JPH0381249A - Production of 2,6-dimethyl-p-benzoquinone - Google Patents

Production of 2,6-dimethyl-p-benzoquinone

Info

Publication number
JPH0381249A
JPH0381249A JP1217065A JP21706589A JPH0381249A JP H0381249 A JPH0381249 A JP H0381249A JP 1217065 A JP1217065 A JP 1217065A JP 21706589 A JP21706589 A JP 21706589A JP H0381249 A JPH0381249 A JP H0381249A
Authority
JP
Japan
Prior art keywords
catalyst
oximes
reaction
compound
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1217065A
Other languages
Japanese (ja)
Other versions
JPH0529384B2 (en
Inventor
Katsuomi Takehira
勝臣 竹平
Yoshito Watanabe
芳人 渡辺
Masao Shimizu
政男 清水
Takashi Hayakawa
孝 早川
Hideo Orita
折田 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1217065A priority Critical patent/JPH0381249A/en
Publication of JPH0381249A publication Critical patent/JPH0381249A/en
Publication of JPH0529384B2 publication Critical patent/JPH0529384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound useful as a synthetic intermediate of a functional polymer or medical drug, etc., in high yield with using a small amount of catalyst and in high reaction speed by efficiently oxidizing 2,6- dimethylphenol with oxygen using a specific catalyst. CONSTITUTION:A catalyst composed of a copper compound and a various nitrogen compound, namely salt of hydroxylamines and an inorganic acid or a mixture of said amines and acid, or combination of oximes or a mixture of oximes and an inorganic acid is used to oxidize 2,6-dimethylphenol with oxygen preferably in a 1-8C lower aliphatic alcohol or a mixed solution of an aromatic hydrocarbon and a 1-8C lower aliphatic alcohol as a solvent to afford the aimed compound. Reaction temperature is preferably from room temperature to 200 deg.C, especially from room temperature to 80 deg.C. Besides, using ratio of the copper compound to hydroxylamines, etc., is 1mol the former copper compound to 0.3-3mol the latter compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性高分子、医薬品等の合成中間体として
有用な2,6−ジメチル−p−ベンゾキノンの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing 2,6-dimethyl-p-benzoquinone, which is useful as a synthetic intermediate for functional polymers, pharmaceuticals, and the like.

さらに詳しくは、本発明は、液相で銅化合物および種々
の窒素化合物、即ちヒドロキシルアミン類と無機酸との
塩もしくはそれらの混合物あるいはオキシム類と無機酸
との混合物の組合せよりなる触媒を用い、溶媒として脂
肪族アルコールもしくは芳香族炭化水素と低級脂肪族ア
ルコールの混合物を用いて、2,6−ジメチルフェノー
ル(以下DMPと略す)を効率よく酸素酸化して2,6
−ジメチル−p−ベンゾキノン(以下DMQと略す)を
製造する方法に関するものである。
More specifically, the present invention uses a catalyst consisting of a combination of a copper compound and various nitrogen compounds in the liquid phase, namely salts of hydroxylamines and inorganic acids or mixtures thereof or mixtures of oximes and inorganic acids, Using an aliphatic alcohol or a mixture of an aromatic hydrocarbon and a lower aliphatic alcohol as a solvent, 2,6-dimethylphenol (hereinafter abbreviated as DMP) is efficiently oxidized with oxygen to produce 2,6
The present invention relates to a method for producing -dimethyl-p-benzoquinone (hereinafter abbreviated as DMQ).

〔従来技術〕[Prior art]

DMQは、液晶ポリマー等の機能性高分子ある現在のと
ころ高率な合成法は未だ確立されていない。さらに、ア
ルキル置換フェノール類を一段で酸化してベンゾキノン
類を製造する方法については、従来多くの検討がなされ
ており、硝酸(特公昭56−95145号)、−過安息
香酸(特公昭59−39847号)1次亜ハロゲン酸(
特公昭60−81135号)、過酸化水素(Eur、P
at、Appl。
DMQ is a functional polymer such as a liquid crystal polymer, but a high-efficiency synthesis method has not yet been established. Furthermore, many studies have been made on methods for producing benzoquinones by oxidizing alkyl-substituted phenols in one step. No.) Primary halous acid (
Special Publication No. 60-81135), hydrogen peroxide (Eur, P
at, Appl.

107176)等の酸化剤を用いる方法が提案されてい
る。しかしながら、これらの方法でも、有害ガスの発生
、高価な酸化剤の使用、副生成物の生成などの点で問題
がある。
A method using an oxidizing agent such as 107176) has been proposed. However, even these methods have problems in terms of generation of harmful gases, use of expensive oxidizing agents, and generation of by-products.

これらに対して、酸素を酸化剤とする方法が検討され、
この酸化反応のための触媒系が種々提案されているが、
例えばコバルト錯体を触媒とする方法(特公昭56−2
6647号)では初期活性は高いが触媒の寿命が極めて
短いという欠点を有する。またハロゲン化鋼を触媒とす
る方法では反応率、選択率共に高い値が得られているが
、種々の解決すべき基本的な欠点を有する0例えば、二
ゝ末すル、第三級アミド溶媒中銅塩を用いてフェノール
類を酸化する方法(特開昭49−36641号)では、
ベンゾキノン類の収率は75%程度であり、その他ポリ
フェニレンオキシド等を副生じ、処理しにくいポリマー
とベンゾキノンを分離しなくてはならず、効率的な製造
方法とは言えない。
For these reasons, methods using oxygen as an oxidizing agent have been studied,
Various catalyst systems have been proposed for this oxidation reaction, but
For example, a method using a cobalt complex as a catalyst (Japanese Patent Publication No. 56-2
No. 6647) has a high initial activity, but has the disadvantage that the catalyst life is extremely short. In addition, although high values for both reaction rate and selectivity have been obtained in the method using halogenated steel as a catalyst, there are various fundamental drawbacks that need to be resolved. In the method of oxidizing phenols using copper salt (Japanese Patent Application Laid-Open No. 49-36641),
The yield of benzoquinones is about 75%, and other by-products such as polyphenylene oxide are produced, and the benzoquinone must be separated from polymers that are difficult to process, so it cannot be said to be an efficient production method.

有機溶媒中で銅およびハロゲンイオンよりなる触媒の存
在下フェノール類を酸化する方法(特公昭53−175
85号)は、収率が高い点では優れた方法であるが、触
媒の活性が極めて低いために、フェノール類とほぼ等モ
ル量の触媒を用いて長時間の反応を行う必要があり、さ
らにこの大量の触媒を循環使用しなければならず、ユー
ティリティー消費が大きくなる等の致命的な欠点を有す
る。
Method for oxidizing phenols in an organic solvent in the presence of a catalyst consisting of copper and halogen ions
No. 85) is an excellent method in terms of high yield, but because the activity of the catalyst is extremely low, it is necessary to carry out the reaction for a long time using a catalyst in an approximately equimolar amount to the phenol. This large amount of catalyst must be used repeatedly, which has fatal drawbacks such as increased utility consumption.

これらの欠点を改善すべく、銅およびハロゲン系の触媒
を用いるフェノール類酸化方法に関していくつかの特許
(例えば、特開昭50−93931号、特開昭59−2
25137号あるいは特開昭63−280040号)が
提示されているが、いずれも触媒の循環使用を容易にす
るための方法が基本的な問題である触媒活性そのものに
ついては改良の跡は認められない。
In order to improve these drawbacks, several patents (for example, JP-A-50-93931, JP-A-59-2,
No. 25137 or JP-A No. 63-280040), but in both cases, the basic problem is a method to facilitate the recycling use of the catalyst.There is no evidence of improvement in the catalytic activity itself. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで、本発明者は、DMPを酸素酸化してDMQを製
造する際の酸化触媒ならびに酸化反応溶媒に関して鋭意
研究を重ねた結果、銅化合物および種々の窒素化合物、
即ちヒドロキシルアミン類と無機酸との塩もしくはそれ
らの混合物あるいはオキシム類またはオキシム類と無機
酸との混合物の組合せよりなる触媒を用い、溶媒として
炭素数1〜8の低級脂肪族アルコールもしくは芳香族炭
化水素および炭素数l〜8の低級脂肪族アルコールの混
合液を用いることにより、高収率で目的とするDMQを
製造し得ることを見出し、この知見に基づいて本発明を
なすに至った。
Therefore, as a result of extensive research into oxidation catalysts and oxidation reaction solvents for producing DMQ by oxidizing DMP with oxygen, the present inventors found that copper compounds and various nitrogen compounds,
That is, a catalyst consisting of a salt of hydroxylamine and an inorganic acid or a mixture thereof, or a combination of oximes or a mixture of oximes and an inorganic acid is used, and a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic carbonization is used as a solvent. We have discovered that the desired DMQ can be produced in high yield by using a mixture of hydrogen and a lower aliphatic alcohol having 1 to 8 carbon atoms, and based on this finding, we have accomplished the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち1本発明は、DMPを酸素酸化してDMQを製
造するにあたり、銅化合物および種々の窒素化合物、即
ちヒドロキシルアミン類と無機酸ゞテ′の塩もしくはそ
れらの混合物あるいはオキシム類またはオキシム類と無
機酸との混合物の組合せよりなる触媒を使用し、溶媒と
して炭素数1〜8の低級脂肪族アルコールもしくは芳香
族炭化水素および炭素数1〜8の低級脂肪族アルコール
の混合液を使用することを特徴とするDMQの製造方法
を提供するものである。
That is, the present invention provides a method for producing DMQ by oxidizing DMP with oxygen. It is characterized by using a catalyst consisting of a combination of a mixture with an acid, and using a mixture of a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms as a solvent. The present invention provides a method for manufacturing DMQ.

本発明は、DMPを炭素数1〜8の低級脂肪族アルコー
ルもしくは芳香族炭化水素および炭素数l〜8の低級脂
肪族アルコールの混合溶媒中に溶解し、分子状酸素と触
媒量の銅化合物および種々の窒素化合物、即ちヒドロキ
シルアミン類と無機酸との塩もしくはそれらの混合物あ
るいはオキシム類またはオキシム類と無機酸との混合物
の存在下、室温〜200℃で単に攪拌するだけで容易に
達成され極めて簡便且つ安全な酸化方法である。
In the present invention, DMP is dissolved in a mixed solvent of a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms, and molecular oxygen and a catalytic amount of a copper compound and This is easily achieved by simple stirring at room temperature to 200°C in the presence of various nitrogen compounds, i.e., salts of hydroxylamines and inorganic acids or mixtures thereof, or oximes or mixtures of oximes and inorganic acids. This is a simple and safe oxidation method.

本発明において、DMPを酸化するために酸化剤として
分子状酸素ならびに触媒として銅化合物および種々の窒
素化合物、即ちヒドロキシルアミン類と無機酸との塩も
しくはそれらの混合物ある々宗;はオキシム類またはオ
キシム類と無機酸との混合物の組合せが用いられる。分
子状酸素源としては純酸素ガスあるいは空気のいずれを
用いてもよく、常圧〜30kg/allの範囲で有効で
ある。触媒の一成分として用いられる銅化合物は無機塩
、有機塩等が使用可能で特に制限は無いが、なかんずく
塩化第一銅、塩化第二銅等の塩化物が良好な反応成績を
示す。触媒の他の成分として用いられる窒素化合物であ
るヒドロキシルアミン類につt)てはヒドロキシルアミ
ンそのものの他に、N、N−ジメチルヒドロキシルアミ
ン等のN、N−ジアルキルヒドロキシルアミン類、N−
メチルヒドロキシルアミン等のN−アルキルヒドロキシ
ルアミン類、O−メチルヒドロキシルアミン等の0−ア
ルキルヒドロキシルアミン等の種々のヒドロキシルアミ
ン誘導体が使用可能であるが、なかんずくヒドロキシル
アミン、ヒドロキシ尿素あるいは低分子量のN、N−ジ
アルキルヒドロキシルアミン類力S良好な反応成績を示
す。オキシム類につb)て番士アセトン、メチルエチル
ケトン、ジエチルケトン等ゝδ′ジアルキルケトン類、
シクロヘキサノン、シクロオクタノン等の環状ケトン類
、アセトフェノン、プロピオフェノン等の芳香族ケトン
類、ジアセチル、アセチルアセトン等のジケトン類、ジ
メドン等の環状ジケトン類等のいずれのケトン類、ある
いはホルムアルデヒド、アセトアルデヒド、プロピオン
アルデヒド等の脂肪族アルデヒド、ベンズアルデヒド、
フェニルアセトアルデヒド等の芳香族アルデヒド類のい
ずれのアルデヒド類のオキシムでも使用が可能であるが
、なかんずくアセトアルドキシム、ベンズアルドキシム
、アセトンオキシム、2−ブタノンオキシム等の比較的
低分子量のオキシム類が良好な反応成績を与える。また
、それらの無機酸との塩を用いるに当っての無機酸とし
ては硫酸、ハロゲン酸等の種々の無機酸が使用可能であ
り特に制限は無いが、塩酸あるいは硫酸が比較的良好な
結果を与える。この無機酸の添加は必須ではなく、銅化
合物とオキシム類の系でも充分な触媒活性が得られるが
、さらに無機酸を加えた方が触媒活性が向上する場合が
多い、さらQ’、 e g oヤツ、ウアミア類、オヤ
ッ、類およびアミン類と無機酸とは必ずしも前もって混
合物を調製して用いる必要は無く、別々に添加してもよ
く、いずれの場合もそれぞれの組成比は特に制限は無い
が、ヒドロキシルアミン類およびオキシム類1モルに対
し無機酸0.2〜5モルの範囲が良好な反応結果を与え
る。銅化合物に対するヒドロキシルアミン類およびオキ
シム類の使用量については特に制限は無いが、少なくて
も多すぎても反応速度が低くなるので、銅化合物1モル
につきいずれの場合も0.3〜3モルの範囲が好ましい
、かくして得られる触媒の使用量については特に制限は
無いが、少ないと反応速度が小さく、多すぎると反応後
の分離等で問題が出てくるので、銅化合物の量にしてD
MP1モルに対して0.01〜0゜1モル量の使用が好
ましい反応結果を与える。
In the present invention, in order to oxidize DMP, molecular oxygen is used as an oxidizing agent, and a copper compound and various nitrogen compounds as catalysts, such as salts of hydroxylamines and inorganic acids or mixtures thereof; and inorganic acids. As the molecular oxygen source, either pure oxygen gas or air may be used, and it is effective in the range of normal pressure to 30 kg/all. As the copper compound used as a component of the catalyst, inorganic salts, organic salts, etc. can be used and there are no particular restrictions, but chlorides such as cuprous chloride and cupric chloride show particularly good reaction results. Hydroxylamines, which are nitrogen compounds used as other components of the catalyst, include hydroxylamine itself, N,N-dialkylhydroxylamines such as N,N-dimethylhydroxylamine, and N-
Various hydroxylamine derivatives such as N-alkylhydroxylamines such as methylhydroxylamine and O-alkylhydroxylamines such as O-methylhydroxylamine can be used, but in particular hydroxylamine, hydroxyurea or low molecular weight N, N-Dialkylhydroxylamines show good reaction results. Regarding oximes, b) δ' dialkyl ketones such as Banji acetone, methyl ethyl ketone, diethyl ketone, etc.
Any ketones such as cyclic ketones such as cyclohexanone and cyclooctanone, aromatic ketones such as acetophenone and propiophenone, diketones such as diacetyl and acetylacetone, and cyclic diketones such as dimedone, or formaldehyde, acetaldehyde, and propion. Aliphatic aldehydes such as aldehydes, benzaldehydes,
Oximes of any aldehydes such as aromatic aldehydes such as phenylacetaldehyde can be used, but oximes with relatively low molecular weight such as acetaldoxime, benzaldoxime, acetone oxime, and 2-butanone oxime are particularly suitable. give a reaction score. In addition, when using salts with these inorganic acids, various inorganic acids such as sulfuric acid and halogen acid can be used, and there is no particular restriction, but hydrochloric acid or sulfuric acid gives relatively good results. give. The addition of this inorganic acid is not essential, and sufficient catalytic activity can be obtained with a system of copper compounds and oximes, but the catalytic activity is often improved by further adding an inorganic acid. It is not necessary to prepare and use a mixture of oya, uamia, oya, amine, and inorganic acid in advance, and they may be added separately, and in either case, there is no particular restriction on the composition ratio of each. However, a range of 0.2 to 5 moles of the inorganic acid per mole of hydroxylamines and oximes gives good reaction results. There is no particular restriction on the amount of hydroxylamines and oximes to be used with respect to the copper compound, but if the amount is too small or too large, the reaction rate will be low, so in any case, 0.3 to 3 mol per 1 mol of the copper compound. The amount of the catalyst obtained in this way is not particularly limited, but if it is too small, the reaction rate will be low, and if it is too large, problems will arise with separation after the reaction.
Use of 0.01 to 0.1 mol per mol of MP gives preferable reaction results.

本発明の方法において、反応に際して用いられる溶媒に
ついては、炭素数1〜8の低級脂肪族アルコールとして
はメタノール、エタノール、1−プロパツール、イソプ
ロパツール、1−ブタノ−≦1,2−ブタノール、ta
rt−ブタノール、1−アミルアルコール、2−アミル
アルコール、3−アミルアルコール、5ec−アミルア
ルコール、tart−アミルアルコール、l−ヘキサノ
ール、1−オクタツール、2−オクタツール等をあげる
ことができ、特に制限は無いが、tert−ブタノール
、tert−アミルアルコールのような三級アルコール
が好ましい結果を与える。芳香族炭化水素および炭素数
1〜8の低級脂肪族アルコールの混合溶媒を用いる場合
の芳香族炭化水素としては特に制限は無いが、ベンゼン
、トルエン、キシレン、クロルベンゼン等の比較的低沸
点で且つ酸化に対して安定であるものが好ましい。この
際、上記の炭素数l〜8の低級脂肪族アルコール一種以
上と芳香族炭化水素1種以上とを組合せた混合液を溶媒
として用いる。これらの溶媒は触媒である銅化合物なら
びにヒドロキシルアミン類、オキシム類、および/また
は無機酸、原料であるDMP、ならびに酸素の溶解に優
れた効果を示し、これらを接触させるだけで目的とする
DMQの生成を極めて有効に行う。芳香族\嘱−−I −1”−化水素と低級脂肪族アルコールとの組成比につ
いては、それらの組合せによって異なるため一概には決
められないが、芳香族炭化水素に対する低級脂肪族アル
コールの容量比は0.2〜1.5が好ましく、特に好ま
しくは0.25〜0.8である。
Regarding the solvent used in the reaction in the method of the present invention, lower aliphatic alcohols having 1 to 8 carbon atoms include methanol, ethanol, 1-propanol, isopropanol, 1-butano-≦1,2-butanol, ta
Examples include rt-butanol, 1-amyl alcohol, 2-amyl alcohol, 3-amyl alcohol, 5ec-amyl alcohol, tart-amyl alcohol, l-hexanol, 1-octatool, 2-octatool, etc. Although not limited, tertiary alcohols such as tert-butanol, tert-amyl alcohol give preferred results. When using a mixed solvent of aromatic hydrocarbons and lower aliphatic alcohols having 1 to 8 carbon atoms, there are no particular restrictions on the aromatic hydrocarbons; Those that are stable against oxidation are preferred. At this time, a mixture of one or more of the above-mentioned lower aliphatic alcohols having 1 to 8 carbon atoms and one or more aromatic hydrocarbons is used as a solvent. These solvents have excellent effects on dissolving copper compounds as catalysts, hydroxylamines, oximes, and/or inorganic acids, DMP as raw materials, and oxygen, and can dissolve the desired DMQ simply by bringing them into contact. Generate extremely effectively. The composition ratio of aromatic \嘱--I-1''-hydrogen and lower aliphatic alcohol cannot be determined unconditionally because it varies depending on the combination, but the capacity of lower aliphatic alcohol to aromatic hydrocarbon The ratio is preferably 0.2 to 1.5, particularly preferably 0.25 to 0.8.

上記の触媒はこれらの混合溶媒中に直接溶解して使用す
ることもできるが、また触媒を水溶液として使用するこ
ともできる。またこの場合に用いる炭素数1〜8の脂肪
族アルコールとしては水溶性の小さいものであれば特に
問題はなく、種々の異性体を含むブタノール、ペンタノ
ール、ヘキサノール、ヘプタツール、オクタツール等が
使用可能である。いずれの場合も、溶媒中に溶存するD
MPと水相に溶存する触媒ならびに気相の酸素を効率良
く接触させるために、効率的な攪拌装置ならびに通気装
置を備える必要がある。
The above catalysts can be used by directly dissolving them in these mixed solvents, but they can also be used as an aqueous solution. In addition, as the aliphatic alcohol having 1 to 8 carbon atoms used in this case, there is no particular problem as long as it has low water solubility, and butanol, pentanol, hexanol, heptatool, octatool, etc. containing various isomers are used. It is possible. In either case, D dissolved in the solvent
In order to efficiently bring the MP into contact with the catalyst dissolved in the aqueous phase and the oxygen in the gas phase, it is necessary to provide an efficient stirring device and aeration device.

本発明の方法における反応の温度は室温〜200℃付近
の温度で行うことができるが、あまり低温すぎると反応
速度が遅くなり、一方、高すぎる璽溶媒の損失あるいは
副反応が多くなるので室温〜80℃の範囲で実施するの
が好ましい。反応時間は、反応温度、酸素圧力、触媒の
使用量により左右されるが1通常は1〜10時間で充分
である。
The reaction temperature in the method of the present invention can be carried out at room temperature to around 200°C, but if the temperature is too low, the reaction rate will be slow, and on the other hand, the reaction temperature will be too high, as the loss of solvent or side reactions will increase. Preferably, the temperature is 80°C. Although the reaction time depends on the reaction temperature, oxygen pressure, and amount of catalyst used, 1 to 10 hours is usually sufficient.

〔発明の効果〕〔Effect of the invention〕

本発明方法に従うと、安価な市販の一般試薬である塩化
第二銅等の銅化合物およびヒドロキシルアミン、アセト
ンオキシム等の窒素化合物を触媒として用い、炭素数1
〜8の低級脂肪族アルコールあるいは芳香族炭化水素と
炭素数1〜8の低級脂肪族アルコールの好ましい組成で
形成される混合液を溶媒として、また触媒を水溶液とし
て反応に供するときは前記の混合液もしくは炭素数1〜
8の脂肪族アルコール中で比較的水溶性の低いものをを
溶媒として、DMPを分子状酸素で酸化して一段階で、
しかも極めて高い反応速度ならびに収率でDMQを得る
ことができる上に、従来法の欠陥であった大量の触媒を
循環させる必要が無くなるので、工業的なりMQの製造
法として好適である。
According to the method of the present invention, copper compounds such as cupric chloride, which are inexpensive commercially available general reagents, and nitrogen compounds such as hydroxylamine and acetone oxime are used as catalysts, and
-8 lower aliphatic alcohols or aromatic hydrocarbons and lower aliphatic alcohols having 1 to 8 carbon atoms when the reaction is carried out as a solvent and the catalyst as an aqueous solution, the above-mentioned mixed solution is used. Or carbon number 1~
In one step, DMP is oxidized with molecular oxygen using an aliphatic alcohol of No. 8 with relatively low water solubility as a solvent.
In addition, it is possible to obtain DMQ at extremely high reaction rates and yields, and there is no need to circulate a large amount of catalyst, which was a drawback of the conventional method, so it is suitable as an industrial method for producing MQ.

本発明において使用する触媒の活性は極めて高いので、
少量の触媒の使用で充分であり、触媒を循環再使用する
必然性は必ずしも無いが、これが必要な場合には触媒を
水溶液として用いることにより触媒の循環使用が可能で
ある。この場合は、反応中は攪拌下において、混合溶媒
系では芳香族炭化水素の親油性と低級脂肪族アルコール
の親水性とのために、難水溶性の脂肪族アルコールを溶
媒では長鎖のアルキル基の親油性と水酸基の親水性との
ために、水相の触媒と良好な懸濁状態となり、水相−有
機相−気相の三相反応を円滑に進行させるが1反応終了
後、攪拌を停止すると有機相と水相とに急速に分離し、
水相の触媒を分離回収して再使用することができ、同時
に有機相からは溶媒を蒸留等の手段により除去して生成
物DMQの単離を容易に行うことができる。
Since the activity of the catalyst used in the present invention is extremely high,
It is sufficient to use a small amount of the catalyst, and it is not necessarily necessary to reuse the catalyst in a circular manner; however, if this is necessary, the catalyst can be used in the form of an aqueous solution. In this case, under stirring during the reaction, in a mixed solvent system, due to the lipophilicity of aromatic hydrocarbons and the hydrophilicity of lower aliphatic alcohols, aliphatic alcohols that are poorly water soluble are replaced with long-chain alkyl groups in solvents. Due to the lipophilicity and the hydrophilicity of the hydroxyl group, it becomes well suspended with the catalyst in the aqueous phase, allowing the three-phase reaction of aqueous phase - organic phase - gas phase to proceed smoothly, but stirring is not recommended after one reaction is completed. When stopped, it rapidly separates into an organic phase and an aqueous phase,
The catalyst in the aqueous phase can be separated and recovered for reuse, and at the same time, the solvent can be removed from the organic phase by means such as distillation, making it easy to isolate the product DMQ.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。尚、
本発明の実施例は本発明の理解をより容易にするために
代表的なものを揚げたものであり。
Next, the present invention will be explained in more detail with reference to Examples. still,
The embodiments of the present invention are representative examples for easier understanding of the present invention.

本発明はこれらに限定されるものではない。The present invention is not limited to these.

尚、下記の実施例ならびに比較例に示すDMPの転化率
ならびにDMQの収率はO−ジクロロベンゼンを内部標
準とするガスクロ分析により求めた。
In addition, the conversion rate of DMP and the yield of DMQ shown in the following Examples and Comparative Examples were determined by gas chromatography using O-dichlorobenzene as an internal standard.

実施例1〜7 内容積10m1のガラス製容器中にD M P 2 m
mol、触媒として塩化第二銅二水塩0.2mmolと
各種の添加剤を所定量、ならびにn−ヘキサノール2m
lを溶媒として仕込み1反応温度60℃で酸素圧を86
0mmHHに保ちながら反応させ、酸素吸収量をガスビ
ユレットで測定した。酸素吸収量がほぼ停止したのち、
さらに約1〜2時間反応させて反応を完結させ1反応溶
液中の生成物を分析した。DMPの転化率ならびに生成
したDMQの収率を表1に示す。
Examples 1 to 7 D M P 2 m in a glass container with an internal volume of 10 m1
mol, 0.2 mmol of cupric chloride dihydrate as a catalyst and specified amounts of various additives, and 2 m of n-hexanol.
1 as a solvent, the reaction temperature was 60°C, and the oxygen pressure was 86°C.
The reaction was carried out while maintaining the temperature at 0 mmHH, and the amount of oxygen absorbed was measured using a gas villet. After oxygen absorption has almost stopped,
The reaction was further carried out for about 1 to 2 hours to complete the reaction, and the products in the first reaction solution were analyzed. Table 1 shows the conversion rate of DMP and the yield of DMQ produced.

比較例1および2 実施例1〜7と同様な方法で、添加剤を加えないか、添
加剤として塩゛化すチウムを用いて反応を行った。DM
Pの転化率ならびに生成したDMQ礼(−1i −一万収率を表1に示す。
Comparative Examples 1 and 2 Reactions were carried out in the same manner as in Examples 1 to 7 without adding an additive or using lithium chloride as an additive. DM
Table 1 shows the conversion rate of P and the yield of DMQ produced.

表1 添加剤    DMP關率DMQ収率 全反応鼎(+l
a+ol)      (%) (%)(h)実施例 1 ^0(0,4)      100 45.4  
  32  AO(0,6)      100 43
.7    33  AO(0,2)+HC1(0,4
)  89.145.5    54  AO(0,4
)+HC1(0,4)  95.452.9    4
5  AO(0,6)+HC1(0,6)  100 
45.1    36  HAH(0,4)     
 98.145.8    37  HAS(0,2)
      100 50.5    3比較例 1          30.1 7.9    52
  LiC1(0,2)      61.539.9
    5尚、表1において添加剤に関して使用した略
号は下記の化合物を示す。
Table 1 Additive DMP rate DMQ yield Total reaction rate (+l
a+ol) (%) (%) (h) Example 1 ^0 (0,4) 100 45.4
32 AO(0,6) 100 43
.. 7 33 AO(0,2)+HC1(0,4
) 89.145.5 54 AO(0,4
)+HC1(0,4) 95.452.9 4
5 AO(0,6)+HC1(0,6) 100
45.1 36 HAH(0,4)
98.145.8 37 HAS(0,2)
100 50.5 3 Comparative Example 1 30.1 7.9 52
LiC1(0,2) 61.539.9
5 In addition, the abbreviations used for additives in Table 1 indicate the following compounds.

HAH=ヒドロキシルアミン塩酸塩(NH,OH,HC
I)、HAS=ヒドロキシルアミン硫酸塩(NH,0H
)t、H2S04)、AO=アセトンオキ呉コム(CH
,)2C=NOH)およびHCIとしては36%塩酸水
溶液を用いた。
HAH = hydroxylamine hydrochloride (NH, OH, HC
I), HAS=hydroxylamine sulfate (NH,0H
)t, H2S04), AO = Acetone Oki Kurecom (CH
,)2C=NOH) and 36% aqueous hydrochloric acid solution was used as HCI.

実施例8〜10 実施例1〜7において、塩化第二銅二本塩を0゜1+a
mo1.溶媒として第三級ブタノール2mlを用い、反
応温度40℃で実施例1〜7と同様に反応を行った。D
MPの転化率ならびに生成したDMQの収率を表2に示
す。
Examples 8 to 10 In Examples 1 to 7, cupric chloride dichloride was added to 0°1+a
mo1. Using 2 ml of tertiary butanol as a solvent, the reaction was carried out in the same manner as in Examples 1 to 7 at a reaction temperature of 40°C. D
Table 2 shows the conversion rate of MP and the yield of DMQ produced.

比較例3〜4 実施例8〜10と同様な方法で、添加剤を加えないか、
添加剤として塩化リチウムあるいはジエチルアミン塩酸
塩を用いてに反応を行った。DMPの転化率ならびに生
成したDMQの収率を表2に示す。
Comparative Examples 3-4 In the same manner as Examples 8-10, with or without adding additives
The reaction was carried out using lithium chloride or diethylamine hydrochloride as an additive. Table 2 shows the conversion rate of DMP and the yield of DMQ produced.

表  2 添カロ剤         DNP転化寧 DMQ収率
  全反応時画(011101)          
 (%)   (%)        (h)実施例 8  AO(0,2)+HC1(0,2)  78,7
32.3    59  )IAH(0,2)    
  100 73.2    310  )IAS(0
,1)      100 82.5    2比較例 3  LiC1(0,1)      10.1 − 
   54  (C,Hs)2NH−HCI(0,2)
 42.6 3.6    5尚1表2において、転化
剤に関して使用した略号は下記の化合物を示す。
Table 2 Calorie additive DNP conversion DMQ yield Total reaction time fraction (011101)
(%) (%) (h) Example 8 AO(0,2)+HC1(0,2) 78,7
32.3 59) IAH(0,2)
100 73.2 310)IAS(0
,1) 100 82.5 2 Comparative Example 3 LiC1(0,1) 10.1 −
54 (C,Hs)2NH-HCI(0,2)
42.6 3.6 5 Note that in Table 2, the abbreviations used for converting agents indicate the following compounds.

HAH=ヒドロキシルアミン塩酸塩(NH,OH,)I
c1)、HAS=ヒドロキシルアミン硫酸塩(N)I*
0H)z 。
HAH = hydroxylamine hydrochloride (NH,OH,)I
c1), HAS=hydroxylamine sulfate (N)I*
0H)z.

)+2SQ、)、AO=アセトンオキシム((C)I、
)、C=NOH)およびHCIとしては36%塩酸水溶
液を用いた。
)+2SQ,), AO=acetone oxime ((C)I,
), C=NOH) and 36% aqueous hydrochloric acid solution was used as HCI.

実施例11〜工3 実施例9において、溶媒として第三級ブタノールの代わ
りに種々の脂肪族アルコールを用いて、実施例9と同様
に反応を行った。DMPの転化率1鈍びに生成したDM
Qの収率を表3に示す。
Examples 11 to 3 In Example 9, reactions were carried out in the same manner as in Example 9, using various aliphatic alcohols instead of tertiary butanol as the solvent. DM generated when the conversion rate of DMP decreases by 1
The yield of Q is shown in Table 3.

表3 溶媒           DMPi化率 DMQ収率
  全反応時間(ml)             (
%)    (%)         (h)実施例 11 1−Pr0H(2)     100 77.3
   2.512 1−BuOl((2)     1
00 64.2   2.513 2−Pe0H(2)
      98.471.6   2.5尚、表3に
おいて、溶媒に関して使用した略号は下記の化合物を示
す。
Table 3 Solvent DMPi conversion rate DMQ yield Total reaction time (ml) (
%) (%) (h) Example 11 1-Pr0H (2) 100 77.3
2.512 1-BuOl((2) 1
00 64.2 2.513 2-PeOH(2)
98.471.6 2.5 In Table 3, the abbreviations used for solvents indicate the following compounds.

1−Pro)I=イソプロパツール、1−BuOH=イ
ソブチルアルコールおよび2−PeOH:2−ペンタノ
ールである。
1-Pro)I=isopropanol, 1-BuOH=isobutyl alcohol and 2-PeOH:2-pentanol.

実施例14〜19 実施例10において、溶媒として第三級ブタノールの代
わりに種々の脂肪族アルコール、あるいは脂肪族アルコ
ールと芳香族炭化水素の混合溶媒を用いて、実施例IO
と同様に反応を行った。DMPの転化率ならびに生成し
たDMQの収率を表4に示す。
Examples 14-19 In Example 10, various aliphatic alcohols or a mixed solvent of an aliphatic alcohol and an aromatic hydrocarbon were used instead of tertiary butanol as the solvent, and Example IO
The reaction was carried out in the same manner. Table 4 shows the conversion rate of DMP and the yield of DMQ produced.

表4 溶媒           DMP−i化率 DMQ収
率  全圧li1時翼(ml)           
  (%)    (%)         (h)実
施例 14 1−Pr0H(2)      100 77.
4  2.515 2−Pe0H(2)      1
00 82.4  2.516  t−Am0H(2)
      100 85.8  217 Tol(1
,5)+1−Pro)I(0,5) 100 88.2
  218 Tol(1,5)+t−BuOH(0,5
) 100 86.5  2実施例20 実施例9において、溶媒として第三級ブタノールの代わ
りにイソプロパツール、塩化第二銅二水塩を0 、2 
a+molを用いて、実施例9と同様な方法で2時間反
応を行ったところ、DMP転化率96゜2%、DMQ収
率64.2%の値が得られた。
Table 4 Solvent DMP-i conversion rate DMQ yield Total pressure 1 hour blade (ml)
(%) (%) (h) Example 14 1-Pr0H (2) 100 77.
4 2.515 2-PeOH(2) 1
00 82.4 2.516 t-AmOH(2)
100 85.8 217 Tol(1
,5)+1-Pro)I(0,5) 100 88.2
218 Tol(1,5)+t-BuOH(0,5
) 100 86.5 2 Example 20 In Example 9, isopropanol and cupric chloride dihydrate were used as the solvent instead of tertiary butanol.
When a reaction was carried out for 2 hours in the same manner as in Example 9 using a+mol, a DMP conversion of 96.2% and a DMQ yield of 64.2% were obtained.

実施例21〜23 実施例20において、添加剤としてヒドロキシルアミン
塩酸塩0 、2 mmolの代わりにヒドロキシルアミ
ン硫酸塩0 、1 mmol、溶媒として種々の脂肪族
アルコール、あるいは脂肪族アルコールと芳香族炭化水
素の混合溶媒を用いて、実施例20と同様に反応を行っ
た。DMPの転化率ならびに生成したDMQの収率を表
5に示す。
Examples 21 to 23 In Example 20, 0 to 1 mmol of hydroxylamine sulfate was used instead of 0 to 2 mmol of hydroxylamine hydrochloride as an additive, and various aliphatic alcohols or aliphatic alcohols and aromatic hydrocarbons were used as solvents. The reaction was carried out in the same manner as in Example 20 using a mixed solvent of . Table 5 shows the conversion rate of DMP and the yield of DMQ produced.

表  5 溶媒           DMPi化率 DMQ収率
  全反応時困(ml)              
 (%)     (%)    (h)実施例 21 1−Pr0H(2)       98,5 6
6.8  222  t−BuOH(2)      
100  84.1  223 Tol(1,0)+1
−Pr0H(1,0) 100  81.6  2特、
注出願人 工業技1・沼浣長 杉 浦 賢
Table 5 Solvent DMPi conversion rate DMQ yield Total reaction time (ml)
(%) (%) (h) Example 21 1-Pr0H(2) 98,5 6
6.8 222 t-BuOH (2)
100 84.1 223 Tol(1,0)+1
-Pr0H(1,0) 100 81.6 2 special,
Note Applicant Industrial Technology 1: Masaru Nagasugiura, Numaga

Claims (2)

【特許請求の範囲】[Claims] (1)2,6−ジメチルフェノールを酸素酸化して2,
6−ジメチル−p−ベンゾキノンを製造するにあたり、
銅化合物および種々の窒素化合物、即ちヒドロキシルア
ミン類と無機酸との塩もしくはそれらの混合物、あるい
はオキシム類またはオキシム類と無機酸との混合物の組
合せよりなる触媒を用いることを特徴とする2,6−ジ
メチル−p−ベンゾキノンの製造方法。
(1) Oxygen oxidation of 2,6-dimethylphenol to 2,
In producing 6-dimethyl-p-benzoquinone,
It is characterized by using a catalyst consisting of a combination of a copper compound and various nitrogen compounds, i.e., salts of hydroxylamines and inorganic acids, or mixtures thereof, or oximes or mixtures of oximes and inorganic acids2,6. -Method for producing dimethyl-p-benzoquinone.
(2)2,6−ジメチルフェノールを銅化合物および種
々の窒素化合物、即ちヒドロキシルアミン類と無機酸と
の塩もしくはそれらの混合物あるいはオキシム類または
オキシム類と無機酸との混合物の組合せよりなる触媒に
より、酸素酸化して2,6−ジメチル−p−ベンゾキノ
ンの製造する方法において、溶媒として炭素数1〜8の
低級脂肪族アルコールもしくは芳香族炭化水素および炭
素数1〜8の低級脂肪族アルコールの混合液を使用する
ことを特徴とする2,6−ジメチル−p−ベンゾキノン
の製造方法。
(2) 2,6-dimethylphenol is reacted with a catalyst consisting of a copper compound and various nitrogen compounds, i.e., salts of hydroxylamines and inorganic acids, or mixtures thereof, or combinations of oximes or mixtures of oximes and inorganic acids. , a method for producing 2,6-dimethyl-p-benzoquinone by oxygen oxidation, a mixture of a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms as a solvent. A method for producing 2,6-dimethyl-p-benzoquinone, characterized in that a liquid is used.
JP1217065A 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone Granted JPH0381249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217065A JPH0381249A (en) 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217065A JPH0381249A (en) 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone

Publications (2)

Publication Number Publication Date
JPH0381249A true JPH0381249A (en) 1991-04-05
JPH0529384B2 JPH0529384B2 (en) 1993-04-30

Family

ID=16698284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217065A Granted JPH0381249A (en) 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone

Country Status (1)

Country Link
JP (1) JPH0381249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169898A1 (en) * 2014-05-09 2015-11-12 Dsm Ip Assets B.V. Process for the production of 2,6-dimethylbenzoquinone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169898A1 (en) * 2014-05-09 2015-11-12 Dsm Ip Assets B.V. Process for the production of 2,6-dimethylbenzoquinone

Also Published As

Publication number Publication date
JPH0529384B2 (en) 1993-04-30

Similar Documents

Publication Publication Date Title
TWI321560B (en) Process for the manufacture of carboxylic acids
JP4285980B2 (en) Oxime production method
WO2005092827A1 (en) Process for producing aliphatic dicarboxylic acid compound
JPH0451536B2 (en)
JPH0381249A (en) Production of 2,6-dimethyl-p-benzoquinone
EP0369823B1 (en) Method for the preparation of 2,3,5-trimethylbenzoquinone
JP4005558B2 (en) Hydrocarbon oxidation to acids
JPH0529378B2 (en)
ES2247076T3 (en) CYCLHEXAN OXIDATION PROCEDURE IN ACIDS.
JP2002509133A (en) Method for preparing N-phenylbenzoquinone imine from hydroxydiphenylamine
JPH0557250B2 (en)
JP2002533310A (en) Method for producing diaryl carbonate
CN107922302B (en) Method for producing 2-hydroxy-1, 4-naphthoquinone
JPH02264739A (en) Production of 2,3,5-trimethyklbenzoquinone
JP2020040893A (en) Process for producing cyclohexene oxide
JP2000202297A (en) Novel oxidation catalyst and production of p- benzoquinones using same
JPH0529382B2 (en)
JPS61172851A (en) Method of dimerization of orthophthalic ester through oxidation and dehydrogenation
JP4173691B2 (en) Method for oxidizing hydrocarbon compounds and method for producing oxygenated compounds
KR100299587B1 (en) Continuous preparation method of cycloalkanone, cycloalkanol and cycloalkylhydroperoxide mixture
JPS60332B2 (en) Manufacturing method of cyclohexanone
JPS63168404A (en) Selective oxidative carbonyzation of conjugated diene
JP2002128714A (en) Oxidation of cyclohexane
KR20050065660A (en) Method for making carboxylic acids
JPH0477447A (en) Production of 2,6-dimethyl-4-alkoxymethylphenols

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term