JPH0529382B2 - - Google Patents

Info

Publication number
JPH0529382B2
JPH0529382B2 JP63291668A JP29166888A JPH0529382B2 JP H0529382 B2 JPH0529382 B2 JP H0529382B2 JP 63291668 A JP63291668 A JP 63291668A JP 29166888 A JP29166888 A JP 29166888A JP H0529382 B2 JPH0529382 B2 JP H0529382B2
Authority
JP
Japan
Prior art keywords
reaction
mmol
oxygen
tmq
tmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63291668A
Other languages
Japanese (ja)
Other versions
JPH02174744A (en
Inventor
Katsuomi Takehira
Masao Shimizu
Hideo Orita
Takashi Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63291668A priority Critical patent/JPH02174744A/en
Priority to DE8989311959T priority patent/DE68907180D1/en
Priority to EP19890311959 priority patent/EP0369823B1/en
Publication of JPH02174744A publication Critical patent/JPH02174744A/en
Publication of JPH0529382B2 publication Critical patent/JPH0529382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液相で銅化合物を含む触媒を用い、
2,3,6−トリメチルフエノール(以下TMP
と略す)を効率よく酸素酸化して2,3,5−ト
リメチルベンゾキノン(以下TMQと略す)を製
造する方法に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention uses a catalyst containing a copper compound in a liquid phase,
2,3,6-trimethylphenol (hereinafter referred to as TMP)
The present invention relates to a method for efficiently oxidizing 2,3,5-trimethylbenzoquinone (hereinafter abbreviated as TMQ) with oxygen.

〔従来技術及びその問題点〕[Prior art and its problems]

TMQは、合成ビタミンE等の原料となる重要
な物質で、現在はTMPをスルホン化し、二酸化
マンガン、過マンガン酸カリウムあるいは酸化鉛
等で酸化する方法により製造されているが(西独
特許第1932362号、第2225543号)、産業廃棄物を
副生し、しかも製造コストが高価な方法であるた
め、無公害で且つ安価な製造方法の開発が要望さ
れている。
TMQ is an important substance that is a raw material for synthetic vitamin E, etc., and is currently produced by sulfonating TMP and oxidizing it with manganese dioxide, potassium permanganate, or lead oxide (West German Patent No. 1932362). , No. 2225543), which produces industrial waste as a by-product and is expensive to manufacture, so there is a need for the development of a pollution-free and inexpensive manufacturing method.

また、TMPを一段で酸化してTMQを製造す
るために、従来多くの検討がなされており、硝酸
(特公昭56−95145号)、過安息香酸(特公昭59−
39847号)、次亜ハロゲン酸(特公昭60−81135
号)、過酸化水素(Eur.Pat.Appl.107176)等の酸
化剤を用いる方法が提案されている。しかしなが
ら、これらの方法でも、有害ガスの発生、高価な
酸化剤の使用、副生物の生成等の点で問題があ
る。
In addition, many studies have been made to produce TMQ by oxidizing TMP in one step.
39847), hypohalous acid (Special Publication No. 60-81135)
A method using an oxidizing agent such as hydrogen peroxide (Eur. Pat. Appl. 107176) has been proposed. However, even these methods have problems in terms of generation of harmful gases, use of expensive oxidizing agents, and generation of by-products.

これに対して、酸素を酸化剤とする方法が検討
され、この酸化反応のための触媒系が種々提案さ
れているが、例えばコバルト錯体を触媒とする方
法(特公昭56−26647号)では初期活性は高いが
寿命が極めて短いという欠点を有する。またハロ
ゲン化銅を触媒とする方法では反応率、選択率共
に高い値が得られているが、種々の解決すべき基
本的な欠点を有する。例えば、ニトリル、第三級
アミド溶媒中銅塩を用いてTMPを酸化する方法
(特開昭49−36641号)では、TMQの収率は75%
程度であり、その他ポリフエニレンオキシド等を
副生し、処理しにくいポリマーとTMQを分離し
なくてはならず、効率的な製造方法とは言えな
い。有機溶媒中で銅およびハロゲンイオンよりな
る触媒の存在下TMPを酸化する方法(特公昭53
−17585号)は、収率が高い点では優れた方法で
あるが、触媒の活性が極めて低いために、TMP
とほぼ等モル量の触媒を用いて長時間の反応を行
う必要があり、さらにこの大量の触媒を循環使用
しなければならず、ユーテイリテイー消費が大き
くなる等の到命的な欠点を有する。これらの欠点
を改善すべく、銅およびハロゲン系の触媒を用い
るTMP酸化方法に関していくつかの特許(例え
ば、特開昭50−93931号あるいは特開昭59−
225137号)が提示されているが、いずれも触媒の
循環使用を容易にするための方法が示されている
のみで、反応速度そのものは小さく、基本的な問
題である触媒活性そのものについては改良の跡は
認められばい。
In response, methods using oxygen as an oxidizing agent have been studied, and various catalyst systems for this oxidation reaction have been proposed. Although it has high activity, it has the disadvantage of extremely short lifespan. Furthermore, although high values of reaction rate and selectivity have been obtained in the method using copper halide as a catalyst, there are various fundamental drawbacks that need to be solved. For example, in the method of oxidizing TMP using a copper salt in a nitrile or tertiary amide solvent (Japanese Patent Application Laid-Open No. 49-36641), the yield of TMQ is 75%.
However, it cannot be said to be an efficient manufacturing method because it produces other by-products such as polyphenylene oxide, and TMQ must be separated from polymers that are difficult to process. Method of oxidizing TMP in an organic solvent in the presence of a catalyst consisting of copper and halogen ions (Special Publication No. 53)
-17585) is an excellent method in terms of high yield, but because the activity of the catalyst is extremely low, TMP
It is necessary to carry out a long reaction using approximately equimolar amount of catalyst, and furthermore, this large amount of catalyst must be used repeatedly, which has fatal disadvantages such as increased utility consumption. . In order to improve these drawbacks, several patents (for example, JP-A No. 50-93931 or JP-A No. 59-Sho.
225137), but all of them only show methods to facilitate the recycling use of catalysts, and the reaction rate itself is small, and the fundamental problem of catalyst activity itself cannot be improved. If you can see the marks.

〔発明の課題〕[Problem of invention]

そこで、本発明は、TMPを酸素酸化して
TMQを製造する方法において、従来法に見られ
る前記問題点を解決し、高収率で目的とする
TMQを製造し得る方法を提供することをその課
題とする。
Therefore, the present invention aims to oxidize TMP with oxygen.
The method for producing TMQ solves the above-mentioned problems found in conventional methods and achieves the desired goal with high yield.
The objective is to provide a method by which TMQ can be manufactured.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、TMPを酸素酸化してTMQ
を製造するにあたり、()銅化合物と、ヒドロ
キシルアミン類と無機酸との塩もしくはそれらの
混合物との組合せよりなる触媒、()銅化合物
と、オキシム類またはオキシム類及び無機酸との
組合せよりなる触媒又は()銅化合物と、アミ
ン類と無機酸との塩もしくは混合物との組合せよ
りなる触媒を使用することを特徴とするTMPの
製造方法が提供される。
According to the present invention, TMP is oxidized with oxygen to produce TMQ
() A catalyst consisting of a combination of a copper compound and a salt of hydroxylamine and an inorganic acid or a mixture thereof; () A catalyst consisting of a combination of a copper compound and an oxime or an oxime and an inorganic acid. A method for producing TMP is provided, which uses a catalyst or a catalyst consisting of a combination of a copper compound and a salt or mixture of an amine and an inorganic acid.

本発明の反応法は、TMPを有機溶媒中、分子
状酸素と触媒の存在下、室温〜200℃で単に攪拌
するだけで容易に達成され、極めて簡単且つ安全
な酸化方法である。
The reaction method of the present invention is an extremely simple and safe oxidation method that can be easily achieved by simply stirring TMP in an organic solvent in the presence of molecular oxygen and a catalyst at room temperature to 200°C.

本発明において、TMPを酸化するために、酸
化剤として分子状酸素ならびに触媒として銅化合
物と前記した特定化合物との組合せが用いられ
る。分子状酸素源としては、純酸素ガスあるいは
空気のいずれを用いてもよく、常圧〜30Kg/cm2
範囲で有効である。触媒の一成分として用いられ
る銅化合物は無機塩、有機錯塩等が使用可能で特
に制限は無いが、なかんずく塩化第一銅、塩化第
二銅等の塩化物が良好な反応成績を示す。
In the present invention, in order to oxidize TMP, a combination of molecular oxygen as an oxidizing agent and a copper compound and the above-mentioned specific compound as a catalyst is used. As the molecular oxygen source, either pure oxygen gas or air may be used, and it is effective in the range of normal pressure to 30 kg/cm 2 . As the copper compound used as a component of the catalyst, inorganic salts, organic complex salts, etc. can be used and there are no particular restrictions, but chlorides such as cuprous chloride and cupric chloride show particularly good reaction results.

本発明では、触媒成分として、前記銅化合物と
ともに、()ヒドロキシルアミン類と無機酸と
の塩もしくはそれらの混合物、()オキシム類
またはオキシム類及び無機酸、又は()アミン
類と無機酸との塩もしくは混合物を用いる。
In the present invention, in addition to the copper compound, () salts of hydroxylamines and inorganic acids or mixtures thereof, () oximes or oximes and inorganic acids, or () salts of amines and inorganic acids are used as catalyst components. Use salt or mixture.

前記ヒドロキシルアミン類については、ヒドロ
キシルアミンそのものの他に、N,N−ジメチル
ヒドロキシルアミン、N,N−ジエチルヒドロキ
シルアミン等のN,N−ジアルキルヒドロキシル
アミン類、N−メチルヒドロキシルアミン等のN
−アルキルヒドロキシルアミン類、0−メチルヒ
ドロキシルアミン等の0−アルキルヒドロキシル
アミン類、N−ヒドロキシこはく酸イミド、N−
ヒドロキシフタルイミド等のN−ヒドロキシイミ
ド類、ヒドロキシ尿素、ヒドロキシウレタン等の
種々のヒドロキシルアミン誘導体が使用可能であ
るが、なかんずくヒドロキシルアミン、ヒドロキ
シ尿素あるいは低分子量のN,N−ジアルキルヒ
ドロキシルアミン類が良好な反応成績を示す。ま
た、その無機酸との塩もしくは混合物を形成する
に当たつての無機酸としては、硝酸、ハロゲン酸
等の種々の無機酸が使用可能であり特に制限は無
いが、塩酸あるいは硫酸が比較的良好な反応結果
を与える。さらに、ヒドロキシルアミン類と無機
酸とは必ずしも塩の形で用いる必要は無く、別々
に添加してもよく、そのときのそれぞれの組成比
は特に制限は無いが、ヒドロキシルアミン類1モ
ルに対し無機酸0.2〜5モルの範囲が良好な反応
結果を与える。銅化合物に対するヒドロキシルア
ミン類の使用量については特に制限は無いが、少
なくても多すぎても反応速度が低くなるので、銅
化合物1モルにつきヒドロキシルアミン類0.3〜
3モルの範囲が好ましい。
Regarding the hydroxylamines, in addition to hydroxylamine itself, N,N-dialkylhydroxylamines such as N,N-dimethylhydroxylamine and N,N-diethylhydroxylamine, and N-dialkylhydroxylamines such as N-methylhydroxylamine, etc.
-Alkylhydroxylamines, 0-alkylhydroxylamines such as 0-methylhydroxylamine, N-hydroxysuccinimide, N-
Various hydroxylamine derivatives such as N-hydroxyimides such as hydroxyphthalimide, hydroxyurea, and hydroxyurethane can be used, but hydroxylamine, hydroxyurea, or low molecular weight N,N-dialkylhydroxylamines are particularly suitable. Shows reaction results. In addition, when forming a salt or a mixture with the inorganic acid, various inorganic acids such as nitric acid and halogen acid can be used and there is no particular restriction, but hydrochloric acid or sulfuric acid is relatively preferred. Gives good reaction results. Furthermore, hydroxylamines and inorganic acids do not necessarily need to be used in the form of salts, and may be added separately, and there is no particular restriction on their respective composition ratios; A range of 0.2 to 5 moles of acid gives good reaction results. There is no particular restriction on the amount of hydroxylamine used relative to the copper compound, but if it is too little or too much, the reaction rate will be low, so the amount of hydroxylamine used should be 0.3 to 0.3 to 1 mole of copper compound.
A range of 3 moles is preferred.

前記オキシム類については、アセトン、メチル
エチルケトン、ジエチルケトン等のジアルキルケ
トン類、シクロヘキサノン、シクロオクタノン等
の環状ケトン類、アセトフエノン、プロピオフエ
ノン等の芳香族ケトン類、ジアセチル、アセチル
アセトン等のジケトン類、ジメドン等の環状ジケ
トン類等のいずれのケトン類のオキシム、あるい
はホルムアルデヒド、アセトアルデヒド、プロピ
オンアルデヒド等の脂肪族アルデヒド、ベンズア
ルデヒド、フエニルアセトアルデド等の芳香族ア
ルデヒド類のいずれのアルデヒド類のオキシムで
も使用が可能であるが、なかんずくアセトアルド
キシム、ベンズアルドキシム、アセトンオキシ
ム、2−ブタノンオキシム等の比較的低分子量の
オキシム類が良好な反応成績を与える。また、無
機酸としては、硫酸、ハロゲン酸等の種々の無機
酸が使用可能であり、特に制限は無いが、塩酸の
あるいは硫酸が比較的良好な反応結果を与える。
The oximes include dialkyl ketones such as acetone, methyl ethyl ketone and diethyl ketone, cyclic ketones such as cyclohexanone and cyclooctanone, aromatic ketones such as acetophenone and propiophenone, diketones such as diacetyl and acetylacetone, and dimedone. Oximes of any ketones, such as cyclic diketones, etc., or oximes of any aldehydes, such as aliphatic aldehydes such as formaldehyde, acetaldehyde, and propionaldehyde, and aromatic aldehydes, such as benzaldehyde and phenylacetaldede, can be used. Although this is possible, relatively low molecular weight oximes such as acetaldoxime, benzaldoxime, acetone oxime, and 2-butanone oxime give good reaction results. Furthermore, various inorganic acids such as sulfuric acid and halogen acid can be used as the inorganic acid, and although there are no particular limitations, hydrochloric acid or sulfuric acid gives relatively good reaction results.

オキシム類を含む触媒については、無機酸の添
加は必須ではなく、銅化合物とオキシム類の系で
も充分な触媒活性が得られるが、さらに無機酸を
加えた方が触媒活性が向上する場合が多い。さら
に、オキシム類と無機酸とは必ずしも前もつて混
合物を調製して用いる必要は無く、別々に添加し
てもよく、いずれの場合もそれぞれの組成比は特
に制限は無いが、オキシム等1モルに対し無機酸
0.2〜5モルの範囲が良好な反応結果を与える。
銅化合物に対するオキシム類の使用量については
特に制限はないが、少なくても多すぎても反応速
度が低くなるので、銅化合物1モルにつきオキシ
ム類0.3〜3モルの範囲が好ましい。
For catalysts containing oximes, the addition of an inorganic acid is not essential, and sufficient catalytic activity can be obtained with a system of copper compounds and oximes, but the catalytic activity is often improved by further adding an inorganic acid. . Furthermore, it is not necessary to prepare and use a mixture of oximes and inorganic acids in advance, and they may be added separately. against inorganic acids
A range of 0.2 to 5 moles gives good reaction results.
There is no particular restriction on the amount of oxime to be used relative to the copper compound, but if it is too little or too much, the reaction rate will be low, so it is preferably in the range of 0.3 to 3 moles of oxime per 1 mole of copper compound.

前記アミン類としては、一級、二級、および三
級の如何を問わず、また環状アミン、アミノアル
コール、アミノ酸等の種々の誘導体が使用可能で
特に制限は無いが、比較的低分子量の化合物が良
好な反応結果を与える。また、その無機酸塩とし
ては硫酸、ハロゲン酸等の種々の無機酸との塩が
使用可能しであり特に制限は無いが、塩酸あるい
は硫酸との塩が比較的良好な反応結果を与える。
さらに、アミン類と無機酸とは必ずしも塩の形で
用いる必要は無く、別々に添加してもよい、その
時のそれぞれの組成比は特に制限は無いが、アミ
ン類1モルに対して無機酸0.2〜5モルの範囲が
良好な反応結果を与える。銅化合物に対するアミ
ン類の使用量については特に制限は無いが、少な
すぎても多すぎても反応速度が低くなるので、銅
化合物1モルにつきアミン類0.3〜3モルの範囲
が好ましい。本発明の触媒使用量については、特
に制限は無いが、少ないと反応速度が小さく、多
すぎると反応後の分離等で問題が出てくるので、
銅化合物の量にしてTMP1モルに対して0.01〜
0.5モル、特に、0.01〜0.1モル量の使用が好まし
い反応結果を与える。
As the amines, various derivatives such as cyclic amines, amino alcohols, and amino acids can be used regardless of whether they are primary, secondary, or tertiary, and there are no particular restrictions. Gives good reaction results. Further, as the inorganic acid salt, salts with various inorganic acids such as sulfuric acid and halogen acid can be used and there are no particular restrictions, but salts with hydrochloric acid or sulfuric acid give relatively good reaction results.
Furthermore, the amines and the inorganic acid do not necessarily need to be used in the form of salts, and may be added separately.The composition ratio of each at that time is not particularly limited, but the inorganic acid is 0.2 to 1 mole of the amine. A range of ˜5 mol gives good reaction results. There is no particular restriction on the amount of amines to be used relative to the copper compound, but if it is too small or too large, the reaction rate will be low, so it is preferably in the range of 0.3 to 3 moles of amines per 1 mole of copper compound. There is no particular restriction on the amount of catalyst used in the present invention, but if it is too small, the reaction rate will be low, and if it is too large, problems will arise with separation after the reaction, etc.
The amount of copper compound is 0.01 to 1 mole of TMP
The use of amounts of 0.5 molar, especially 0.01 to 0.1 molar, gives favorable reaction results.

本発明の方法において、反応に際して用いられ
る有機溶媒としては、アルコール類、グリコール
類のモノアルキルエーテル類、グリコール類のジ
アルキルエーテル類、イトリル類、アミド類が使
用可能であり、特に制限は無い。これらの溶媒
は、触媒や、反応原料であるTMP、ならびに酸
素の溶解に優れた効果を示し、これらを接触させ
るだけで目的とするTMQの生成を極めて有効に
達成することができる。これらの溶媒の中で、グ
リコール類のジアルキルエーテル、アルコール類
が好ましく、なかんずくアルコール類が好まし
い。さらに、アルコール溶媒の中でC4〜C10の一
級のアルコールが比較的良好な反応結果を与え
る。
In the method of the present invention, the organic solvent used in the reaction may be alcohols, monoalkyl ethers of glycols, dialkyl ethers of glycols, itrites, or amides, and is not particularly limited. These solvents exhibit excellent effects in dissolving the catalyst, TMP as a reaction raw material, and oxygen, and the desired production of TMQ can be extremely effectively achieved simply by bringing them into contact. Among these solvents, dialkyl ethers of glycols and alcohols are preferred, and alcohols are especially preferred. Furthermore, among alcoholic solvents, C4 - C10 primary alcohols give relatively good reaction results.

本発明の方法における反応の温度は室温〜200
℃付近の温度で行うことができるが、あまり定温
すぎると反応速度が遅くなり、一方、高すぎると
溶媒の損失あるいは副反応が多くなるので40〜
150℃の範囲で実施するのが好ましい。反応時間
は、反応エンド、酸素圧力、触媒の使用量により
左右されるが、通常は1〜10時間で充分である。
The temperature of the reaction in the method of the invention is room temperature to 200 ℃
It can be carried out at a temperature around 40°C, but if the temperature is too constant, the reaction rate will be slow, and if it is too high, solvent loss or side reactions will increase.
Preferably, the temperature is 150°C. The reaction time depends on the end of the reaction, the oxygen pressure, and the amount of catalyst used, but 1 to 10 hours is usually sufficient.

〔発明の効果〕〔Effect of the invention〕

本発明の方法に従うと、TMPを分子状酵素で
酸化して一段階で、しかも極めて高い反応速度な
らびに収率でTMQを得ることができる上に、従
来の方法の欠陥であつた大量の触媒を循環させる
必要が無くなるので、本発明は、工業的なTMQ
の製造法として好適である。
According to the method of the present invention, it is possible to oxidize TMP with a molecular enzyme to obtain TMQ in one step with extremely high reaction rate and yield. Since the need for circulation is eliminated, the present invention can be used for industrial TMQ
It is suitable as a manufacturing method.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 TMP2mmol、塩化第二銅二水塩0.1mmol、ヒ
ドロキシルアミン塩酸塩0.1mmolおよびn−ヘキ
サノール2mlを内容積10mlのガラス製容器に仕込
み、反応温度60℃で酸素圧を860mmHgに保ちな
がら反応させ、酸素吸収量でガスビユレツトで測
定した。1.0時間の反応で約2mmolの酸素が吸収
されると酸素吸収はほぼ停止したが、さらに1.0
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率83.2%、同選択率83.2%の値が
得られた。
Example 1 2 mmol of TMP, 0.1 mmol of cupric chloride dihydrate, 0.1 mmol of hydroxylamine hydrochloride, and 2 ml of n-hexanol were placed in a glass container with an internal volume of 10 ml, and the reaction was carried out at a reaction temperature of 60°C while maintaining the oxygen pressure at 860 mmHg. The amount of oxygen absorbed was measured using a gas filter. Oxygen absorption almost stopped when approximately 2 mmol of oxygen was absorbed in the 1.0 hour reaction, but an additional 1.0 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 83.2%, and TMQ selectivity of 83.2% were obtained.

実施例 2 実施例1において、反応温度を40℃として実施
例1と同様な方法で反応させた。1.5時間の反応
で約2mmolの酸素が吸収されたのち酸素吸収は
ほぼ停止したが、さらに1.5時間反応させて反応
を完結させたのち、反応溶液中の生成物が分析し
た。その結果、TMP転化率100%、TMQ収率
82.3%、同選択率82.3%の値が得られた。
Example 2 In Example 1, the reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 40°C. After approximately 2 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped, but after the reaction was allowed to proceed for an additional 1.5 hours to complete the reaction, the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was
A value of 82.3% and a selectivity rate of 82.3% were obtained.

実施例 3 実施例1において、TMPを3mmol、塩化第二
銅二水塩を0.05mmol、ヒドロキシルアミン塩酸
塩を0.2mmolとして、実施例1と同様な方法で反
応させた。1時間の反応で約3mmolの酸素が吸
収されたのち酸素吸収はほぼ停止したが、さらに
1時間反応させて反応を完結させたのち、反応溶
液中の生成物を分析した。その結果、TMP転化
率100%、TMQ収率82.1%、同選択率82.1%の値
が得られた。
Example 3 In Example 1, a reaction was carried out in the same manner as in Example 1, using 3 mmol of TMP, 0.05 mmol of cupric chloride dihydrate, and 0.2 mmol of hydroxylamine hydrochloride. After approximately 3 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but after the reaction was allowed to proceed for an additional hour to complete the reaction, the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 82.1% TMQ yield, and 82.1% TMQ selectivity were obtained.

実施例 4 実施例1において、塩化第二銅二水塩を
0.2mmol、ヒドロキシルアミン塩酸塩を0.2mmol
用いて、実施例1と同様な方法で反応させた。1
時間の反応で約2mmolの酸素が吸収されたのち
酸素吸収はほぼ停止したが、さらに1時間反応さ
せて反応を完結させたのち、反応溶液中の生成物
を分析した。その結果、TMP転化率100%、
TMQ収率85.4%、同選択率85.4%の値が得られ
た。
Example 4 In Example 1, cupric chloride dihydrate was
0.2mmol, 0.2mmol of hydroxylamine hydrochloride
The reaction was carried out in the same manner as in Example 1. 1
After approximately 2 mmol of oxygen was absorbed during the reaction, oxygen absorption almost stopped, but the reaction was allowed to proceed for an additional hour to complete the reaction, and then the products in the reaction solution were analyzed. As a result, the TMP conversion rate was 100%,
A TMQ yield of 85.4% and a TMQ selectivity of 85.4% were obtained.

実施例 5 実施例4において、ヒドロキシルアミン塩酸塩
0.2mmolの代わりにヒドロキシルアミン硫酸塩
0.2mmolを用いて、実施例1と同様な方法で反応
させた。1時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに1
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率86.8%、同選択率86.8%の値が
得られた。
Example 5 In Example 4, hydroxylamine hydrochloride
Hydroxylamine sulfate instead of 0.2mmol
The reaction was carried out in the same manner as in Example 1 using 0.2 mmol. After approximately 2 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but an additional 1 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 86.8%, and TMQ selectivity of 86.8% were obtained.

実施例 6 実施例4において、n−ヘキサノール2mlの代
わりにn−オクタノール2mlを用いて、実施例4
と同様な方法で反応させた。1時間の反応で約
2mmolの酸素が吸収されたのち酸素吸収はほぼ
停止したが、さらに1時間反応させ反応を完結さ
せたのち、反応溶液中の生成物を分析した。その
結果、TMP転化率100%、TMQ収率79.1%、同
選択率79.1%の値が得られた。
Example 6 In Example 4, 2 ml of n-octanol was used instead of 2 ml of n-hexanol, and Example 4
was reacted in the same manner. Approximately 1 hour reaction
After 2 mmol of oxygen was absorbed, oxygen absorption almost stopped, but the reaction was allowed to proceed for an additional hour and the reaction was completed, after which the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 79.1% TMQ yield, and 79.1% TMQ selectivity were obtained.

実施例 7 実施例1において、塩化第二銅二水塩を
0.2mmol、反応温度を40℃とし、ヒドロキシルア
ミン塩酸塩0.1mmolの代わりにヒドロキシルアミ
ン硫酸塩0.1mmolを用いて、実施例1と同様な方
法で反応させた。1.5時間の反応で約2mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに1.5時間反応させ反応を完結させたのち、
反応溶液中の生成物を分析した。その結果、
TMP転化率100%、TMQ収率84.3%、同選択率
84.3%の値が得られた。
Example 7 In Example 1, cupric chloride dihydrate was
0.2 mmol, the reaction temperature was 40°C, and the reaction was carried out in the same manner as in Example 1, using 0.1 mmol of hydroxylamine sulfate instead of 0.1 mmol of hydroxylamine hydrochloride. After approximately 2 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped.
After reacting for another 1.5 hours to complete the reaction,
The products in the reaction solution were analyzed. the result,
TMP conversion rate 100%, TMQ yield 84.3%, same selectivity
A value of 84.3% was obtained.

実施例 8 実施例3において、塩化第二銅二水塩を
0.1mmolとし、ヒドロキシルアミン塩酸塩
0.2mmolの代わりにヒドロキシルアミン硫酸塩
0.2mmolを用いて、実施例3と同様な方法で反応
させた。1時間の反応で約3mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに3
時間反応させ反応を完結させたのち、反応溶液中
の生成物を分析した。その結果、TMP転化率100
%、TMQ収率82.5%、同選択率82.5%の値が得
られた。
Example 8 In Example 3, cupric chloride dihydrate was
0.1mmol hydroxylamine hydrochloride
Hydroxylamine sulfate instead of 0.2mmol
The reaction was carried out in the same manner as in Example 3 using 0.2 mmol. After approximately 3 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but an additional 3 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate 100
%, TMQ yield of 82.5%, and TMQ selectivity of 82.5%.

実施例 9 実施例2において、塩化第二銅二水塩を
0.2mmolとし、ヒドロキシルアミン塩酸塩
0.1mmolの代わりにヒドロキシルアミン硫酸塩
0.1mmolを用いて、実施例2と同様な方法で反応
させた。1.5時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに2
時間反応させ反応を完結させたのち、反応溶液中
の生成物を分析した。その結果、TMP転化率100
%、TMQ収率80.5%、同選択率80.5%の値が得
られた。
Example 9 In Example 2, cupric chloride dihydrate was
0.2mmol hydroxylamine hydrochloride
Hydroxylamine sulfate instead of 0.1mmol
The reaction was carried out in the same manner as in Example 2 using 0.1 mmol. After approximately 2 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped, but an additional 2 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate 100
%, TMQ yield of 80.5%, and TMQ selectivity of 80.5%.

実施例 10 実施例3において、塩化第二銅二水塩を
0.1mmol、ヒドロキシルアミン塩酸塩を0.4mmol
とし、実施例3と同様な方法で反応させた。1時
間の反応で約3mmolの酸素が吸収されたのち酸
素吸収はほぼ停止したが、さらに3時間反応させ
反応を完結させたのち、反応溶液中の生成物を分
析した。その結果、TMP転化率100%、TMQ収
率79.1%、同選択率79.1%の値が得られた。
Example 10 In Example 3, cupric chloride dihydrate was
0.1 mmol, 0.4 mmol of hydroxylamine hydrochloride
The reaction was carried out in the same manner as in Example 3. After about 3 mmol of oxygen was absorbed during the 1 hour reaction, oxygen absorption almost stopped, but the reaction was allowed to proceed for an additional 3 hours and the reaction was completed, after which the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 79.1% TMQ yield, and 79.1% TMQ selectivity were obtained.

実施例 11 実施例4において、n−ヘキサノール2mlの代
わりにジエチレングコールジメチルエーテル2ml
を用いて、実施例4と同様な方法で反応させた。
5時間の反応で約2mmolの酸素が吸収され、こ
の時の反応溶液中の生成物の分析結果では、
TMP転化率100%、TMQ収率77.2%、同選択率
77.2%の値が得られた。
Example 11 In Example 4, 2 ml of diethylene glycol dimethyl ether was used instead of 2 ml of n-hexanol.
The reaction was carried out in the same manner as in Example 4.
Approximately 2 mmol of oxygen was absorbed during the 5-hour reaction, and the analysis results of the products in the reaction solution at this time showed that
TMP conversion rate 100%, TMQ yield 77.2%, same selectivity
A value of 77.2% was obtained.

実施例 12 実施例4において、ヒドロキシルアミン塩酸塩
0.2mmolの代わりにN,N−ジエチルヒドロキシ
ルアミン0.2mmolおよび36%塩酸水溶液0.017ml
(塩酸0.2mmol)を用いて、実施例4と同様な方
法で反応させた。1.5時間の反応で約2mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに1.5時間反応させ反応を完結させたのち反
応溶液中の生成物を分析した。その結果、TMP
転化率100%、TMQ収率77.3%、同選択率77.3%
の値が得られた。
Example 12 In Example 4, hydroxylamine hydrochloride
0.2 mmol of N,N-diethylhydroxylamine and 0.017 ml of 36% hydrochloric acid aqueous solution instead of 0.2 mmol
The reaction was carried out in the same manner as in Example 4 using (0.2 mmol of hydrochloric acid). After approximately 2 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped.
After the reaction was completed for an additional 1.5 hours, the products in the reaction solution were analyzed. As a result, TMP
Conversion rate 100%, TMQ yield 77.3%, TMQ selectivity 77.3%
The value of was obtained.

実施例 13 実施例4において、ヒドロキシルアミン塩酸塩
0.2mmolの代わりにN,N−ジメチルヒドロキシ
ルアミン塩酸塩0.2mmolを用いて実施例4と同様
な方法で反応させた。9時間の反応で約2mmol
の酸素が吸収され、このときの反応溶液中の生成
物の分析結果では、TMP転化率100%、TMQ収
率70.2%、同選択率70.2%の値が得られた。
Example 13 In Example 4, hydroxylamine hydrochloride
The reaction was carried out in the same manner as in Example 4 using 0.2 mmol of N,N-dimethylhydroxylamine hydrochloride instead of 0.2 mmol. Approximately 2 mmol in 9 hours of reaction
of oxygen was absorbed, and the analysis results of the products in the reaction solution at this time showed values of 100% TMP conversion, 70.2% TMQ yield, and 70.2% selectivity.

実施例 14 実施例4において、ヒドロキシルアミン塩酸塩
0.2mmolの代わりにヒドロキシ尿素0.2mmoおよ
び36%塩酸水溶液0.017ml(塩酸0.2mmol)を用い
て、実施例4と同様な方法で反応させた。7時間
の反応で約2mmolの酸素が吸収され、このとき
の反応溶液中の生成物の分析結果では、TMP転
化率99.0%、TMQ収率82.1%、同選択率82.1%の
値が得られた。
Example 14 In Example 4, hydroxylamine hydrochloride
A reaction was carried out in the same manner as in Example 4, using 0.2 mmol of hydroxyurea and 0.017 ml of 36% hydrochloric acid aqueous solution (0.2 mmol of hydrochloric acid) instead of 0.2 mmol. Approximately 2 mmol of oxygen was absorbed during the 7-hour reaction, and the analysis results of the products in the reaction solution at this time showed a TMP conversion rate of 99.0%, a TMQ yield of 82.1%, and a selectivity of 82.1%. .

比較例 1 実施例12において、36%塩酸水溶液0.017ml(塩
酸0.2mmol)を用いずにN,N−ジエチルヒドロ
キシルアミン0.2mmolのみを用いて、実施例12と
同様な方法で反応させた。4時間の反応で約
2mmolの酸素が吸収されたが、このときの反応
溶液中の生成物の分析結果でき、TMP転化率100
%、TMQ収率63.1%、同選択率63.1%の値が得
られた。
Comparative Example 1 In Example 12, the reaction was carried out in the same manner as in Example 12, except that 0.017 ml of a 36% aqueous hydrochloric acid solution (0.2 mmol of hydrochloric acid) was not used and only 0.2 mmol of N,N-diethylhydroxylamine was used. Approximately 4 hours of reaction
Although 2 mmol of oxygen was absorbed, the analysis of the product in the reaction solution at this time showed that the TMP conversion rate was 100.
%, TMQ yield of 63.1%, and TMQ selectivity of 63.1%.

比較例 2 実施例1において、ヒドロキシルアミン塩酸塩
0.1mmolの代わりに塩化リチウム0.1mmolを用い
て、実施例1と同様な方法で反応させた。5時間
の反応で約0.8mmolの酸素が吸収されたが、この
ときの反応溶液中の生成物の分析結果では、
TMP転化率50.4%、TMQ収率20.3%、同選択率
40.3%の値が得られた。
Comparative Example 2 In Example 1, hydroxylamine hydrochloride
The reaction was carried out in the same manner as in Example 1, using 0.1 mmol of lithium chloride instead of 0.1 mmol. Approximately 0.8 mmol of oxygen was absorbed during the 5-hour reaction, but the analysis results of the products in the reaction solution at this time showed that
TMP conversion rate 50.4%, TMQ yield 20.3%, same selectivity
A value of 40.3% was obtained.

比較例 3 実施例3において、塩化第二銅二水塩を0.1mmol
とし、ヒドロキシルアミン塩酸塩を用いないで、
実施例3と同様な方法で反応させた。5時間の反
応で約0.3mmolの酸素が吸収されたが、このとき
の反応溶液中の生成物の分析結果では、TMP転
化率10.7%、TMQ収率3.8%、同選択率35.5%の
値が得られた。
Comparative Example 3 In Example 3, 0.1 mmol of cupric chloride dihydrate
and without using hydroxylamine hydrochloride,
The reaction was carried out in the same manner as in Example 3. Approximately 0.3 mmol of oxygen was absorbed during the 5-hour reaction, and the analysis results of the products in the reaction solution at this time showed a TMP conversion of 10.7%, a TMQ yield of 3.8%, and a selectivity of 35.5%. Obtained.

比較例 4 比較例2において、さらに36%の塩酸水溶液
0.009ml(塩酸0.1mmol)を加えて、比較例2と同
様な方法で反応させた。5時間の反応で約
0.8mmolの酸素が吸収されたが、このときの反応
溶液中の生成物の分析結果では、TMP転化率
46.7%、TMQ収率25.7%、同選択率55.0%の値が
得られた。
Comparative Example 4 In Comparative Example 2, a 36% hydrochloric acid aqueous solution was added.
0.009 ml (0.1 mmol of hydrochloric acid) was added and the reaction was carried out in the same manner as in Comparative Example 2. Approximately 5 hours of reaction
Although 0.8 mmol of oxygen was absorbed, the analysis results of the products in the reaction solution at this time showed that the TMP conversion rate was
Values of 46.7%, TMQ yield of 25.7%, and TMQ selectivity of 55.0% were obtained.

実施例 12 TMP2mmol、塩化第二銅二水塩0.2mmol、ア
セトンオキシム0.2mmol、36%塩酸水溶液
0.017ml(塩酸0.2mmol)およびn−ヘキサノール
2mlを内容積10mlのガラス製容器に仕込み、反応
温度60℃で酸素圧を860mmHgに保ちながら反応さ
せ、酸素吸収量をガスビユレツトで測定した。
1.0時間の反応で約2mmolの酸素が吸収されると
酸素吸収はほぼ停止したが、さらに1.5時間反応
させて反応を完結させたのち、反応溶液中の生成
物を分析した。その結果、TMP転化率100%、
TMQ収率84.5%、同選択率84.5%の値が得られ
た。
Example 12 TMP 2mmol, cupric chloride dihydrate 0.2mmol, acetone oxime 0.2mmol, 36% hydrochloric acid aqueous solution
0.017ml (0.2mmol hydrochloric acid) and n-hexanol
2 ml was placed in a glass container with an internal volume of 10 ml, and the reaction was carried out at a reaction temperature of 60° C. while maintaining the oxygen pressure at 860 mmHg, and the amount of oxygen absorbed was measured using a gas bottle.
Oxygen absorption almost stopped after approximately 2 mmol of oxygen was absorbed during the 1.0 hour reaction, but the reaction was completed for an additional 1.5 hours and the products in the reaction solution were analyzed. As a result, the TMP conversion rate was 100%,
A TMQ yield of 84.5% and a TMQ selectivity of 84.5% were obtained.

実施例 16 実施例15において、36%塩酸水溶液0.017ml(塩
酸0.2mmol)の代わりに98%硫酸水溶液0.011ml
(硫酸0.2mmol)を用いて、実施例15と同様な方
法で反応させた。2.0時間の反応で約2mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに2.0時間反応させて反応を完結させたのち、
反応溶液中の生成物を分析した。その結果、
TMP転化率100%、TMQ収率80.3%、同選択率
80.3%の値が得られた。
Example 16 In Example 15, 0.011 ml of 98% sulfuric acid aqueous solution was used instead of 0.017 ml of 36% hydrochloric acid aqueous solution (0.2 mmol of hydrochloric acid).
The reaction was carried out in the same manner as in Example 15 using (0.2 mmol of sulfuric acid). After approximately 2 mmol of oxygen was absorbed during the 2.0 hour reaction, oxygen absorption almost stopped.
After further reacting for 2.0 hours to complete the reaction,
The products in the reaction solution were analyzed. the result,
TMP conversion rate 100%, TMQ yield 80.3%, same selectivity
A value of 80.3% was obtained.

実施例 17 実施例15において、36%塩酸水溶液0.017ml
(塩酸0.2mmol)を加えないで、実施例15と同様
な方法で反応させた。1.5時間の反応で約2mmol
の酸素が吸収されたのち酸素吸収はほぼ停止した
が、さらに2時間反応させて反応を完結させたの
ち、反応溶液中の生成物を分析した。その結果、
TMP転化率100%、TMQ収率80.4%、同選択率
80.4%の値が得られた。
Example 17 In Example 15, 0.017 ml of 36% hydrochloric acid aqueous solution
The reaction was carried out in the same manner as in Example 15 without adding (0.2 mmol of hydrochloric acid). Approximately 2 mmol in 1.5 hour reaction
After the absorption of oxygen, the oxygen absorption almost stopped, but the reaction was continued for an additional 2 hours to complete the reaction, and then the products in the reaction solution were analyzed. the result,
TMP conversion rate 100%, TMQ yield 80.4%, same selectivity
A value of 80.4% was obtained.

実施例 18 実施例15において、塩化第二銅二水塩を
0.1mmolとして、実施例15と同様な方法で反応さ
せた。1.5時間の反応で約2mmolの酸素が吸収さ
れたのち酸素吸収はほぼ停止したが、さらに2時
間反応させて反応を完結させたのち、反応溶液中
の生成物を分析した。その結果、TMP転化率100
%、TMQ収率77.4%、同選択率77.4%の値が得
られた。
Example 18 In Example 15, cupric chloride dihydrate was
The reaction was carried out in the same manner as in Example 15, using 0.1 mmol. After approximately 2 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped, but after the reaction was allowed to proceed for an additional 2 hours to complete the reaction, the products in the reaction solution were analyzed. As a result, TMP conversion rate 100
%, TMQ yield of 77.4%, and TMQ selectivity of 77.4%.

実施例 19 実施例15において、塩化第二銅二水塩を
0.1mmol、36%塩酸水溶液0.009ml(塩酸
0.1mmol)として、実施例15と同様な方法で反応
させた。1時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに1
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率78.4%、同選択率78.4%の値が
得られた。
Example 19 In Example 15, cupric chloride dihydrate was
0.1 mmol, 36% hydrochloric acid aqueous solution 0.009 ml (hydrochloric acid
0.1 mmol), and the reaction was carried out in the same manner as in Example 15. After approximately 2 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but an additional 1 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 78.4%, and TMQ selectivity of 78.4% were obtained.

実施例 20 実施例15において、塩化第二銅二水塩を
0.1mmol、アセトンオキシムを0.3mmol、36%塩
酸水溶液0.009ml(塩酸0.1mmol)として、実施例
15と同様な方法で反応させた。1時間の反応で約
2mmolの酸素が吸収されたのち酸素吸収はほぼ
停止したが、さらに2時間反応させて反応を完結
させたのち、反応溶液中の生成物を分析した。そ
の結果、TMP転化率100%、TMQ収率81.2%、
同選択率81.2%の値が得られた。
Example 20 In Example 15, cupric chloride dihydrate was
Example using 0.1 mmol, 0.3 mmol of acetone oxime, and 0.009 ml of 36% hydrochloric acid aqueous solution (0.1 mmol of hydrochloric acid).
The reaction was carried out in the same manner as in 15. Approximately 1 hour reaction
After 2 mmol of oxygen was absorbed, oxygen absorption almost stopped, but the reaction was completed for another 2 hours, and then the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was 81.2%,
A value of 81.2% for the same selectivity was obtained.

実施例 21 実施例15において、n−ヘキサノール2mlの代
わりにn−オクタノール2mlを用いて、実施例15
と同様な方法で反応させた。1時間の反応で約
2mmolの酸素が吸収されたのち酸素吸収はほぼ
停止したが、さらに1.5時間反応させ反応を完結
させたのち、反応溶液中の生成物を分析した。そ
の結果、TMP転化率100%、TMQ収率76.2%、
同選択率76.2%の値が得られた。
Example 21 In Example 15, 2 ml of n-octanol was used instead of 2 ml of n-hexanol, and Example 15
was reacted in the same manner. Approximately 1 hour reaction
After 2 mmol of oxygen was absorbed, oxygen absorption almost stopped, but the reaction was allowed to continue for an additional 1.5 hours, and the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was 76.2%,
A value of 76.2% for the same selection rate was obtained.

実施例 22 実施例15において、n−オクタノール2mlの代
わりにジエチレングリコールジメチルエーテル
2mlを用いて、実施例15と同様な方法で反応させ
た。2時間の反応で約2mmolの酸素が吸収され
たのち酸素吸収はほぼ停止したが、さらに2時間
反応させ反応を完結させたのち、反応溶液中の生
成物を分析した。その結果、TMP転化率100%、
TMQ収率78.3%、同選択率78.3%の値が得られ
た。
Example 22 In Example 15, diethylene glycol dimethyl ether was used instead of 2 ml of n-octanol.
A reaction was carried out in the same manner as in Example 15 using 2 ml. After approximately 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped, but the reaction was allowed to continue for another 2 hours, and the reaction was completed, after which the products in the reaction solution were analyzed. As a result, the TMP conversion rate was 100%,
A TMQ yield of 78.3% and a TMQ selectivity of 78.3% were obtained.

実施例 23 実施例15において、TMPを3mmol、塩化第二
銅二水塩を0.1mmolとして、実施例15と同様な方
法で反応させた。1.5時間の反応で約3mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに2.5時間反応させ反応を完結させたのち、
反応溶液中の生成物を分析した。その結果、
TMP転化率100%、TMQ収率79.3%、同選択率
79.3%の値が得られた。
Example 23 In Example 15, a reaction was carried out in the same manner as in Example 15, using 3 mmol of TMP and 0.1 mmol of cupric chloride dihydrate. After about 3 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped.
After reacting for another 2.5 hours to complete the reaction,
The products in the reaction solution were analyzed. the result,
TMP conversion rate 100%, TMQ yield 79.3%, same selectivity
A value of 79.3% was obtained.

実施例 24 実施例15において、TMPを3mmol、36%塩酸
水溶液0.009ml(塩酸0.1mmol)として、実施例15
と同様な方法で反応させた。1.5時間の反応で約
2mmolの酸素が吸収されたのち酸素吸収はほぼ
停止したが、さらに2.5時間反応させ反応を完結
させたのち、反応溶液中の生成物を分析した。そ
の結果、TMP転化率100%、TMQ収率81.5%、
同選択率81.5%の値が得られた。
Example 24 In Example 15, TMP was changed to 3 mmol, 36% hydrochloric acid aqueous solution 0.009 ml (hydrochloric acid 0.1 mmol), and Example 15
was reacted in the same manner. Approximately 1.5 hours of reaction
Oxygen absorption almost stopped after 2 mmol of oxygen was absorbed, but the reaction was allowed to proceed for an additional 2.5 hours and the reaction was completed, after which the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was 81.5%,
A value of 81.5% for the same selectivity was obtained.

実施例 25 実施例15において、TMPを3mmol、塩化第二
銅二水塩を0.1mmolとして、実施例15と同様な方
法で反応させた。1.5時間の反応で約3mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに2.5時間反応させ反応を完結させたのち、
反応溶液中の生成物を分析した。その結果、
TMP転化率100%、TMQ収率80.9%、同選択率
80.9%の値が得られた。
Example 25 In Example 15, a reaction was carried out in the same manner as in Example 15, using 3 mmol of TMP and 0.1 mmol of cupric chloride dihydrate. After about 3 mmol of oxygen was absorbed during the 1.5 hour reaction, oxygen absorption almost stopped.
After reacting for another 2.5 hours to complete the reaction,
The products in the reaction solution were analyzed. the result,
TMP conversion rate 100%, TMQ yield 80.9%, same selectivity
A value of 80.9% was obtained.

実施例 26 実施例15において、反応温度を40℃として、実
施例15と同様な方法で反応させた。2.5時間の反
応で約2mmolの酸素が吸収されたのち酸素吸収
はほぼ停止したが、さらに2.5時間反応させ反応
を完結させたのち、反応溶液中の生成物を分析し
た。その結果、TMP転化率100%、TMQ収率
79.4%、同選択率79.4%の値が得られた。
Example 26 In Example 15, the reaction was carried out in the same manner as in Example 15, with the reaction temperature being 40°C. After approximately 2 mmol of oxygen was absorbed during the 2.5 hour reaction, oxygen absorption almost stopped, but the reaction was allowed to continue for an additional 2.5 hours and the reaction was completed, after which the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was
A value of 79.4% and a same selection rate of 79.4% were obtained.

実施例 27 実施例15において、アセトンオキシム0.2mmol
の代わりに2−ブタノンオキシム0.2mmolを用い
て、実施例15と同様な方法で反応させた。1時間
の反応で約2mmolの酸素が吸収されたのち酸素
吸収はほぼ停止したが、さらに2時間反応させ反
応を完結させたのち反応溶液中の生成物を分析し
た。その結果、TMP転化率100%、TMQ収率
75.5%、同選択率75.5%の値が得られた。
Example 27 In Example 15, acetone oxime 0.2 mmol
The reaction was carried out in the same manner as in Example 15, using 0.2 mmol of 2-butanone oxime instead. After about 2 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but the reaction was allowed to continue for another 2 hours, and the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was
A value of 75.5% and a selectivity rate of 75.5% were obtained.

実施例 28 実施例27において、36%塩酸水溶液0.017ml(塩
酸0.2mmol)を用いないで、実施例27と同様な方
法で反応させた。1時間の反応で約2mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに2時間反応させ反応を完結させたのち反応
溶液中の生成物を分析した。その結果、TMP転
化率100%、TMQ収率74.3%、同選択率74.3%の
値が得られた。
Example 28 In Example 27, the reaction was carried out in the same manner as in Example 27 without using 0.017 ml of 36% aqueous hydrochloric acid solution (0.2 mmol of hydrochloric acid). After approximately 2 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped.
After the reaction was completed for an additional 2 hours, the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 74.3% TMQ yield, and 74.3% TMQ selectivity were obtained.

実施例 29 実施例15において、アラトンオキシム0.2mmol
の代わりにベンズアルドキシム0.2mmolを用い
て、実施例15と同様な方法で反応させた。1時間
の反応で約2mmolの酸素が吸収されたのち酸素
吸収はほぼ停止したが、さらに1時間反応させ反
応を完結させたのち反応溶液中の生成物を分析し
た。その結果、TMP転化率100%、TMQ収率
83.2%、同選択率83.2%の値が得られた。
Example 29 In Example 15, aratone oxime 0.2 mmol
The reaction was carried out in the same manner as in Example 15, using 0.2 mmol of benzaldoxime instead of . After about 2 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but the reaction was allowed to proceed for an additional hour to complete, and then the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was
A value of 83.2% and a selectivity rate of 83.2% were obtained.

実施例 30 実施例29において、36%塩酸水溶液0.017ml(塩
酸0.2mmol)を用いないで、実施例29と同様な方
法で反応させた。2時間の反応で約2mmolの酸
素が吸収されたのち酸素吸収はほぼ停止したが、
さらに2時間反応させ反応を完結させたのち反応
溶液中の生成物を分析した。その結果、TMP転
化率100%、TMQ収率80.1%、同選択率80.1%の
値が得られた。
Example 30 In Example 29, the reaction was carried out in the same manner as in Example 29 without using 0.017 ml of 36% aqueous hydrochloric acid solution (0.2 mmol of hydrochloric acid). After about 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped.
After the reaction was completed for an additional 2 hours, the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 80.1% TMQ yield, and 80.1% TMQ selectivity were obtained.

実施例 31 実施例15において、アセトンオキシム0.2mmol
の代わりにアセトアルドキシム0.2mmolを用い
て、実施例15と同様な方法で反応させた。1時間
の反応で約2mmolの酸素が吸収されたのち酸素
吸収はほぼ停止したが、さらに1時間反応させ反
応を完結させたのち、反応液中の生成物を分析し
た。その結果、TMP転化率100%、TMQ収率
84.2%、同選択率84.2%の値が得られた。
Example 31 In Example 15, acetone oxime 0.2 mmol
The reaction was carried out in the same manner as in Example 15, using 0.2 mmol of acetaldoxime instead of. After about 2 mmol of oxygen was absorbed during the 1-hour reaction, oxygen absorption almost stopped, but the reaction was allowed to proceed for an additional hour to complete, and then the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was
A value of 84.2% and a selectivity rate of 84.2% were obtained.

実施例 32 実施例31において、36%塩酸水溶液0.017ml(塩
酸0.2mmol)を用いないで、実施例31と同様な方
法で反応させた。5時間の反応で約2mmolの酸
素が吸収され、そのときの反応溶液中の生成物を
分析結果では、TMP転化率100%、TMQ収率
80.4%、同選択率80.4%の値が得られた。
Example 32 In Example 31, the reaction was carried out in the same manner as in Example 31 without using 0.017 ml of 36% aqueous hydrochloric acid solution (0.2 mmol of hydrochloric acid). Approximately 2 mmol of oxygen was absorbed during the 5-hour reaction, and the analysis results of the products in the reaction solution at that time showed that the TMP conversion rate was 100% and the TMQ yield was 100%.
A value of 80.4% and a selectivity rate of 80.4% were obtained.

実施例 33 実施例17において、アセトンオキシム0.2mmol
の代わりにシクロヘキサノンオキシム0.2mmolを
用いて、実施例17と同様な方法で反応させた。6
時間の反応で約2mmolの酸素が吸収され、その
ときの反応溶液中の生成物を分析結果では、
TMP転化率97.1%、TMQ収率72.5%、同選択率
74.7%の値が得られた。
Example 33 In Example 17, acetone oxime 0.2 mmol
The reaction was carried out in the same manner as in Example 17, using 0.2 mmol of cyclohexanone oxime instead. 6
Approximately 2 mmol of oxygen was absorbed in the reaction over a period of time, and the product in the reaction solution at that time was analyzed as follows:
TMP conversion rate 97.1%, TMQ yield 72.5%, same selectivity
A value of 74.7% was obtained.

実施例 34 TMP2mmol、塩化第二銅二水塩0.2mol、ジエ
チルアミン塩酸塩0.2mmolおよびn−ヘキノール
2mlを内容積10mlのガラス製容器に仕込み、反応
温度60℃で酸素圧を860mmHgに保ちながら反応さ
せ、酸素吸収量をガスピユレツトで測定した。
1.5時間の反応で約2mmolの酸素が吸収されると
酸素吸収はほぼ停止したが、さらに1.5時間反応
せて反応を完結させたのち、反応溶液中の生成物
を分析した。その結果、TMP転化率100%、
TMQ収率80.5%、同選択率80.5%の値が得られ
た。
Example 34 2 mmol TMP, 0.2 mol cupric chloride dihydrate, 0.2 mmol diethylamine hydrochloride and n-hexynol
2 ml of the mixture was placed in a glass container with an internal volume of 10 ml, and the reaction was carried out at a reaction temperature of 60° C. while maintaining the oxygen pressure at 860 mmHg, and the amount of oxygen absorbed was measured using a gas pump.
Oxygen absorption almost stopped after about 2 mmol of oxygen was absorbed during the 1.5 hour reaction, but after the reaction was completed for an additional 1.5 hours, the products in the reaction solution were analyzed. As a result, the TMP conversion rate was 100%,
A TMQ yield of 80.5% and a selectivity of 80.5% were obtained.

実施例 35 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにトリメチルアミン塩酸塩
0.2mmolを用いて、実施例34と同様な方法で反応
させた。2時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに2
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率82.6%、同選択率82.6%の値が
得られた。
Example 35 In Example 34, diethylamine hydrochloride
Trimethylamine hydrochloride instead of 0.2mmol
The reaction was carried out in the same manner as in Example 34 using 0.2 mmol. After about 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped, but an additional 2 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 82.6%, and TMQ selectivity of 82.6% were obtained.

実施例 36 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにトリメチルアミン塩酸塩
0.2mmolを用いて、実施例34と同様な方法で反応
させた。2時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに2
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率83.1%、同選択率83.1%の値が
得られた。
Example 36 In Example 34, diethylamine hydrochloride
Trimethylamine hydrochloride instead of 0.2mmol
The reaction was carried out in the same manner as in Example 34 using 0.2 mmol. After about 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped, but an additional 2 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 83.1%, and TMQ selectivity of 83.1% were obtained.

実施例 37 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにN,N−ジメチルグリシン塩
酸塩0.2mmolを用いて、実施例34と同様な方法で
反応させた。3時間の反応で約2mmolの酸素が
吸収されたのち酸素吸収はほぼ停止したが、さら
に2時間反応させて反応を完結させたのち、反応
溶液中の生成物を分析した。その結果、TMP転
化率100%、TMQ収率79.1%、同選択率79.1%の
値が得られた。
Example 37 In Example 34, diethylamine hydrochloride
The reaction was carried out in the same manner as in Example 34, using 0.2 mmol of N,N-dimethylglycine hydrochloride instead of 0.2 mmol. After about 2 mmol of oxygen was absorbed during the 3-hour reaction, oxygen absorption almost stopped, but after the reaction was allowed to proceed for an additional 2 hours to complete the reaction, the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 79.1% TMQ yield, and 79.1% TMQ selectivity were obtained.

実施例 38 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにプロパノールアミン塩酸塩
0.2mmolを用いて、実施例1と同様な方法で反応
させた。2時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに2
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率86.9%、同選択率86.9%の値が
得られた。
Example 38 In Example 34, diethylamine hydrochloride
propanolamine hydrochloride instead of 0.2mmol
The reaction was carried out in the same manner as in Example 1 using 0.2 mmol. After about 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped, but an additional 2 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 86.9%, and TMQ selectivity of 86.9% were obtained.

実施例 39 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにジエタノールアミン塩酸塩
0.2mmolを用いて、実施例34と同様な方法で反応
させた。3時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに2
時間反応させ反応を完結させたのち、反応溶液中
の生成物を分析した。その結果、TMP転化率100
%、TMQ収率80.1%、同選択率80.1%の値が得
られた。
Example 39 In Example 34, diethylamine hydrochloride
Diethanolamine hydrochloride instead of 0.2mmol
The reaction was carried out in the same manner as in Example 34 using 0.2 mmol. After approximately 2 mmol of oxygen was absorbed during the 3-hour reaction, oxygen absorption almost stopped, but an additional 2 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate 100
%, TMQ yield of 80.1%, and TMQ selectivity of 80.1%.

実施例 40 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにエチルアミン臭化水素酸塩
0.2mmolを用いて、実施例34と同様な方法で反応
させた。2時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに2
時間反応させて反応を完結させたのち、反応溶液
中の生成物を分析した。その結果、TMP転化率
100%、TMQ収率78.1%、同選択率78.1%の値が
得られた。
Example 40 In Example 34, diethylamine hydrochloride
Ethylamine hydrobromide instead of 0.2mmol
The reaction was carried out in the same manner as in Example 34 using 0.2 mmol. After about 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped, but an additional 2 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate
Values of 100%, TMQ yield of 78.1%, and TMQ selectivity of 78.1% were obtained.

実施例 41 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにジイソプロピルアミン塩酸塩
0.2mmolを用いて、実施例34と同様な方法で反応
させた。4時間の反応で約2mmolの酸素が吸収
されたのち酸素吸収はほぼ停止したが、さらに1
時間反応させ反応を完結させたのち、反応溶液中
の生成物を分析した。その結果、TMP転化率100
%、TMQ収率84.1%、同選択率84.1%の値が得
られた。
Example 41 In Example 34, diethylamine hydrochloride
Diisopropylamine hydrochloride instead of 0.2mmol
The reaction was carried out in the same manner as in Example 34 using 0.2 mmol. After approximately 2 mmol of oxygen was absorbed during the 4-hour reaction, oxygen absorption almost stopped, but an additional 1 mmol of oxygen was absorbed.
After the reaction was completed for a certain period of time, the products in the reaction solution were analyzed. As a result, TMP conversion rate 100
%, TMQ yield of 84.1%, and TMQ selectivity of 84.1%.

実施例 42 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにアニリン塩酸塩0.2mmolを用
いて、実施例34と同様な方法で反応させた。5時
間の反応で約2mmolの酸素が吸収され、この時
の反応溶液中の生成物の分析結果では、TMP転
化率100%、TMQ収率69.6%、同選択率69.6%の
値が得られた。
Example 42 In Example 34, diethylamine hydrochloride
The reaction was carried out in the same manner as in Example 34, using 0.2 mmol of aniline hydrochloride instead of 0.2 mmol. Approximately 2 mmol of oxygen was absorbed during the 5-hour reaction, and the analysis results of the products in the reaction solution at this time showed a TMP conversion rate of 100%, a TMQ yield of 69.6%, and a selectivity of 69.6%. .

実施例 43 実施例34において、n−ヘキサノール2mlの代
わりにn−オクタノール2mlを用いて、実施例34
と同様な方法で反応させた。1.5時間の反応で約
2mmolの酸素が吸収されたのち酸素吸収はほぼ
停止したが、さらに1.5時間反応させ反応を完結
させたのち、反応溶液中の生成物を分析した。そ
の結果、TMP転化率100%、TMQ収率76.2%、
同選択率76.2%の値が得られた。
Example 43 In Example 34, using 2 ml of n-octanol instead of 2 ml of n-hexanol, Example 34
was reacted in the same manner. Approximately 1.5 hours of reaction
Oxygen absorption almost stopped after 2 mmol of oxygen was absorbed, but the reaction was allowed to continue for an additional 1.5 hours and the reaction was completed, after which the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was 76.2%,
A value of 76.2% for the same selection rate was obtained.

実施例 44 実施例34において、n−ヘキサノール2mlの代
わりにシクロヘキサノール2mlを用いて、実施例
34と同様な方法で反応させた。5時間の反応で約
2mmolの酸素が吸収され、この時の反応溶液中
の生成物を分析結果では、TMP転化率98.1%、
TMQ収率79.3%、同選択率80.8%の値が得られ
た。
Example 44 In Example 34, 2 ml of cyclohexanol was used instead of 2 ml of n-hexanol.
The reaction was carried out in the same manner as 34. Approximately 5 hours of reaction
2 mmol of oxygen was absorbed, and the analysis results of the products in the reaction solution at this time showed a TMP conversion rate of 98.1%,
A TMQ yield of 79.3% and a selectivity of 80.8% were obtained.

実施例 45 実施例34において、n−ヘキサノール2mlの代
わりにジアセトンアルコール2mlを用いて、実施
例34と同様な方法で反応させた。5時間の反応で
約2mmolの酸素が吸収され、この時の反応溶液
中の生成物の分析結果では、TMP転化率93.5%、
TMQ収率59.5%、同選択率63.6%の値が得られ
た。
Example 45 In Example 34, the reaction was carried out in the same manner as in Example 34, using 2 ml of diacetone alcohol instead of 2 ml of n-hexanol. Approximately 2 mmol of oxygen was absorbed during the 5-hour reaction, and the analysis results of the products in the reaction solution at this time showed that the TMP conversion rate was 93.5%.
A TMQ yield of 59.5% and a selectivity of 63.6% were obtained.

実施例 46 実施例34において、n−ヘキサノール2mlの代
わりに2−オクタノール2mlを用いて、実施例34
と同様な方法で反応させた。2時間の反応で約
2mmolの酸素が吸収されたのち酸素吸収はほぼ
停止したが、さらに3時間反応して反応を完結さ
せたのち、反応溶液中の生成物を分析した。その
結果、TMP転化率100%、TMQ収率77.3%、同
選択率77.3%の値が得られた。
Example 46 In Example 34, 2 ml of 2-octanol was used instead of 2 ml of n-hexanol, and Example 34
was reacted in the same manner. Approximately 2 hours of reaction
After 2 mmol of oxygen was absorbed, oxygen absorption almost stopped, but the reaction was completed for another 3 hours, and then the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 77.3% TMQ yield, and 77.3% TMQ selectivity were obtained.

実施例 47 実施例34において、n−ヘキサノール2mlの代
わりにジエチレングリコールジメチルエーテル
2mlを用いて、実施例34と同様な方法で反応させ
た。5時間の反応で約2mmolの酸素が吸収され、
このときの反応溶液中の生成物の分析結果では、
TMP転化率100%、TMQ収率74.5%、同選択率
74.5%の値が得られた。
Example 47 In Example 34, diethylene glycol dimethyl ether was used instead of 2 ml of n-hexanol.
A reaction was carried out in the same manner as in Example 34 using 2 ml. Approximately 2 mmol of oxygen was absorbed during the 5-hour reaction,
According to the analysis results of the products in the reaction solution at this time,
TMP conversion rate 100%, TMQ yield 74.5%, same selectivity
A value of 74.5% was obtained.

実施例 48 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりに、トリエチルアミン0.2mmol
および36%塩酸水溶液0.017ml(塩酸0.2mmol)を
用いて、実施例34と同様な方法で反応させた。
2.5時間の反応で約2mmolの酸素が吸収されたの
ち酸素吸収はほぼ停止したが、さらに2.5時間反
応させて反応を完結させたのち、反応溶液中の生
成物を分析した。その結果、TMP転化率100%、
TMQ収率88.6%、同選択率88.6%の値が得られ
た。
Example 48 In Example 34, diethylamine hydrochloride
instead of 0.2mmol triethylamine 0.2mmol
The reaction was carried out in the same manner as in Example 34 using 0.017 ml of 36% hydrochloric acid aqueous solution (0.2 mmol of hydrochloric acid).
After approximately 2 mmol of oxygen was absorbed during the 2.5 hour reaction, oxygen absorption almost stopped, but the reaction was continued for an additional 2.5 hours to complete the reaction, and then the products in the reaction solution were analyzed. As a result, the TMP conversion rate was 100%,
A TMQ yield of 88.6% and a selectivity of 88.6% were obtained.

実施例 49 実施例34において、反応温度を40℃として、実
施例34と同様な方法で反応させた、6時間の反応
で約2mmolの酸素が吸収され、このときの反応
溶液中の生成物の分析結果では、TMP転化率100
%、TMQ収率83.1%、同選択率83.1%の値が得
られた。
Example 49 In Example 34, the reaction was carried out in the same manner as in Example 34 at a reaction temperature of 40°C. Approximately 2 mmol of oxygen was absorbed during the 6-hour reaction, and the product in the reaction solution at this time was The analysis results show that the TMP conversion rate is 100.
%, TMQ yield of 83.1%, and TMQ selectivity of 83.1%.

実施例 50 実施例34において、TMP3mmol、塩化第二銅
二水塩0.1mmol、ジエチルアミン塩酸塩0.1mmol
を用いて、実施例34と同様な方法で反応させた。
6時間の反応で約3mmolの酸素が吸収されたの
ち酸素吸収はほぼ停止したが、さらに3時間反応
させた反応を完結させたのち、反応溶液中の生成
物を分析した。その結果、TMP転化率100%、
TMQ収率89.4%、同選択率89.4%の値が得られ
た。
Example 50 In Example 34, 3 mmol of TMP, 0.1 mmol of cupric chloride dihydrate, 0.1 mmol of diethylamine hydrochloride
The reaction was carried out in the same manner as in Example 34.
After about 3 mmol of oxygen was absorbed during the 6-hour reaction, oxygen absorption almost stopped, but after the reaction was completed for an additional 3 hours, the products in the reaction solution were analyzed. As a result, the TMP conversion rate was 100%,
A TMQ yield of 89.4% and a TMQ selectivity of 89.4% were obtained.

実施例 51 実施例34において、塩化第二銅二水塩0.2mmol
の代わりに無水塩化第二銅0.2mmol、ジエチルア
ミン塩酸塩0.2mmolの代わりにトリエチルアミン
塩酸塩0.2mmolを用いて、実施例34と同様な方法
で反応させた。2.5時間の反応で約2mmolの酸素
が吸収されたのち酸素吸収はほぼ停止したが、さ
らに2.5時間反応させて反応を完結させたのち、
反応溶液中の生成物を分析した。その結果、
TMP転化率100%、TMQ収率86.9%、同選択率
86.9%の値が得られた。
Example 51 In Example 34, cupric chloride dihydrate 0.2 mmol
The reaction was carried out in the same manner as in Example 34, using 0.2 mmol of anhydrous cupric chloride instead of 0.2 mmol of anhydrous cupric chloride and 0.2 mmol of triethylamine hydrochloride instead of 0.2 mmol of diethylamine hydrochloride. After approximately 2 mmol of oxygen was absorbed during the 2.5-hour reaction, oxygen absorption almost stopped, but after an additional 2.5 hours of reaction to complete the reaction,
The products in the reaction solution were analyzed. the result,
TMP conversion rate 100%, TMQ yield 86.9%, same selectivity
A value of 86.9% was obtained.

実施例 52 実施例34において、ジエチルアミン塩酸塩
0.2mmolの代わりにモルホリン0.2mmolおよび36
%塩酸水溶液0.017ml(塩酸0.2mmol)を用いて、
実施例34と同様な方法で反応させた。2時間の反
応で約2mmolの酸素が吸収されたのち酸素吸収
はほぼ停止したが、さらに2時間反応させて反応
を完結させたのち、反応溶液中の生成物を分析し
た。その結果、TMP転化率100%、TMQ収率
72.1%、同選択率72.1が得られた。
Example 52 In Example 34, diethylamine hydrochloride
Morpholine 0.2mmol and 36 instead of 0.2mmol
Using 0.017ml of % hydrochloric acid aqueous solution (0.2mmol of hydrochloric acid),
The reaction was carried out in the same manner as in Example 34. After about 2 mmol of oxygen was absorbed during the 2-hour reaction, oxygen absorption almost stopped, but after the reaction was allowed to proceed for an additional 2 hours to complete the reaction, the products in the reaction solution were analyzed. As a result, TMP conversion rate was 100%, TMQ yield was
The same selection rate was 72.1%.

比較例 5 実施例38において、プロパノールアミン塩酸塩
0.2mmolの代わりにプロパノールアミン0.2mmol
を用いて、実施例38と同様な方法で4時間反応さ
せたのち、反応溶液中の生成物を分析した。その
結果、TMP転化率100%、TMQ収率30.0%、同
選択率30.0の値が得られた。
Comparative Example 5 In Example 38, propanolamine hydrochloride
Propanolamine 0.2mmol instead of 0.2mmol
After reacting for 4 hours in the same manner as in Example 38, the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 30.0% TMQ yield, and 30.0 TMQ selectivity were obtained.

比較例 6 実施例39において、ジエタノールアミン塩酸塩
0.2mmolの代わりにジエタノールアミン0.2mmol
を用いて、実施例39と同様な方法で4時間反応さ
せたのち、反応溶液中の生成物を分析した。その
結果、TMP転化率100%、TMQ収率30.2%、同
選択率30.2%の値が得られた。
Comparative Example 6 In Example 39, diethanolamine hydrochloride
0.2mmol of diethanolamine instead of 0.2mmol
After reacting for 4 hours in the same manner as in Example 39, the products in the reaction solution were analyzed. As a result, values of 100% TMP conversion, 30.2% TMQ yield, and 30.2% TMQ selectivity were obtained.

比較例 7 実施例51において、トリエチルアミン塩酸塩
0.2mmolの代わりに塩化テトラエチルアンモニウ
ム0.2mmolを用いて、実施例51と同様な方法で5
時間反応させると約1.4mmolの酸素が吸収され
た。このとき、反応溶液中の生成物を分析した結
果、TMP転化率82.5%、TMQ収率57.7%、同選
択率69.2%の値が得られた。
Comparative Example 7 In Example 51, triethylamine hydrochloride
5 in the same manner as in Example 51, using 0.2 mmol of tetraethylammonium chloride instead of 0.2 mmol.
Approximately 1.4 mmol of oxygen was absorbed after reacting for a certain period of time. At this time, as a result of analyzing the products in the reaction solution, values of TMP conversion of 82.5%, TMQ yield of 57.7%, and selectivity of 69.2% were obtained.

実施例 8 実施例48において、36%塩酸水溶液0.017ml(塩
酸0.2mmol)を用いないで、実施例48と同様な方
法で5時間反応させると約2mmolの酸素が吸収
された。このとき、反応溶液中の生成物を分析し
た結果、TMP転化率100%、TMQ収率22.3%、
同選択率22.3%の値が得られた。
Example 8 In Example 48, when the reaction was carried out for 5 hours in the same manner as in Example 48 without using 0.017 ml of 36% aqueous hydrochloric acid solution (0.2 mmol of hydrochloric acid), about 2 mmol of oxygen was absorbed. At this time, as a result of analyzing the products in the reaction solution, the TMP conversion rate was 100%, the TMQ yield was 22.3%,
A value of 22.3% for the same selection rate was obtained.

Claims (1)

【特許請求の範囲】 1 2,3,6−トリメチルフエノールを酸素酸
化して、2,3,5−トリメチルベンゾキノンを
製造するにあたり、銅化合物と、ヒドロキシルア
ミン類と無機酸との塩もしくはそれらの混合物と
の組合せよりなる触媒を使用することを特徴とす
る2,3,5−トリメチルベンゾキノンの製造方
法。 2 2,3,6−トリメチルフエノールを酸素酸
化して、2,3,5−トリメチルベンゾキノンを
製造するにあたり、銅化合物と、オキシム類又は
オキシム類および無機酸との組合せよりなる触媒
を使用することを特徴とする2,3,5−トリメ
チルベンゾキノンの製造方法。 3 2,3,6−トリメチルフエノールを酸素酸
化して、2,3,6−トリメチルベンゾキノンを
製造するにあたり、銅化合物と、アミン類と無機
酸との塩もしくは混合物との組合せよりなる触媒
を使用することを特徴とする2,3,5−トリメ
チルベンゾキノンの製造方法。
[Claims] 1. In producing 2,3,5-trimethylbenzoquinone by oxidizing 2,3,6-trimethylphenol with oxygen, a copper compound, a salt of hydroxylamine and an inorganic acid, or a salt thereof A method for producing 2,3,5-trimethylbenzoquinone, which comprises using a catalyst in combination with a mixture. 2. When oxidizing 2,3,6-trimethylphenol with oxygen to produce 2,3,5-trimethylbenzoquinone, using a catalyst consisting of a copper compound, oximes or a combination of oximes and an inorganic acid. A method for producing 2,3,5-trimethylbenzoquinone, characterized by: 3. When oxidizing 2,3,6-trimethylphenol with oxygen to produce 2,3,6-trimethylbenzoquinone, a catalyst consisting of a combination of a copper compound and a salt or mixture of amines and an inorganic acid is used. A method for producing 2,3,5-trimethylbenzoquinone, characterized in that:
JP63291668A 1988-11-18 1988-11-18 Preparation of 2,3,5-trimethylbenzoquinone Granted JPH02174744A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63291668A JPH02174744A (en) 1988-11-18 1988-11-18 Preparation of 2,3,5-trimethylbenzoquinone
DE8989311959T DE68907180D1 (en) 1988-11-18 1989-11-17 METHOD FOR PRODUCING 2,3,5-TRIMETHYLBENZOCHINONE.
EP19890311959 EP0369823B1 (en) 1988-11-18 1989-11-17 Method for the preparation of 2,3,5-trimethylbenzoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291668A JPH02174744A (en) 1988-11-18 1988-11-18 Preparation of 2,3,5-trimethylbenzoquinone

Publications (2)

Publication Number Publication Date
JPH02174744A JPH02174744A (en) 1990-07-06
JPH0529382B2 true JPH0529382B2 (en) 1993-04-30

Family

ID=17771892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291668A Granted JPH02174744A (en) 1988-11-18 1988-11-18 Preparation of 2,3,5-trimethylbenzoquinone

Country Status (1)

Country Link
JP (1) JPH02174744A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016928B1 (en) * 2013-07-02 2017-08-09 Basf Se Method for producing 2,3,5-trimethyl benzoquinone by oxidation of 2,3,6-trimethylphenol

Also Published As

Publication number Publication date
JPH02174744A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
Stern et al. Amination of nitrobenzene via nucleophilic aromatic substitution for hydrogen: direct formation of aromatic amide bonds
US20030100795A1 (en) Two-phase ammoximation
Shimizu et al. Synthesis of Alkyl Substituted p-Benzoquinones from the Corresponding Phenols Using Molecular Oxygen Catalyzed by Copper (II) Chloride–Amine Hydrochloride Systems
Austin Nitrosation in organic chemistry
US20240150274A1 (en) Method for producing adipic acid and cyclohexanone oxime from cyclohexane
CN106800492A (en) A kind of iron catalytic alcohol oxidation prepares the green method of aldehyde or copper
JPH0529382B2 (en)
EP0369823B1 (en) Method for the preparation of 2,3,5-trimethylbenzoquinone
Belew et al. Reaction of 1, 1-Dinitroethane with its Salts1
JPH0529378B2 (en)
KR100193108B1 (en) Process for preparing N-monosubstituted hydroxylamine
KR101535987B1 (en) Preparation method of acetophenone
WO2012066296A2 (en) Nitrous oxide-containing ionic liquids as chemical reagents
JPS60331B2 (en) Method for producing cyclohexanone
JPH02264739A (en) Production of 2,3,5-trimethyklbenzoquinone
JPH0529384B2 (en)
KR910002280B1 (en) Process for the preparation of adipic acid
JP2003212827A (en) METHOD FOR NITRATING XYLENE ISOMER BY USING ZEOLITE betaCATALYST
Drymona et al. An In‐Situ‐Formed Copper‐Based Perfluorinated Catalytic System for the Aerobic Oxidation of Alcohols
CN112939804B (en) Preparation method of organic amine oxide
JPS60332B2 (en) Manufacturing method of cyclohexanone
CN109092372A (en) A kind of catalyst and method of elective oxidation of primary alcohols
EP1030833B1 (en) Preparation of quinonediimines from phenylenediamines using a hypochlorite as an oxidation agent
CN115536611B (en) Method for preparing epoxycyclohexane
US3892805A (en) Production of azines

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term