JPH0382035A - Wafer heating device - Google Patents

Wafer heating device

Info

Publication number
JPH0382035A
JPH0382035A JP21897389A JP21897389A JPH0382035A JP H0382035 A JPH0382035 A JP H0382035A JP 21897389 A JP21897389 A JP 21897389A JP 21897389 A JP21897389 A JP 21897389A JP H0382035 A JPH0382035 A JP H0382035A
Authority
JP
Japan
Prior art keywords
wafer
plate
temperature
gas
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21897389A
Other languages
Japanese (ja)
Other versions
JP2522402B2 (en
Inventor
Yoshimitsu Morichika
森近 善光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1218973A priority Critical patent/JP2522402B2/en
Publication of JPH0382035A publication Critical patent/JPH0382035A/en
Application granted granted Critical
Publication of JP2522402B2 publication Critical patent/JP2522402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To heat a wafer while monitoring the temperature of the wafer indirectly based on the temperature of a plate like material and control the temperature of its wafer with high accuracy by providing the plate like material having thermal capacity that is equal to or less than that of the wafer in such a way as to allow its plate to face the rear of the wafer and introducing an inactive gas between the wafer and the plate like material and further, taking similar steps. CONSTITUTION:In a wafer heating device in which thermal conduction as the result of an inactive gas is utilized, this device is equipped with: a plate like material 2 which opposites the rear of a wafer 1 to be heated and has a thermal capacity that is equal to or less than that of the wafer; side walls 3 which are provided around a space that is formed by the rear of the wafer 1 and the foregoing plate like material 2 and further, are made of the material having low thermal conductivity; means 4 for introducing the inactive gas into the above space; means 7 for heating the above plate like material 2; and a means 5 for measuring the temperature of the material 2. For example, a 1mm thick copper plate 2 is installed so as to face the rear of the wafer 1 through the side walls 3 made of quartz and its temperature is measured by a thermocouple 5 and then, heating of the copper plate 2 is carried out by heat lamps 7. A constant flow rate of Ar gas is introduced in the space surrounded by the wafer 1, the copper plate 2, and the side walls 3 of quartz.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウェハー処理装置において、真空槽内
で不活性ガスの熱伝導を利用してウェハーを加熱する装
置に関し、特にウェハーの温度がモニターできる加熱装
置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor wafer processing apparatus that heats a wafer in a vacuum chamber using heat conduction of an inert gas. Concerning a heating device that can be monitored.

〔従来の技術〕[Conventional technology]

従来の真空槽内における不活性ガスの熱伝導を利用した
ウェハー加熱装置は、ウェハーと金属ブロックとの間に
空間を設け、金属、ブロックを一定温度に加熱した状態
で金属ブロックとウェハーの間の空間に不活性ガスを導
入する方式であった。
Conventional wafer heating equipment that utilizes heat conduction of inert gas in a vacuum chamber creates a space between the wafer and the metal block, heats the metal and block to a constant temperature, and then heats the space between the metal block and the wafer. The method was to introduce inert gas into the space.

その構造を第7図の平面図及びそのA−A断面図を第8
図に示す0図を参照して動作を説明する。熱伝導率の高
い加熱銅ブロック13を、熱電対5で温度をモニターし
ながらセラミックヒータ−17で加熱し一定の温度に保
つ、そしてガス導入口18よりArガスを一定流■導入
する。Arガスの原子は、ウェハー1と加熱銅ブロック
13の間で衝突を繰り返し、最後にウェハー1と加熱銅
ブロック13の接触面から出てゆく、加熱された銅ブロ
ック13と、ウェハー1との間のArガスの原子の衝突
で熱が伝導され、ウェハー1は加熱される。このとき加
熱銅ブロック13は、ウェバー1へ熱が伝導されたとき
の温度変動を小さく抑えるために大きな熱容量を持つよ
う製作される。ウェハー温度のモニターはウェハー裏面
にウェハー用熱電対19を接触することで実現している
Its structure is shown in the plan view in Fig. 7 and its A-A sectional view in Fig. 8.
The operation will be explained with reference to Figure 0 shown in the figure. A heating copper block 13 with high thermal conductivity is heated with a ceramic heater 17 and kept at a constant temperature while monitoring the temperature with a thermocouple 5, and a constant flow of Ar gas is introduced from a gas inlet 18. Ar gas atoms repeatedly collide between the wafer 1 and the heated copper block 13, and finally exit from the contact surface between the wafer 1 and the heated copper block 13. Heat is conducted by the collision of Ar gas atoms, and the wafer 1 is heated. At this time, the heating copper block 13 is manufactured to have a large heat capacity in order to suppress temperature fluctuations when heat is conducted to the webber 1. Monitoring of the wafer temperature is realized by contacting a wafer thermocouple 19 to the back surface of the wafer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のウェハー加熱装置では、ウェハー温度は
裏面に接触させた熱電対で測定する構造となっているが
、熱電対とウェハー裏面との接触面積が小さく伝導する
熱量が小さいため、熱電対の温度の上昇は遅く応答速度
が低い、すなわちウェハー温度と熱電対指示温度との間
に差が発生しやすい欠点がある。さらにウェハーの枚葉
処理の場合、熱電対とウェハーとの接触の仕方の微妙な
変化が発生し、再現性よく温度が測定できないという欠
点がある。
In the conventional wafer heating device described above, the wafer temperature is measured with a thermocouple that is in contact with the back surface of the wafer. The disadvantage is that the temperature rise is slow and the response speed is low, that is, a difference easily occurs between the wafer temperature and the temperature indicated by the thermocouple. Furthermore, in the case of single wafer processing, there is a drawback that subtle changes occur in the way the thermocouple contacts the wafer, making it impossible to measure temperature with good reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、不活性ガスによる熱伝導を利用するウェハー
加熱装置において、加熱されるウェハー裏面に対向して
設けられ熱容量がウェハーと同等又はそれ以下の板状材
料と、ウェハー裏面と前記板状材料で形成される空間の
周囲に設けられた熱伝導率の低い材料からなる側壁と、
前記空間へ不活性ガスを導入する手段と、前記板状材料
を加熱する手段と、その温度を測定する手段とを設けた
ウェハー加熱装置である。
The present invention provides a wafer heating device that utilizes heat conduction by an inert gas, which includes a plate-shaped material that is provided opposite to the back surface of the wafer to be heated and has a heat capacity equal to or less than that of the wafer, and a plate-shaped material that is arranged opposite to the back surface of the wafer to be heated and has a heat capacity that is equal to or less than that of the wafer; A side wall made of a material with low thermal conductivity provided around the space formed by the
The wafer heating apparatus is provided with means for introducing an inert gas into the space, means for heating the plate-shaped material, and means for measuring the temperature.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の平面図、第2図はその
A−A断面図である。これはスパッタリング装置におけ
るウェハー加熱装置の例である。
FIG. 1 is a plan view of a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA. This is an example of a wafer heating device in a sputtering device.

ウェハー裏面に対向する板状材料としては厚さl n+
の銅板を選んだ、この銅板2を石英の側壁3を介してウ
ェハー1の裏面に対向するように1關の距離で取り付け
ている。そしてその温度は熱電対5で測定される。熱電
対5はヒートランプ7からの外乱で測定誤差が生じない
ようアルミナ製の熱電対保護管6で覆っている。また銅
板2の加熱はヒートランプ7で行われる。
The thickness of the plate material facing the back side of the wafer is l n+
A copper plate 2 was selected, and this copper plate 2 is attached to the back surface of the wafer 1 with a quartz side wall 3 in between so as to face it at a distance of one angle. The temperature is then measured with a thermocouple 5. The thermocouple 5 is covered with an alumina thermocouple protection tube 6 to prevent measurement errors from occurring due to disturbances from the heat lamp 7. Further, the copper plate 2 is heated by a heat lamp 7.

ウェハー1.銅板21石英側壁3で囲まれる空間にはガ
ス配管4にてArガスが一定流量導入される。この“空
間でArガスはウェハー1と銅板2の間で衝突を繰り返
し、銅板2からウェハー1゜へ熱を伝える。銅板2の熱
容量が小さいため、銅板2の温度はウェハー1の温度に
より容易に変化する。
Wafer 1. A constant flow rate of Ar gas is introduced into the space surrounded by the copper plate 21 and the quartz side wall 3 through the gas pipe 4. In this space, Ar gas repeatedly collides between the wafer 1 and the copper plate 2, and transfers heat from the copper plate 2 to the wafer 1°.Since the heat capacity of the copper plate 2 is small, the temperature of the copper plate 2 is easily controlled by the temperature of the wafer 1. Change.

また、ヒートランプ7のある空間に蓄積される熱量が銅
板2の温度の応答を悪くしないように、その空間は水冷
されたアルミニウム製水冷ジャケット9で囲まれている
0図中の10はその冷却配管であり11.12はその冷
却水入口及び出口である。
In addition, in order to prevent the amount of heat accumulated in the space where the heat lamp 7 is located from worsening the temperature response of the copper plate 2, that space is surrounded by a water-cooled aluminum water-cooling jacket 9. It is a pipe, and 11.12 is its cooling water inlet and outlet.

ウェハー1と銅板2の間のArガス圧力を1゜5關To
rrにした場合のウェハーと銅板の温度及びヒーターへ
投入される電力の関係を調査した結果が第3図である0
枚葉処理を想定しており、横軸0secで1枚目のウェ
ハーを加熱装置にセットし60secで取り去り、80
secで2枚目のウェハーをセットし160secで取
り去りている。ウェハーの温度は表面に熱電対を貼り付
けて測定した。このときの1枚目、2枚目ウェハーの温
度変化は各々al、a2となった。銅板2の温度をモニ
ターしながらヒートランプ7へ投入する電力は100〜
250wの間で制御している。第3図中すが銅板の温度
で9が投入電力である。
Ar gas pressure between wafer 1 and copper plate 2 is set to 1°5° To
Figure 3 shows the results of investigating the relationship between the temperature of the wafer and the copper plate and the power input to the heater when the temperature is set to 0.
Assuming single wafer processing, the first wafer is set on the heating device at 0 sec on the horizontal axis, removed at 60 sec, and 80 sec.
The second wafer is set in seconds and removed in 160 seconds. The temperature of the wafer was measured by attaching a thermocouple to the surface. At this time, the temperature changes of the first and second wafers were al and a2, respectively. The power input to the heat lamp 7 while monitoring the temperature of the copper plate 2 is 100~
It is controlled between 250w. In Figure 3, 9 is the temperature of the copper plate and 9 is the input power.

図のように投入電力Cは銅板温度すが300’Cを超え
ると100w、300℃より低下すると250wとなる
ように制御している0図かられがるように、ウェハーが
加熱装置にセットされてから40sec後には、銅板と
ウェハーとの温度差は10℃以内になる。すなわち銅板
の温度でウェハーの温度を知ることができる。
As shown in the figure, the input power C is controlled to 100 W when the copper plate temperature exceeds 300'C, and 250 W when it drops below 300'C.The wafer is set in the heating device as shown in the figure. After 40 seconds, the temperature difference between the copper plate and the wafer will be within 10°C. In other words, the temperature of the wafer can be determined from the temperature of the copper plate.

量産用の半導体製造装置でウェハー表面に熱電対を貼り
付けできない場合も、本発明によればウェハー温度を知
ることができる。ウェハー温度と銅板温度との関係は、
導入されるArガス圧力が1.2mTorr以上で一定
であり、再現性の点でも問題ない。
Even if a thermocouple cannot be attached to the wafer surface in mass-production semiconductor manufacturing equipment, the wafer temperature can be determined according to the present invention. The relationship between wafer temperature and copper plate temperature is
The introduced Ar gas pressure is constant at 1.2 mTorr or more, and there is no problem in terms of reproducibility.

第4図は本発明の第2の実施例の平面図、第5図はその
A−A断面図である。ウェハー■の裏面に対向する板状
材料としてはウェハーと同一材料で同一厚さの81板2
0を選び、ウェハー1と1mlの距離で石英側壁3に取
り付けた。その温度は熱電対5で測定される。
FIG. 4 is a plan view of a second embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along line AA. The plate material facing the back side of the wafer ■ is an 81 plate 2 made of the same material and the same thickness as the wafer.
0 was selected and attached to the quartz side wall 3 at a distance of 1 ml from the wafer 1. Its temperature is measured with a thermocouple 5.

ウェハー1.Si板20.石英側壁3で囲まれる空間に
はArガスが導入されるが、その導入は加熱ガス導入口
14と冷却ガス導入口16のように2系統あり、第4図
のように配置される。冷却ガス導入口16から導入され
るArガスは、水冷された冷却銅ブロツク15中を流れ
る冷却されたガスであり、加熱ガス導入口14から導入
されるArガスはセラミックヒータ−17で加熱された
加熱銅ブロツク13中を流れる加熱されたガスである。
Wafer 1. Si plate 20. Ar gas is introduced into the space surrounded by the quartz side wall 3, and there are two systems for introducing it, such as a heating gas inlet 14 and a cooling gas inlet 16, which are arranged as shown in FIG. The Ar gas introduced from the cooling gas inlet 16 is a cooled gas flowing through the water-cooled cooling copper block 15, and the Ar gas introduced from the heating gas inlet 14 is heated by the ceramic heater 17. This is the heated gas flowing through the heated copper block 13.

ガスを切り換えることにより、ウェハーの冷却、加熱の
両方が行える。
By switching the gas, both cooling and heating of the wafer can be performed.

また加熱前に、冷却されたガスをしばらく流すことによ
りSi板20に残される前ウェハー加熱時の熱を取り去
ることができ、そして板状材料としてウェハーと熱特性
の同じSi板を用いることにより、熱電対5で測定され
るSi板の温度はウェハーの温度とほぼ同じとなり再現
性がよく、制御性の高い加熱が実現できる。
Furthermore, by flowing a cooled gas for a while before heating, it is possible to remove the heat left on the Si plate 20 during the previous wafer heating, and by using a Si plate having the same thermal characteristics as the wafer as the plate material, The temperature of the Si plate measured by the thermocouple 5 is almost the same as the temperature of the wafer, so reproducibility is good, and highly controllable heating can be realized.

第6図はこの使用方法のときのウェハー温度とS1板の
温度を調査した結果であ、る、alは1枚目のウェハー
の温度、a2は2枚目のウェハーの温度、bはS1板の
温度をそれぞれ示す、また冷却されたArガスの流量を
cl、加熱されたArガスの流量を02として同時に示
している。このとき加熱銅ブロック13は250℃に、
冷却銅ブロック15は15℃にそれぞれ保っている。
Figure 6 shows the results of investigating the wafer temperature and the temperature of the S1 plate in this usage method, where al is the temperature of the first wafer, a2 is the temperature of the second wafer, and b is the temperature of the S1 plate. In addition, the flow rate of the cooled Ar gas is shown as cl, and the flow rate of the heated Ar gas is shown as 02. At this time, the heating copper block 13 is heated to 250°C.
The cooling copper blocks 15 are each kept at 15°C.

動作は、ウェハーが加熱装置にセットされてから12s
ecの間冷用されたArガスが20secmの流量で4
8SeCの間流されるようになる0図かられかるように
Si板の温度でウェハーの温度が非常によくモニターさ
れる。
The operation takes 12 seconds after the wafer is set on the heating device.
The cooled Ar gas during EC was
The temperature of the wafer is very closely monitored by the temperature of the Si plate, as shown in Figure 0, which flows during 8SeC.

このように本実施例ではウェハーに対向する板状材料と
してS1板を用い、冷却されたArガスと加熱されたA
rガスの両方を流せるため再現性がよく、制御性の高い
加熱ができる利点がある。
In this example, the S1 plate is used as the plate material facing the wafer, and the cooled Ar gas and the heated Ar gas
Since both r gases can be flowed, there is an advantage that reproducibility is good and heating can be performed with high controllability.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ウェハーの裏面に対向し
て、熱容量がウェハーと同等又はそれ以下の板状材料を
設け、ウェハーとその板状材料の間に不活性ガスを充満
させガスによる熱伝導でウェハーと板状材料との温度差
を小さくすることにより、ウェハーの温度を板状材料の
温度で間接的にモニターしながら加熱ができる効果があ
り、ウェハーの温度の高精度な制御が要求される今後の
プロセスに有効である。
As explained above, the present invention provides a plate material having a heat capacity equal to or less than that of the wafer, facing the back surface of the wafer, and filling the space between the wafer and the plate material with an inert gas to generate heat generated by the gas. By reducing the temperature difference between the wafer and the plate material through conduction, it is possible to heat the wafer while indirectly monitoring the temperature of the plate material, which requires highly accurate control of the wafer temperature. will be useful for future processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のウェハー加熱装置の平
面図、第2図はその断面図、第3図はこの装置のウェハ
ー加熱特性を示すグラフ、第4図は本発明の第2の実施
例のウェハー加熱装置の平面図、第5図はその断面図、
第6図は第2の実施例のウェハー加熱特性を示すグラフ
、第7図は従来のウェハー加熱装置の一例の平面図、第
8図はその断面図である。 1・・・ウェハー、2・・・銅板、3・・・石英側壁、
4・・・ガス配管、5・・・熱電対、6・・・熱電対保
護管、7・・・ヒートランプ、8・・・ヒートランプ端
子、9・・・水冷ジャケット、10・・・冷却配管、1
1・・・冷却水入口、12・・・冷却水出口、13・・
・加熱銅ブロック、14・・・加熱ガス導入口、15・
・・冷却銅ブロック、16・・・冷却ガス導入口、17
・・・セラミックヒータ−18・・・ガス導入口、19
・・・ウェハー用熱電対、20・・・sr板。
FIG. 1 is a plan view of a wafer heating device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, FIG. 3 is a graph showing the wafer heating characteristics of this device, and FIG. A plan view of the wafer heating device of the second embodiment, FIG. 5 is a cross-sectional view thereof,
FIG. 6 is a graph showing the wafer heating characteristics of the second embodiment, FIG. 7 is a plan view of an example of a conventional wafer heating device, and FIG. 8 is a sectional view thereof. 1... Wafer, 2... Copper plate, 3... Quartz side wall,
4... Gas piping, 5... Thermocouple, 6... Thermocouple protection tube, 7... Heat lamp, 8... Heat lamp terminal, 9... Water cooling jacket, 10... Cooling Piping, 1
1...Cooling water inlet, 12...Cooling water outlet, 13...
・Heating copper block, 14...Heating gas inlet, 15・
...Cooling copper block, 16...Cooling gas inlet, 17
...Ceramic heater-18...Gas inlet, 19
...Thermocouple for wafer, 20...SR plate.

Claims (1)

【特許請求の範囲】[Claims] 不活性ガスによる熱伝導を利用するウェハー加熱装置に
おいて、加熱されるウェハー裏面に対向して設けられ熱
容量がウェハーと同等又はそれ以下の板状材料と、ウェ
ハー裏面と前記板状材料で形成される空間の周囲に設け
られた熱伝導率の低い材料からなる側壁と、前記空間へ
不活性ガスを導入する手段と、前記板状材料を加熱する
手段と、その温度を測定する手段とを設けたことを特徴
とするウェハー加熱装置。
A wafer heating device that utilizes heat conduction by an inert gas is formed by a plate-shaped material that is provided opposite the back surface of the wafer to be heated and has a heat capacity equal to or less than that of the wafer, and the back surface of the wafer and the plate-shaped material. A side wall made of a material with low thermal conductivity is provided around the space, a means for introducing an inert gas into the space, a means for heating the plate-shaped material, and a means for measuring the temperature. A wafer heating device characterized by:
JP1218973A 1989-08-24 1989-08-24 Wafer heating device Expired - Lifetime JP2522402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218973A JP2522402B2 (en) 1989-08-24 1989-08-24 Wafer heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218973A JP2522402B2 (en) 1989-08-24 1989-08-24 Wafer heating device

Publications (2)

Publication Number Publication Date
JPH0382035A true JPH0382035A (en) 1991-04-08
JP2522402B2 JP2522402B2 (en) 1996-08-07

Family

ID=16728264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218973A Expired - Lifetime JP2522402B2 (en) 1989-08-24 1989-08-24 Wafer heating device

Country Status (1)

Country Link
JP (1) JP2522402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881208A (en) * 1995-12-20 1999-03-09 Sematech, Inc. Heater and temperature sensor array for rapid thermal processing thermal core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128129A (en) * 1985-11-28 1987-06-10 Nec Corp Wafer heating apparatus
JPS6365083A (en) * 1986-09-04 1988-03-23 Fujitsu Ltd Vapor growing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128129A (en) * 1985-11-28 1987-06-10 Nec Corp Wafer heating apparatus
JPS6365083A (en) * 1986-09-04 1988-03-23 Fujitsu Ltd Vapor growing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881208A (en) * 1995-12-20 1999-03-09 Sematech, Inc. Heater and temperature sensor array for rapid thermal processing thermal core

Also Published As

Publication number Publication date
JP2522402B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
KR100239389B1 (en) Plasma etching apparatus
KR100567967B1 (en) Semiconductor wafer temperature measurement and control thereof using gas temperature measurement
US6064800A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
US5443997A (en) Method for transferring heat to or from a semiconductor wafer using a portion of a process gas
US6901808B1 (en) Capacitive manometer having reduced process drift
US3842794A (en) Apparatus for high temperature semiconductor processing
JP5554518B2 (en) Method and apparatus for determining substrate temperature
JPH0382035A (en) Wafer heating device
US4275289A (en) Uniformly cooled plasma etching electrode
JPH06132231A (en) Cvd equipment
JPS6230329A (en) Dry etching device
JPH0382017A (en) Manufacture apparatus for semiconductor device
JPH0529264A (en) Semiconductor wafer processing device
KR0175002B1 (en) Organometallic Chemical Vapor Deposition Equipment
EP0406669A2 (en) Thin film making method on semiconductor substrate and temperature controlling systems therefor
US3943015A (en) Method for high temperature semiconductor processing
JPS6136931A (en) Control method of temperature of wafer
JPH05121361A (en) Semiconductor wafer cooler
JPS6324411B2 (en)
Shenasa et al. Optimization of LPCVD silicon nitride process in a vertical thermal reactor: use of design of experiments
JP2773294B2 (en) Etching method
JPH0463276A (en) Method for measuring temperature of material to be treated in vacuum, method and device for controlling temperature
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
JP2000171000A (en) Integrated valve
KR0165463B1 (en) Measuring method of wafer temperature