JPH0529384B2 - - Google Patents

Info

Publication number
JPH0529384B2
JPH0529384B2 JP1217065A JP21706589A JPH0529384B2 JP H0529384 B2 JPH0529384 B2 JP H0529384B2 JP 1217065 A JP1217065 A JP 1217065A JP 21706589 A JP21706589 A JP 21706589A JP H0529384 B2 JPH0529384 B2 JP H0529384B2
Authority
JP
Japan
Prior art keywords
reaction
oximes
solvent
catalyst
dmq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1217065A
Other languages
Japanese (ja)
Other versions
JPH0381249A (en
Inventor
Katsuomi Takehira
Yoshito Watanabe
Masao Shimizu
Takashi Hayakawa
Hideo Orita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1217065A priority Critical patent/JPH0381249A/en
Publication of JPH0381249A publication Critical patent/JPH0381249A/en
Publication of JPH0529384B2 publication Critical patent/JPH0529384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は、機胜性高分子、医薬品等の合成䞭間
䜓ずしお有甚な−ゞメチル−−ベンゟキ
ノンの補造方法に関するものである。 さらに詳しくは、本発明は、液盞で銅化合物お
よび皮々の窒玠化合物、即ちヒドロキシルアミン
類ず無機酞ずの塩もしくはそれらの混合物あるい
はオキシム類ず無機酞ずの混合物の組合せよりな
る觊媒を甚い、溶媒ずしお脂肪族アルコヌルもし
くは芳銙族炭玠氎玠ず䜎玚脂肪族アルコヌルの混
合物を甚いお、−ゞメチルプノヌル以
例DMPず略すを効率よく酞玠酞化しお
−ゞメチル−−ベンゟキノン以䞋DMQず略
すを補造する方法に関するものである。 〔埓来技術〕 DMQは、液晶ポリマヌ等の機胜性高分子ある
いは医薬品等の原料ずなる重芁な物質であるが、
珟圚のずころ高率な合成法は未だ確立されおいな
い。さらに、アルキル眮換プノヌル類を䞀段で
酞化しおベンゟキノン類を補造する方法に぀いお
は、埓来倚くの怜蚎がなされおおり、硝酞特公
昭56−95145号、過安息銙酞特公昭59−39847
号、次亜ハロゲン酞特公昭60−81135号、過
酞化氎玠Eur.Pat.Appl.107176等の酞化剀を
甚いる方法が提案されおいる。しかしながら、こ
れらの方法でも、有害ガスの発生、高䟡な酞化剀
の䜿甚、副生成物の生成などの点で問題がある。 これらに察しお、酞玠を酞化剀ずする方法が怜
蚎され、この酞化反応のための觊媒系が皮々提案
されおいるが、䟋えばコバルト錯䜓を觊媒ずする
方法特公昭56−26647号では初期掻性は高い
が觊媒の寿呜が極めお短いずいう欠点を有する。
たたハロゲン化銅を觊媒ずする方法では反応率、
遞択率共に高い倀が埗られおいるが、皮々の解決
すべき基本的な欠点を有する。䟋えば、ニトリ
ル、第䞉玚アミド溶媒䞭銅塩を甚いおプノヌル
類を酞化する方法特開昭49−36641号では、
ベンゟキノン類の収率は75皋床であり、その他
ポリプニレンオキシド等を副生し、凊理しにく
いポリマヌずベンゟキノンを分離しなくおはなら
ず、効率的な補造方法ずは蚀えない。有機溶媒䞭
で銅およびハロゲンむオンよりなる觊媒の存圚䞋
プノヌル類を酞化する方法特公昭53−17585
号は、収率が高い点では優れた方法であるが、
觊媒の掻性が極めお䜎いために、プノヌル類ず
ほが等モル量の觊媒を甚いお長時間の反応を行う
必芁があり、さらにこの倧量の觊媒を埪環䜿甚し
なければならず、ナヌテむリテむ消費が倧きくな
る等の臎呜的な欠点を有する。これらの欠点を改
善すべく、銅およびハロゲン系の觊媒を甚いるフ
゚ノヌル類酞化方法に関しおいく぀かの特蚱䟋
えば、特開昭50−93931号、特開昭59−225137号
あるいは特開昭63−280040号が提瀺されおいる
が、いずれも觊媒の埪環䜿甚を容易にするための
方法が瀺されおいるのみで、反応速床そのものは
小さく、基本的な問題である觊媒掻性そのものに
぀いおは改良の跡は認められない。 〔発明が解決しようずする問題点〕 そこで、本発明者は、DMPを酞玠酞化しお
DMQを補造する際の酞化觊媒ならびに酞化反応
溶媒に関しお鋭意研究を重ねた結果、銅化合物お
よび皮々の窒玠化合物、即ちヒドロキシルアミン
類ず無機酞ずの塩もしくはそれらの混合物あるい
はオキシム類たたはオキシム類ず無機酞ずの混合
物の組合せよりなる觊媒を甚い、溶媒ずしお炭玠
数〜の䜎玚脂肪族アルコヌルもしくは芳銙族
炭化氎玠および炭玠数〜の䜎玚脂肪族アルコ
ヌルの混合液を甚いるこずにより、高収率で目的
ずするDMQを補造し埗るこずを芋出し、この知
芋に基づいお本発明をなすに至぀た。 〔問題点を解決するための手段〕 すなわち、本発明は、DMPを酞玠酞化しお
DMQを補造するにあたり、銅化合物および皮々
の窒玠化合物、即ちヒドロキシルアミン類ず無機
酞ずの塩もしくはそれらの混合物あるいはオキシ
ム類たたはオキシム類ず無機酞ずの混合物の組合
せよりなる觊媒を䜿甚し、溶媒ずしお炭玠数〜
の䜎玚脂肪族アルコヌルもしくは芳銙族炭化氎
玠および炭玠数〜の䜎玚脂肪族アルコヌルの
混合液を䜿甚するこずを特城ずするDMQの補造
方法を提䟛するものである。 本発明は、DMPを炭玠数〜の䜎玚脂肪族
アルコヌルもしくは芳銙族炭化氎玠および炭玠数
〜の䜎玚脂肪族アルコヌルの混合溶媒䞭に溶
解し、分子状酞玠ず觊媒量の銅化合物および皮々
の窒玠化合物、即ちヒドロキシルアミン類ず無機
酞ずの塩もしくはそれらの混合物あるいはオキシ
ム類たたはオキシム類ず無機酞ずの混合物の存圚
䞋、宀枩〜200℃で単に攪拌するだけで容易に達
成され極めお簡䟿䞔぀安党な酞化方法である。 本発明においお、DMPを酞化するために酞化
剀ずしお分子状酞玠ならびに觊媒ずしお銅化合物
および皮々の窒玠化合物、即ちヒドロキシルアミ
ン類ず無機酞ずの塩もしくはそれらの混合物ある
いはオキシム類たたはオキシム類ず無機酞ずの混
合物の組合せが甚いられる。分子状酞玠源ずしお
は玔酞玠ガスあるいは空気のいずれを甚いおもよ
く、垞圧〜30Kgcm2の範囲で有効である。觊媒䞀
成分ずしお甚いられる銅化合物は無機塩、有機塩
等が䜿甚可胜で特に制限は無いが、なかんずく塩
化第䞀銅、塩化第二銅等の塩化物が良奜な反応成
瞟を瀺す。觊媒の他の成分ずしお甚いられる窒玠
化合物であるヒドロキシルアミン類に぀いおはヒ
ドロキシルアミンそのものの他に、−ゞメ
チルヒドロキシルアミン等の−ゞアルキル
ヒドロキシルアミン類、−メチルヒドロキシル
アミン等の−アルキルヒドロキシルアミン類、
−メチルヒドロキシルアミン等の−アルキル
ヒドロキシルアミン等の皮々のヒドロキシルアミ
ン誘導䜓が䜿甚可胜であるが、なかんずくヒドロ
キシルアミン、ヒドロキシ尿玠あるいは䜎分子量
の−ゞアルキルヒドロキシルアミン類が良
奜な反応成瞟を瀺す。オキシム類に぀いおはアセ
トン、メチル゚チルケトン、ゞ゚チルケトン等の
ゞアルキルケトン類、シクロヘキサノン、シクロ
オクタノン等の環状ケトン類、アセトプノン、
プロピオプノン等の芳銙族ケトン類、ゞアセチ
ル、アセチルアセトン等のゞケトン類、ゞメドン
等の環状ゞケトン類等のいずれのケトン類、ある
いはホルムアルデヒド、アセトアルデヒド、プロ
ピオンアルデヒド等の脂肪族アルデヒド、ベンズ
アルデヒド、プニルアセトアルデヒド等の芳銙
族アルデヒド類のいずれのアルデヒド類のオキシ
ムでも䜿甚が可胜であるが、なかんずくアセトア
ルドキシム、ベンズアルドキシム、アセトンオキ
シム、−ブタノンオキシム等の比范的䜎分子量
のオキシム類が良奜な反応成瞟を䞎える。たた、
それらの無機酞ずの塩を甚いるに圓぀おの無機酞
ずしおは硫酞、ハロゲン酞等の皮々の無機酞が䜿
甚可胜であり特に制限は無いが、塩酞あるいは硫
酞が比范的良奜な結果を䞎える。この無機酞の添
加は必須ではなく、銅化合物ずオキシム類の系で
も充分な觊媒掻性が埗られるが、さらに無機酞を
加えた方が觊媒掻性が向䞊する堎合が倚い。さら
に、ヒドロキシルアミン類、オキシム類およびア
ミン類ず無機酞ずは必ずしも前も぀お混合物を調
補しお甚いる必芁は無く、別々に添加しおもよ
く、いずれの堎合もそれぞれの組成比は特に制限
は無いが、ヒドロキシルアミン類およびオキシム
類モルに察し無機酞0.2〜モルの範囲が良奜
な反応結果を䞎える。銅化合物に察するヒドロキ
シルアミン類およびオキシム類の䜿甚量に぀いお
は特に制限は無いが、少なくおも倚すぎおも反応
速床が䜎くなるので、銅化合物モルに぀きいず
れの堎合も0.3〜モルの範囲が奜たしい。かく
しお埗られる觊媒の䜿甚量に぀いおは特に制限は
無いが、少ないず反応速床が小さく、倚すぎるず
反応埌の分離等で問題が出おくるので、銅化合物
の量にしおDMP1モルに察しお0.01〜0.1モル量の
䜿甚が奜たしい反応結果を䞎える。 本発明の方法においお、反応に際しお甚いられ
る溶媒に぀いおは、炭玠数〜の䜎玚脂肪族ア
ルコヌルずしおはメタノヌル、゚タノヌル、−
プロパノヌル、む゜プロパノヌル、−ブタノヌ
ル、−ブタノヌル、tert−ブタノヌル、−ア
ミルアルコヌル、−アミルアルコヌル、−ア
ミルアルコヌル、sec−アミルアルコヌル、tert
−アミルアルコヌル、−ヘキサノヌル、−オ
クタノヌル、−オクタノヌル等をあげるこずが
でき、特に制限は無いが、tert−ブタノヌル、
tert−アミルアルコヌルのような䞉玚アルコヌル
が奜たしい結果を䞎える。芳銙族炭化氎玠および
炭玠数〜の䜎玚脂肪族アルコヌルの混合溶媒
を甚いる堎合の芳銙族炭化氎玠ずしおは特に制限
は無いが、ベンれン、トル゚ン、キシレン、クロ
ルベンれン等の比范的䜎沞点で䞔぀酞化に察しお
安定であるものが奜たしい。この際、䞊蚘の炭玠
数〜の䜎玚脂肪族アルコヌル䞀皮以䞊ず芳銙
族炭化氎玠皮以䞊ずを組合せた混合液を溶媒ず
しお甚いる。これらの溶媒は觊媒である銅化合物
ならびにヒドロキシルアミン類、オキシム類、お
よびたたは無機酞、原料であるDMP、ならび
に酞玠の溶解に優れた効果を瀺し、これらを接觊
させるだけで目的ずするDMQの生成を極めお有
効に行う。芳銙族炭化氎玠ず䜎玚脂肪族アルコヌ
ルずの組成比に぀いおは、それらの組合せによ぀
お異なるため䞀抂には決められないが、芳銙族炭
化氎玠に察する䜎玚脂肪族アルコヌルの容量比は
0.2〜1.5が奜たしく、特に奜たしくは0.25〜0.8で
ある。 䞊蚘の觊媒はこれらの混合溶媒䞭に盎接溶解し
お䜿甚するこずもできるが、たた觊媒を氎溶液ず
しお䜿甚するこずもできる。たたこの堎合に甚い
る炭玠数〜の脂肪族アルコヌルずしおは氎溶
性の小さいものであれば特に問題はなく、皮々の
異性䜓を含むブタノヌル、ペンタノヌル、ヘキサ
ノヌル、ヘプタノヌル、オクタノヌル等が䜿甚可
胜である。いずれの堎合も、溶媒䞭に溶存する
DMPず氎盞に溶存する觊媒ならびに気盞の酞玠
を効率良く接觊させるために、効率的な攪拌装眮
ならびに通気装眮を備える必芁がある。 本発明の方法における反応の枩床は宀枩〜20℃
付近の枩床で行うこずができるが、あたり䜎枩す
ぎるず反応速床が遅くなり、䞀方、高すぎるず溶
媒の損倱あるいは副反応が倚くなるので宀枩〜80
℃の範囲で実斜するのが奜たしい。反応時間は、
反応枩床、酞玠圧力、觊媒の䜿甚量により巊右さ
れるが、通垞は〜10時間で充分である。 〔発明の効果〕 本発明方法に埓うず、安䟡な垂販の䞀般詊薬で
ある塩化第二銅等の銅化合物およびヒドロキシル
アミン、アセトンオキシム等の窒玠化合物を觊媒
ずしお甚い、炭玠数〜の䜎玚脂肪族アルコヌ
ルあるいは芳銙族炭化氎玠ず炭玠数〜の䜎玚
脂肪族アルコヌルの奜たしい組成で圢成される混
合液を溶媒ずしお、たた觊媒を氎溶液ずしお反応
に䟛するずきは前蚘の混合液もしくは炭玠数〜
の脂肪族アルコヌル䞭で比范的氎溶性の䜎いも
のをを溶媒ずしお、DMPを分子状酞玠で酞化し
お䞀段階で、しかも極めお高い反応速床ならびに
収率でDMQを埗るこずができる䞊に、埓来法の
欠陥であ぀た倧量の觊媒を埪環させる必芁が無く
なるので、工業的なDMQの補造法ずしお奜適で
ある。 本発明においお䜿甚する觊媒の掻性は極めお高
いので、少量の觊媒の䜿甚で充分であり、觊媒を
埪環再䜿甚する必然性は必ずしも無いが、これが
必芁な堎合には觊媒を氎溶液ずしお甚いるこずに
より觊媒の埪環䜿甚が可胜である。この堎合は、
反応䞭は攪拌䞋においお、混合溶媒系では芳銙族
炭化氎玠の芪油性ず䜎玚脂肪族アルコヌルの芪氎
性ずのために、難氎溶性の脂肪族アルコヌルを溶
媒では長鎖のアルキル基の芪油性ず氎酞基の芪氎
性ずのために、氎盞の觊媒ず良奜な懞濁状態ずな
り、氎盞−有機盞−気盞の䞉盞反応を円滑に進行
させるが、反応終了埌、攪拌を停止するず有機盞
ず氎盞ずに急速に分離し、氎盞の觊媒を分離回収
しお再䜿甚するこずができ、同時に有機盞からは
溶媒を蒞留等の手段により陀去しお生成物DMQ
の単離を容易に行うこずができる。 〔実斜䟋〕 次に本発明を実斜䟋によりさらに詳现に説明す
る。尚、本発明の実斜䟋は本発明の理解をより容
易にするために代衚的なものを揚げたものであ
り、本発明はこれらに限定されるものではない。 尚、䞋蚘の実斜䟋ならびに比范䟋に瀺すDMP
の転化率ならびにDMQの収率は−ゞクロロベ
ンれンを内郚暙準ずするガスクロ分析により求め
た。 実斜䟋 〜 内容積10mlのガラス補容噚䞭にDMP2mmol、
觊媒ずしお塩化第二銅二氎塩0.2mmolず各皮の添
加剀を所定量、ならびに−ヘキサノヌルmlを
溶媒ずしお仕蟌み、反応枩床60℃で酞玠圧を860
mmHgに保ちながら反応させ、酞玠吞収量をガス
ビナレツトで枬定した。酞玠吞収量がほが停止し
たのち、さらに玄〜時間反応させお反応を完
結させ、反応溶液䞭の生成物を分析した。DMP
の転化率ならびに生成したDMQの収率を衚に
瀺す。 比范䟋および 実斜䟋〜ず同様な方法で、添加剀を加えな
いか、添加剀ずしお塩化リチりムを甚いお反応を
行぀た。DMPの転化率ならびに生成したDMQの
収率を衚に瀺す。
[Industrial Application Field] The present invention relates to a method for producing 2,6-dimethyl-p-benzoquinone, which is useful as a synthetic intermediate for functional polymers, pharmaceuticals, and the like. More specifically, the present invention uses a catalyst consisting of a combination of a copper compound and various nitrogen compounds in the liquid phase, namely salts of hydroxylamines and inorganic acids or mixtures thereof or mixtures of oximes and inorganic acids, Using an aliphatic alcohol or a mixture of aromatic carbon hydrogen and lower aliphatic alcohol as a solvent, 2,6-dimethylphenol (hereinafter abbreviated as DMP) is efficiently oxidized with oxygen to produce 2,6
The present invention relates to a method for producing -dimethyl-p-benzoquinone (hereinafter abbreviated as DMQ). [Prior art] DMQ is an important substance that is a raw material for functional polymers such as liquid crystal polymers and pharmaceuticals.
At present, a high efficiency synthesis method has not yet been established. Furthermore, many studies have been made on methods for producing benzoquinones by oxidizing alkyl-substituted phenols in one step.
Methods using oxidizing agents such as hypohalous acid (Japanese Patent Publication No. 60-81135) and hydrogen peroxide (Eur. Pat. Appl. 107176) have been proposed. However, even these methods have problems in terms of generation of harmful gases, use of expensive oxidizing agents, and generation of by-products. For these reasons, methods using oxygen as an oxidizing agent have been studied, and various catalyst systems for this oxidation reaction have been proposed. Although it has high activity, it has the disadvantage that the catalyst life is extremely short.
In addition, in the method using copper halide as a catalyst, the reaction rate,
Although high values for both selectivity and selectivity have been obtained, there are various fundamental drawbacks that need to be resolved. For example, in the method of oxidizing phenols using a copper salt in a nitrile or tertiary amide solvent (Japanese Patent Application Laid-open No. 49-36641),
The yield of benzoquinones is about 75%, and other by-products such as polyphenylene oxide are generated, and the benzoquinone must be separated from polymers that are difficult to process, so it cannot be said to be an efficient manufacturing method. Method for oxidizing phenols in an organic solvent in the presence of a catalyst consisting of copper and halogen ions (Japanese Patent Publication No. 53-17585)
No.) is an excellent method in terms of high yield, but
Since the activity of the catalyst is extremely low, it is necessary to carry out the reaction for a long time using approximately the same molar amount of catalyst as the phenols, and furthermore, this large amount of catalyst must be recycled, resulting in high utility consumption. It has fatal flaws such as: In order to improve these drawbacks, several patents (for example, JP-A No. 50-93931, JP-A No. 59-225137, or JP-A No. 63-280040 have been published regarding phenol oxidation methods using copper and halogen catalysts). (No.), but all of them only show methods to facilitate the cyclical use of catalysts; the reaction rate itself is small, and there is no evidence of improvement in the fundamental problem of catalyst activity itself. It is not allowed. [Problems to be solved by the invention] Therefore, the present inventors oxidized DMP with oxygen.
As a result of intensive research on oxidation catalysts and oxidation reaction solvents for producing DMQ, we have found that copper compounds and various nitrogen compounds, i.e., salts of hydroxylamines and inorganic acids, or mixtures thereof, oximes, or oximes and inorganic A high yield can be achieved by using a catalyst consisting of a mixture with an acid and a mixture of a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms as a solvent. The inventors discovered that the desired DMQ could be produced at a relatively low rate, and based on this knowledge, the present invention was accomplished. [Means for solving the problem] That is, the present invention oxidizes DMP with oxygen.
In producing DMQ, a catalyst consisting of a copper compound and various nitrogen compounds, i.e., a salt of hydroxylamine and an inorganic acid or a mixture thereof, or a combination of oximes or a mixture of an oxime and an inorganic acid is used, and a solvent is used. carbon number 1~
The present invention provides a method for producing DMQ, characterized in that a mixture of a lower aliphatic alcohol having 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms is used. In the present invention, DMP is dissolved in a mixed solvent of a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms, and molecular oxygen and a catalytic amount of a copper compound and This is easily achieved by simple stirring at room temperature to 200°C in the presence of various nitrogen compounds, i.e., salts of hydroxylamines and inorganic acids or mixtures thereof, or oximes or mixtures of oximes and inorganic acids. This is a simple and safe oxidation method. In the present invention, in order to oxidize DMP, molecular oxygen is used as an oxidizing agent, and a copper compound and various nitrogen compounds are used as catalysts, i.e., salts of hydroxylamines and inorganic acids, or mixtures thereof, or oximes or oximes and inorganic acids. A combination of mixtures of As the molecular oxygen source, either pure oxygen gas or air may be used, and it is effective in the range of normal pressure to 30 kg/cm 2 . The copper compound used as a catalyst component may be an inorganic salt, an organic salt, etc., and is not particularly limited, but chlorides such as cuprous chloride and cupric chloride show particularly good reaction results. Hydroxylamines, which are nitrogen compounds used as other components of the catalyst, include hydroxylamine itself, N,N-dialkylhydroxylamines such as N,N-dimethylhydroxylamine, and N-dialkylhydroxylamines such as N-methylhydroxylamine. -alkylhydroxylamines,
Various hydroxylamine derivatives such as O-alkylhydroxylamines such as O-methylhydroxylamine can be used, but in particular hydroxylamine, hydroxyurea or low molecular weight N,N-dialkylhydroxylamines have shown good reaction results. show. Regarding oximes, acetone, dialkyl ketones such as methyl ethyl ketone and diethyl ketone, cyclic ketones such as cyclohexanone and cyclooctanone, acetophenone,
Any ketones such as aromatic ketones such as propiophenone, diketones such as diacetyl, acetylacetone, cyclic diketones such as dimedone, aliphatic aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, phenyl acetaldehyde, etc. Oximes of any of the aromatic aldehydes can be used, but oximes with relatively low molecular weights such as acetaldoxime, benzaldoxime, acetone oxime, and 2-butanone oxime have particularly good reaction results. give. Also,
When using the salts with these inorganic acids, various inorganic acids such as sulfuric acid and halogen acid can be used and are not particularly limited, but hydrochloric acid or sulfuric acid gives relatively good results. Addition of this inorganic acid is not essential, and sufficient catalytic activity can be obtained with a system of copper compound and oximes, but catalytic activity is often improved by further adding an inorganic acid. Furthermore, it is not necessary to prepare and use a mixture of hydroxylamines, oximes, amines, and inorganic acids in advance, and they may be added separately, and in either case, there are no particular restrictions on the composition ratio of each. However, a range of 0.2 to 5 moles of inorganic acid per mole of hydroxylamines and oximes gives good reaction results. There is no particular restriction on the amount of hydroxylamines and oximes to be used with respect to the copper compound, but if it is too little or too much, the reaction rate will be low, so in any case, it should be in the range of 0.3 to 3 mol per 1 mol of the copper compound. preferable. There is no particular limit to the amount of the catalyst obtained in this way, but if it is too small, the reaction rate will be low, and if it is too large, problems will arise with separation after the reaction, so the amount of copper compound should be 0.01 per mole of DMP. The use of ˜0.1 molar amounts gives favorable reaction results. In the method of the present invention, as for the solvent used in the reaction, lower aliphatic alcohols having 1 to 8 carbon atoms include methanol, ethanol, 1-
Propanol, isopropanol, 1-butanol, 2-butanol, tert-butanol, 1-amyl alcohol, 2-amyl alcohol, 3-amyl alcohol, sec-amyl alcohol, tert
-amyl alcohol, 1-hexanol, 1-octanol, 2-octanol, etc., including but not limited to, tert-butanol,
Tertiary alcohols such as tert-amyl alcohol give favorable results. When using a mixed solvent of aromatic hydrocarbons and lower aliphatic alcohols having 1 to 8 carbon atoms, there are no particular restrictions on the aromatic hydrocarbons; Those that are stable against oxidation are preferred. At this time, a mixture of one or more of the above-mentioned lower aliphatic alcohols having 1 to 8 carbon atoms and one or more aromatic hydrocarbons is used as a solvent. These solvents have excellent effects on dissolving copper compounds as catalysts, hydroxylamines, oximes, and/or inorganic acids, DMP as raw materials, and oxygen, and can dissolve the desired DMQ simply by bringing them into contact. Generate extremely effectively. The composition ratio of aromatic hydrocarbons and lower aliphatic alcohols cannot be determined unconditionally as it varies depending on the combination, but the volume ratio of lower aliphatic alcohols to aromatic hydrocarbons is
It is preferably 0.2 to 1.5, particularly preferably 0.25 to 0.8. The above catalysts can be used by directly dissolving them in these mixed solvents, but they can also be used as an aqueous solution. In addition, as the aliphatic alcohol having 1 to 8 carbon atoms used in this case, there is no particular problem as long as it has low water solubility, and butanol, pentanol, hexanol, heptanol, octanol, etc. containing various isomers can be used. be. In either case, dissolved in the solvent
In order to efficiently bring DMP into contact with the catalyst dissolved in the aqueous phase and oxygen in the gas phase, it is necessary to provide an efficient stirring device and aeration device. The temperature of the reaction in the method of the invention is room temperature to 20°C
It can be carried out at temperatures around 80°C, but if the temperature is too low, the reaction rate will be slow, while if it is too high, there will be a lot of solvent loss or side reactions.
Preferably, the temperature is within the range of .degree. The reaction time is
Although it depends on the reaction temperature, oxygen pressure, and amount of catalyst used, 1 to 10 hours is usually sufficient. [Effects of the Invention] According to the method of the present invention, lower fats having 1 to 8 carbon atoms are produced using copper compounds such as cupric chloride and nitrogen compounds such as hydroxylamine and acetone oxime, which are inexpensive commercially available general reagents, as catalysts. When the reaction is carried out using a mixed liquid formed with a preferable composition of a group alcohol or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms as a solvent, and a catalyst as an aqueous solution, the above-mentioned mixed liquid or a lower aliphatic alcohol having 1 to 8 carbon atoms is used as the solvent.
In addition to being able to obtain DMQ in one step by oxidizing DMP with molecular oxygen using an aliphatic alcohol with relatively low water solubility in No. 8 as a solvent, and with an extremely high reaction rate and yield, This method is suitable as an industrial method for producing DMQ because it eliminates the need to circulate a large amount of catalyst, which was a drawback of the conventional method. Since the activity of the catalyst used in the present invention is extremely high, it is sufficient to use a small amount of catalyst, and it is not necessarily necessary to reuse the catalyst by circulation, but if this is necessary, the catalyst can be used as an aqueous solution. Can be used repeatedly. in this case,
During the reaction, under stirring, in a mixed solvent system, due to the lipophilicity of aromatic hydrocarbons and the hydrophilicity of lower aliphatic alcohols, aliphatic alcohols, which are poorly water-soluble, are mixed with the lipophilicity of long-chain alkyl groups in the solvent. Due to the hydrophilic nature of the hydroxyl group, it forms a good suspension state with the catalyst in the aqueous phase, allowing the three-phase reaction of aqueous phase - organic phase - gas phase to proceed smoothly. However, if stirring is stopped after the reaction is completed, the organic phase and the aqueous phase, and the catalyst in the aqueous phase can be separated and recovered for reuse. At the same time, the solvent can be removed from the organic phase by means such as distillation to produce the product DMQ.
can be easily isolated. [Example] Next, the present invention will be explained in more detail with reference to Examples. Note that the examples of the present invention are representative examples for easier understanding of the present invention, and the present invention is not limited to these examples. In addition, the DMP shown in the following examples and comparative examples
The conversion rate of and the yield of DMQ were determined by gas chromatography using o-dichlorobenzene as an internal standard. Examples 1 to 7 2 mmol of DMP in a glass container with an internal volume of 10 ml,
0.2 mmol of cupric chloride dihydrate as a catalyst, various additives in predetermined amounts, and 2 ml of n-hexanol as a solvent were charged, and the reaction temperature was 60°C and the oxygen pressure was 860°C.
The reaction was carried out while maintaining the temperature at mmHg, and the amount of oxygen absorbed was measured using a gas filter. After the amount of oxygen absorption had almost stopped, the reaction was continued for about 1 to 2 hours to complete the reaction, and the products in the reaction solution were analyzed. DMP
Table 1 shows the conversion rate of and the yield of DMQ produced. Comparative Examples 1 and 2 The reaction was carried out in the same manner as in Examples 1 to 7 without adding an additive or using lithium chloride as an additive. Table 1 shows the conversion rate of DMP and the yield of DMQ produced.

【衚】 尚、衚においお添加剀に関しお䜿甚した略号
は䞋蚘の化合物を瀺す。 HAHヒドロキシルアミン塩酞塩NH2OH.
HClHASヒドロキシルアミン硫酞塩NH2
OH2H2SO4AOアセトンオキシム
CH32NOHおよびHClずしおは36塩酞
氎溶液を甚いた。 実斜䟋 〜10 実斜䟋〜においお、塩化第二銅二氎塩を
0.1mmol、溶媒ずしお第䞉玚ブタノヌルmlを甚
い、反応枩床40℃で実斜䟋〜ず同様に反応を
行぀た。DMPの転化率ならびに生成したDMQの
収率を衚に瀺す。 比范䟋 〜 実斜䟋〜10ず同様な方法で、添加剀を加えな
いか、添加剀ずしお塩化リチりムあるいはゞ゚チ
ルアミン塩酞塩を甚いおに反応を行぀た。DMP
の転化率ならびに生成したDMQの収率を衚に
瀺す。
[Table] The abbreviations used for additives in Table 1 indicate the following compounds. HAH = Hydroxylamine hydrochloride (NH 2 OH.
HCl), HAS=hydroxylamine sulfate ( NH2
OH) 2 . H 2 SO 4 ), AO = acetone oxime (CH 3 ) 2 C = NOH) and 36% hydrochloric acid aqueous solution was used as HCl. Examples 8 to 10 In Examples 1 to 7, cupric chloride dihydrate was
The reaction was carried out in the same manner as in Examples 1 to 7 using 0.1 mmol and 2 ml of tertiary butanol as a solvent at a reaction temperature of 40°C. Table 2 shows the conversion rate of DMP and the yield of DMQ produced. Comparative Examples 3 to 4 Reactions were carried out in the same manner as in Examples 8 to 10 without adding any additives or using lithium chloride or diethylamine hydrochloride as additives. DMP
Table 2 shows the conversion rate of and the yield of DMQ produced.

【衚】 尚、衚においお、転化剀に関しお䜿甚した略
号は䞋蚘の化合物を瀺す。 HAHヒドロキシルアミン塩酞塩NH2OH.
HClHASヒドロキシルアミン硫酞塩NH2
OH2H2SO4AOアセトンオキシム
CH32NOHおよびHClずしおは36塩
酞氎溶液を甚いた。 実斜䟋 11〜13 実斜䟋においお、溶媒ずしお第䞉玚ブタノヌ
ルの代わりに皮々の脂肪族アルコヌルを甚いお、
実斜䟋ず同様に反応を行぀た。DMPの転化率
ならびに生成したDMQの収率を衚に瀺す。
[Table] In Table 2, the abbreviations used for converting agents indicate the following compounds. HAH = Hydroxylamine hydrochloride (NH 2 OH.
HCl), HAS=hydroxylamine sulfate ( NH2
OH) 2 . H 2 SO 4 ), AO=acetone oxime ((CH 3 ) 2 C=NOH), and 36% hydrochloric acid aqueous solution was used as HCl. Examples 11-13 In Example 9, using various aliphatic alcohols instead of tertiary butanol as the solvent,
The reaction was carried out in the same manner as in Example 9. Table 3 shows the conversion rate of DMP and the yield of DMQ produced.

【衚】 尚、衚においお、溶媒に関しお䜿甚した略号
は䞋蚘の化合物を瀺す。 −PrOHむ゜プロパノヌル、−BuOH
む゜ブチルアルコヌルおよび−PeOH−ペ
ンタノヌルである。 実斜䟋 14〜19 実斜䟋10においお、溶媒ずしお第䞉玚ブタノヌ
ルの代わりに皮々の脂肪族アルコヌル、あるいは
脂肪族アルコヌルず芳銙族炭化氎玠の混合溶媒を
甚いお、実斜䟋10ず同様に反応を行぀た。DMP
の転化率ならびに生成したDMQの収率を衚に
瀺す。
[Table] In Table 3, the abbreviations used for solvents indicate the following compounds. i-PrOH=isopropanol, i-BuOH=
Isobutyl alcohol and 2-PeOH=2-pentanol. Examples 14 to 19 In Example 10, the reaction was carried out in the same manner as in Example 10, using various aliphatic alcohols or a mixed solvent of an aliphatic alcohol and an aromatic hydrocarbon instead of tertiary butanol as the solvent. Ivy. DMP
Table 4 shows the conversion rate of and the yield of DMQ produced.

【衚】【table】

【衚】 実斜䟋 20 実斜䟋においお、溶媒ずしお第䞉玚ブタノヌ
ルの代わりにむ゜プロパノヌル、塩化第二銅二氎
塩を0.2mmolを甚いお、実斜䟋ず同様な方法で
時間反応を行぀たずころ、DMP転化率96.2、
DMQ収率64.2の倀が埗られた。 実斜䟋 21〜23 実斜䟋20においお、添加剀ずしおヒドロキシル
アミン塩酞塩0.2mmolの代わりにヒドロキシルア
ミン硫酞塩0.1mmol、溶媒ずしお皮々の脂肪族ア
ルコヌル、あるいは脂肪族アルコヌルず芳銙族炭
化氎玠の混合溶媒を甚いお、実斜䟋20ず同様に反
応を行぀た。DMPの転化率ならびに生成した
DMQの収率を衚に瀺す。
[Table] Example 20 In Example 9, a reaction was carried out for 2 hours in the same manner as in Example 9, using isopropanol and 0.2 mmol of cupric chloride dihydrate as the solvent instead of tertiary butanol. However, the DMP conversion rate was 96.2%.
A value of 64.2% DMQ yield was obtained. Examples 21 to 23 In Example 20, 0.1 mmol of hydroxylamine sulfate was used instead of 0.2 mmol of hydroxylamine hydrochloride as an additive, and various aliphatic alcohols or a mixed solvent of an aliphatic alcohol and an aromatic hydrocarbon were used as a solvent. The reaction was carried out in the same manner as in Example 20. Conversion rate of DMP and produced
The yield of DMQ is shown in Table 5.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  −ゞメチルプノヌルを酞玠酞化しお
−ゞメチル−−ベンゟキノンを補造する
にあたり、銅化合物および皮々の窒玠化合物、即
ちヒドロキシルアミン類ず無機酞ずの塩もしくは
それらの混合物、あるいはオキシム類たたはオキ
シム類ず無機酞ずの混合物の組合せよりなる觊媒
を甚いるこずを特城ずする−ゞメチル−
−ベンゟキノンの補造方法。  −ゞメチルプノヌルを銅化合物およ
び皮々の窒玠化合物、即ちヒドロキシルアミン類
ず無機酞ずの塩もしくはそれらの混合物あるいは
オキシム類たたはオキシム類ず無機酞ずの混合物
の組合せよりなる觊媒により、酞玠酞化しお
−ゞメチル−−ベンゟキノンの補造する方法
においお、溶媒ずしお炭玠数〜の䜎玚脂肪族
アルコヌルもしくは芳銙族炭化氎玠および炭玠数
〜の䜎玚脂肪族アルコヌルの混合液を䜿甚す
るこずを特城ずする−ゞメチル−−ベン
ゟキノンの補造方法。
[Claims] 1. In producing 2,6-dimethyl-p-benzoquinone by oxygen-oxidizing 2,6-dimethylphenol, salts of copper compounds and various nitrogen compounds, namely hydroxylamines, and inorganic acids are used. 2,6-dimethyl-p, characterized in that it uses a catalyst consisting of a mixture thereof, or a combination of oximes or a mixture of an oxime and an inorganic acid.
- A method for producing benzoquinone. 2 2,6-dimethylphenol is converted to oxygen using a catalyst consisting of a copper compound and various nitrogen compounds, i.e., salts of hydroxylamines and inorganic acids, or mixtures thereof, or combinations of oximes or mixtures of oximes and inorganic acids. Oxidize 2,
A method for producing 6-dimethyl-p-benzoquinone, characterized in that a mixture of a lower aliphatic alcohol having 1 to 8 carbon atoms or an aromatic hydrocarbon and a lower aliphatic alcohol having 1 to 8 carbon atoms is used as a solvent. A method for producing 2,6-dimethyl-p-benzoquinone.
JP1217065A 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone Granted JPH0381249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217065A JPH0381249A (en) 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217065A JPH0381249A (en) 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone

Publications (2)

Publication Number Publication Date
JPH0381249A JPH0381249A (en) 1991-04-05
JPH0529384B2 true JPH0529384B2 (en) 1993-04-30

Family

ID=16698284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217065A Granted JPH0381249A (en) 1989-08-23 1989-08-23 Production of 2,6-dimethyl-p-benzoquinone

Country Status (1)

Country Link
JP (1) JPH0381249A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3140273A1 (en) * 2014-05-09 2017-03-15 DSM IP Assets B.V. Process for the production of 2,6-dimethylbenzoquinone

Also Published As

Publication number Publication date
JPH0381249A (en) 1991-04-05

Similar Documents

Publication Publication Date Title
US6664423B2 (en) Two-phase ammoximation
US3932518A (en) Methylation of cyclohexanone with simultaneous dehydrogenation
JPH0451536B2 (en)
JPH0529384B2 (en)
KR100569560B1 (en) Preparation of n-phenyl-benzoquinoneimine from hydroxydiphenylamines
JPS6049173B2 (en) Oxidation method of phenol
JPH0529378B2 (en)
EP0369823B1 (en) Method for the preparation of 2,3,5-trimethylbenzoquinone
CN112028774B (en) Synthetic method of benzoate ketone compound
EP1027327B1 (en) Formation of quinonediimines from phenylenediamines by catalytic oxidation
JP4267815B2 (en) Process for producing quinonediimine from phenylenediamine using hydrogen peroxide and catalyst
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
JPH0529382B2 (en)
JPH02264739A (en) Production of 2,3,5-trimethyklbenzoquinone
TWI286540B (en) Method and composition for hydroxylation of aromatic substrates
JP3218044B2 (en) Method for producing cyclohexanol and cyclohexanone
EP0038708B1 (en) Process for producing benzophenone-azines
EP0170520A2 (en) Process for the production of cinnamic acid
JPH0477447A (en) Production of 2,6-dimethyl-4-alkoxymethylphenols
JP2000072738A (en) Production of oxime
JPS6042166B2 (en) Method for recovering ammonia from benzophenone imines
JPS6337781B2 (en)
JPH0529339B2 (en)
MXPA00006983A (en) Preparation of n-phenyl-benzoquinoneimine from hydroxydiphenylamines
JPH0142251B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term