellulose as a binder, was added to the positive electrode layer placed in the mold. 1. Press down lightly with the push rod from E.

次に、ガス状の水素を耐圧容器内において、25℃、1
気圧の条件下で一晩貯蔵させた水素貯蔵合金のTiN1
180m9に、導電剤のアセチレンブラックおよび結着
剤のカルボキシメチルセルロースを10R9ずつ混合し
た負極剤の粉末を成形用金型内に置かれたセパレータ剤
の上に没入し、上から押棒で200 K9w/ cm’
の圧力で加圧し、成形体を成形用金型を取り出す。この
操作を30回行い、電池内容物である三層構造をもっ圧
粉成形体(層状タブレット)を30個得る。
Next, gaseous hydrogen was placed in a pressure container at 25°C for 1 hour.
Hydrogen storage alloy TiN1 stored overnight under atmospheric conditions
Powder of negative electrode material, which is a mixture of 180 m9 of acetylene black as a conductive agent and 10 R9 of carboxymethyl cellulose as a binder, is immersed on top of the separator agent placed in the molding die, and a push rod is applied from above to 200 K9w/cm. '
The molded body is then removed from the mold. This operation is repeated 30 times to obtain 30 powder compacts (layered tablets) having a three-layer structure, which are the battery contents.

次に、この層状タブレットを下面が正極となるように、
あらかじめ内径が15.5xmの一体型ガスケットを取
り付けた電池容器に入れ、30重量パーセントの水酸化
カリウム水溶液を100μQ加え、その上に厚さ50μ
m、直径15.2xzの第8図に示す様なδ型曲面板状
のニッケル板(イオンブロッキング電りを置き、さらに
、前記層状タブレットを下面が正極となるように置き、
同様に30重量パーセントの水酸化カリウム水溶液を1
00μQ加える。そして同様の操作をもう1度行い、電
池容器内に、層状タブレット、ニッケル板、層状タブレ
ット、ニッケル板、層状タブレットと順に積み重なった
ところで、蓋をし、かしめて封口する。このようにして
試験電池Aを10個作製する。
Next, place this layered tablet so that the bottom side becomes the positive electrode.
Place the battery in a battery container to which an integrated gasket with an inner diameter of 15.5xm has been attached in advance, add 100μQ of a 30% by weight aqueous potassium hydroxide solution, and add a 50μ thick battery on top.
A δ-shaped curved plate-like nickel plate (ion blocking electrode) as shown in FIG.
Similarly, 30% by weight potassium hydroxide aqueous solution was added to
Add 00μQ. Then, the same operation is performed once again, and when the layered tablet, nickel plate, layered tablet, nickel plate, and layered tablet are stacked in this order in the battery container, the lid is closed and caulked. Ten test batteries A are produced in this way.

この試験電池A10個の衝撃試験直前、並びに衝撃試験
機(model 5M−105;ホクスイブラウン(味
))を用いて最高加速度14700m/s’、パルス幅
0.5mmの条件で衝撃テストをx、y、z方向に各1
0回ずつ行い、10日放置後のそれぞれの電圧および正
弦波IKHzの内部抵抗を測定したところ、第1表に示
すように衝撃テスト後においても電圧と内部抵抗の上昇
がなくこの試験電池Aは耐衝撃性に優れることを確認し
た。(以下余白)第1表 比較例 実施例1において、イオンブロッキング電極として第8
図に示すような凸型曲面のニッケル板を用いる代わりに
直径15.2mm、厚さ50μmの平面ニッケル板を用
い、この他は実施例1と同様にして積層形電池Bを10
個作製する。
Immediately before the impact test of 10 test batteries A, the impact test was performed using an impact tester (model 5M-105; Hokusui Brown (Aji)) under the conditions of a maximum acceleration of 14,700 m/s' and a pulse width of 0.5 mm. 1 each in y and z directions
Test battery A was tested 0 times, and after being left for 10 days, the voltage and internal resistance of the sine wave IKHz were measured. As shown in Table 1, there was no increase in voltage or internal resistance even after the impact test. It was confirmed that it has excellent impact resistance. (Left below) Table 1 Comparative Example In Example 1, the 8th
Stacked battery B was prepared in the same manner as in Example 1 except that instead of using a nickel plate with a convex curved surface as shown in the figure, a flat nickel plate with a diameter of 15.2 mm and a thickness of 50 μm was used.
Make individual pieces.

この積層形電池BIO個の試験直航の電圧および正弦波
IKHzの内部抵抗、並びに、衝撃試験機(model
 5M−105;ホクスイブラウン(株))を用いて最
高加速度14700111/s’、パルス幅0 、5m
sの条件で衝撃テストをX、Y、Z方向に各10回ずつ
行った後、10日放置後の電圧および正弦波IKHzの
内部抵抗を測定した。この結果、第2表に示すように、
衝撃テストにより内部抵抗が上昇して故障したしのが3
個発生し、この電池Bは耐衝撃性に劣っていた。
This stacked battery BIO test direct voltage and internal resistance of sine wave IKHz, as well as impact tester (model
5M-105; Maximum acceleration 14700111/s', pulse width 0, 5m using Hokusui Brown Co., Ltd.
After performing the impact test 10 times each in the X, Y, and Z directions under the conditions of s, the voltage and internal resistance of a sine wave IKHz were measured after being left for 10 days. As a result, as shown in Table 2,
Shino 3 failed due to increased internal resistance during the impact test.
This battery B had poor impact resistance.

第2表 実施例2 正極剤としては、γ−二酸化マンガンを20重量部、導
電剤であるアセチレンブランクを2重1部、結着剤であ
るポリテトラフルオロエチレン粉末およびカルボキシメ
チルセルロースナトリウムを1重量部ずつ、さらに、水
素イオン導電性固体電解質である5byOs・4H70
を5重1部を混合し、この200j+9を内径13+u
の成形用金型に投入し、上から押棒で軽く押さえる。
Table 2 Example 2 As a positive electrode material, 20 parts by weight of γ-manganese dioxide, 1 part by weight of acetylene blank as a conductive agent, and 1 part by weight of polytetrafluoroethylene powder and sodium carboxymethylcellulose as binders. In addition, 5byOs 4H70, which is a hydrogen ion conductive solid electrolyte,
Mix 5 layers and 1 part of this 200j+9 to an inner diameter of 13+u
Pour into the mold and press lightly with a push rod from above.

セパレータ剤としては、水素イオン導電性固体電解質で
ある5btOs・4H20を10重量部および結着剤で
あるカルボキノメチルセルロースを1重量部屋合し、こ
の200z9を前記成形用金型内に置かれた前記正極剤
の上に投入し、上から押棒で軽く押さえる。
As a separator agent, 10 parts by weight of 5btOs 4H20, which is a hydrogen ion conductive solid electrolyte, and 1 part by weight of carboquinomethyl cellulose, which is a binder, are combined, and this 200z9 is placed in the mold for forming the mold. Pour it onto the positive electrode material and press it lightly with a push rod from above.

負極剤としては、ガス状の水素を耐圧容器内において、
25℃、1気圧の条件下で一晩貯蔵さけた水素貯蔵合金
であるTTiN1150tに、導電剤であるアセチレン
ブラックlOIIIg、結着剤であるカルボキシメチル
セルロースナトリウムを1019および水素イオン導電
性固体電解質である5btOs・4H,Oを40ズ9を
混合した粉末を前記成形用金型内に置かれた前記セパレ
ータ剤の上に没入し、上から押棒で200 K9v/c
m”の圧力で加圧し、成形体を成形用金型より取り出す
。この一連の操作を30回行い、電池内容物である三層
構造をもつ圧粉成形体(層状タブレット)を30個得る
As a negative electrode agent, gaseous hydrogen is placed in a pressure-resistant container.
Acetylene black lOIIIg as a conductive agent, sodium carboxymethylcellulose as a binder were added to TTiN1150t, a hydrogen storage alloy that had been stored overnight at 25°C and 1 atm, and 5btOs, a hydrogen ion conductive solid electrolyte.・Powder a mixture of 4H, O and 40z9 onto the separator material placed in the mold, and press a push rod from above to 200K9v/c.
m'' pressure and take out the molded body from the mold. This series of operations is repeated 30 times to obtain 30 powder molded bodies (layered tablets) having a three-layer structure, which are battery contents.

次に、この層状タブレットを下面が正極となるように、
あらかじめ内径が15.5zxのポリプロピレン製一体
型ガスケットを取り付けた電池容器に入れ、その上に厚
さ50μm1直径15.2+y*の第9図に示すような
形状を有するニッケル板(イオンブロッキング電極)を
置き、さらに、前記層状タブレットを下面か正極になる
ように置き、その上に上述のイオンブロッキング電極を
載せ、そして、もう1度前記層状タブレットを下面が正
極となるように置き、電池容器内に、層状タブレット、
ニッケル板、層状タブレット、ニッケル板、層状タブレ
ットと順に積み重なったところで、蓋をし、かしめて封
口する。このようにして試験電池Cを109作製する。
Next, place this layered tablet so that the bottom side becomes the positive electrode.
It is placed in a battery container to which a polypropylene integral gasket with an inner diameter of 15.5zx is attached in advance, and a nickel plate (ion blocking electrode) having a shape as shown in Fig. 9 with a thickness of 50 μm and a diameter of 15.2 + y* is placed on top of it. Then, place the layered tablet so that the bottom side or the positive electrode is facing, place the above-mentioned ion blocking electrode on top of it, place the layered tablet again so that the bottom side is the positive electrode, and place it in the battery container. , layered tablet,
Once the nickel plate, layered tablet, nickel plate, and layered tablet are stacked in this order, the lid is placed and caulked to seal. In this way, test battery C 109 is produced.

この試験電池010個の試験直前、並びに、衝撃試験機
(model 5M−105;ホクスイブラウン(株)
)を用いて最高加速度1.47QOm/s’、パルス幅
0 、5msの条件で衝撃テストをX、Y、Z方向に各
10回ずつ行った後、10日放置後のそれぞれの電圧お
よび正弦波IKHzの内部抵抗を測定した。この結果第
3表に示すように、衝撃テスト後においてら電圧と内部
抵抗の上昇がなくこの試験電池Cは耐衝撃性に優れるこ
とを確認した。
Immediately before the test of 010 test batteries, and an impact tester (model 5M-105; Hokusui Brown Co., Ltd.)
) with a maximum acceleration of 1.47 QOm/s' and a pulse width of 0 and 5 ms, the impact test was performed 10 times each in the X, Y, and Z directions, and after being left for 10 days, each voltage and sine wave The internal resistance at IKHz was measured. As shown in Table 3, there was no increase in voltage or internal resistance after the impact test, confirming that this test battery C had excellent impact resistance.

(以下余白) 第3表 〜第10図は、この発明の実施例で作製した積層形電池
又は実施態様のイオンブロッキング電極の説明図である
(The following is a blank space) Table 3 to FIG. 10 are explanatory diagrams of the ion blocking electrodes of the stacked batteries or embodiments produced in the examples of the present invention.

l・・・・・・成形用金型、   2・・・・押棒、3
・・・・・・受台、     4・・・・・・正極剤、
5・・・・・・セパレータ剤、  6・・・・・負極剤
、7A、7B・・・・・・集電用ネット、8・・・・・
ガスケット、   9・・・・・・電池容器、IO・・
・・・電解液、    (I・・・・・蓋、【2・・・
・・イオンブロッキング電極。
l...Molding mold, 2...Push rod, 3
...... pedestal, 4... cathode material,
5... Separator agent, 6... Anode agent, 7A, 7B... Current collection net, 8...
Gasket, 9...Battery container, IO...
... Electrolyte, (I... Lid, [2...
...Ion blocking electrode.

(ト)発明の効果 この発明によれば、層状タブレット(電池要素)との電
気的接触性が良好で製造歩留まりが高く、落下強度(耐
衝撃性)の改善された積層形電池を提供することができ
る。
(G) Effects of the Invention According to the present invention, it is possible to provide a laminated battery that has good electrical contact with the layered tablet (battery element), has a high manufacturing yield, and has improved drop strength (impact resistance). I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、正極剤、セパレータ剤及び負極剤とが順に積層加圧
されてなる層状タブレットの複数個が、イオンブロッキ
ング電極を介して積層され、必要に応じて電解液が含浸
され、電池容器に封入されてなり、前記イオンブロッキ
ング電極がバネ性のある凸型曲面板状の導電体からなる
ことを特徴とする積層形電池。 2、層状タブレットが、正極活物質、導電剤、結着剤及
び固体電解質とからなる正極剤、固体電解質及び必要に
応じて結着剤とからなるセパレータ剤並びに負極活物質
、導電剤、結着剤及び固体電解質とからなる負極剤で構
成されてなる請求項1の積層形電池。
[Scope of Claims] 1. A plurality of layered tablets formed by laminating and pressurizing a positive electrode material, a separator material, and a negative electrode material in order are laminated via an ion blocking electrode, and are impregnated with an electrolytic solution as necessary. . A stacked battery sealed in a battery container, wherein the ion blocking electrode is made of a conductor in the shape of a convex curved plate with spring properties. 2. The layered tablet contains a positive electrode agent consisting of a positive electrode active material, a conductive agent, a binder, and a solid electrolyte, a separator agent consisting of a solid electrolyte and, if necessary, a binder, and a negative electrode active material, a conductive agent, and a binder. 2. The stacked battery according to claim 1, comprising a negative electrode agent comprising a negative electrode agent and a solid electrolyte.
JP1141576A 1989-06-02 1989-06-02 Stacked battery Expired - Fee Related JP2752158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141576A JP2752158B2 (en) 1989-06-02 1989-06-02 Stacked battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141576A JP2752158B2 (en) 1989-06-02 1989-06-02 Stacked battery

Publications (2)

Publication Number Publication Date
JPH038262A true JPH038262A (en) 1991-01-16
JP2752158B2 JP2752158B2 (en) 1998-05-18

Family

ID=15295195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141576A Expired - Fee Related JP2752158B2 (en) 1989-06-02 1989-06-02 Stacked battery

Country Status (1)

Country Link
JP (1) JP2752158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182866A (en) * 1991-12-27 1993-07-23 Isuzu Motors Ltd Electric double layer capacitor
JP2008159354A (en) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd Coin type lithium primary battery and manufacturing method of positive electrode for coin type lithium primary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182866A (en) * 1991-12-27 1993-07-23 Isuzu Motors Ltd Electric double layer capacitor
JP2008159354A (en) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd Coin type lithium primary battery and manufacturing method of positive electrode for coin type lithium primary battery

Also Published As

Publication number Publication date
JP2752158B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
KR100349755B1 (en) Anode Electrochemical Battery for Stacked Wafer Cell
CN106471669A (en) Metal-air battery is with being accompanied with the air pole of dividing plate
KR20190110564A (en) All-solid-state battery and its manufacturing method
US4096318A (en) Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
WO2019009072A1 (en) Negative electrode for all-solid-state batteries and all-solid-state battery provided with same
EP0307209B1 (en) A battery
JP2021136214A (en) Multilayer electrode body, all-solid battery with multilayer electrode body, and method for manufacturing multilayer electrode body
JPH038262A (en) Laminated battery
JP2608561B2 (en) Stacked battery
JPH048899B2 (en)
JPS61240579A (en) Manufacture of cadmium negative plate for alkaline storage battery
JP2612002B2 (en) Battery
JP3115574B2 (en) Battery
CA2173330C (en) Bipolar electrochemical battery of stacked wafer cells
JPS5978451A (en) Battery
JP2024095770A (en) Manufacturing method of laminated electrode body
US3672997A (en) Sealed metallic oxide-indium secondary battery
JPH0325863A (en) Internally stacked battery
KR100777506B1 (en) Pasty materials comprising inorganic, fluid conductors and layers produced therefrom, and electrochemical components made from these layers
JPH0311550A (en) Laminated layer type battery
JPS5852617Y2 (en) silver oxide battery
JP2634859B2 (en) Electrode manufacturing method
JP4767515B2 (en) Pocket hydrogen storage alloy electrode and nickel / hydrogen storage battery
JPH02265173A (en) Manufacture of battery
KR20190043086A (en) Positive electrode and alkaline secondary battery including the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees