JPH0380802B2 - - Google Patents

Info

Publication number
JPH0380802B2
JPH0380802B2 JP24852985A JP24852985A JPH0380802B2 JP H0380802 B2 JPH0380802 B2 JP H0380802B2 JP 24852985 A JP24852985 A JP 24852985A JP 24852985 A JP24852985 A JP 24852985A JP H0380802 B2 JPH0380802 B2 JP H0380802B2
Authority
JP
Japan
Prior art keywords
polymerization
polymerization initiator
particle size
styrene
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24852985A
Other languages
Japanese (ja)
Other versions
JPS62109807A (en
Inventor
Hiroshi Yoshida
Hiroshi Matsui
Naoto Taga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP24852985A priority Critical patent/JPS62109807A/en
Publication of JPS62109807A publication Critical patent/JPS62109807A/en
Publication of JPH0380802B2 publication Critical patent/JPH0380802B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は粒度分布の狭いスチレン系重合体粒子
の製造方法に関するものである。 〔従来技術〕 従来、スチレン系重合体粒子は、一般的にはス
チレン単量体を水中に懸濁させ、重合開始剤およ
び懸濁安定剤の存在下に懸濁重合して製造されて
いるが、この懸濁重合により得た粒子の粒度分布
は、撹拌条件や重合温度、時間、スチレン単量体
や重合開始剤の添加方法等を種々選択してもなか
なか粒径の揃つたものを得ることが難しく、生成
スチレン重合体が小さい粒子から大きな粒子に至
るまで連続した広い粒度分布をもつことは避け難
いことであるとされてきた。そしてかかる広い粒
度分布をもつスチレン系重合体粒子は次の欠点が
ある。 (1) 重合体粒子を押出成形する際、小さい径の粒
子と大きい径の粒子が、ホツパー等の原料供給
部分で分離してスクリユーへの喰い込みが悪く
押出量変動の原因となる。 (1) 懸濁重合中または懸濁重合後、揮発性膨脹剤
を粒子に含浸させて得られる発泡性ポリスチレ
ン粒子は、用途により大小の粒子の使い分けが
されるため、それぞれにその用途に適した発泡
剤種類、量が選択されることが好ましいが、こ
のような粒度分布の広いものに直接含浸する場
合には同一の条件下に含浸することとなり、膨
脹力の異なつた発泡性ポリスチレン粒子が得ら
れるので、この発泡性粒子を用いて型物成形し
た発泡成型体は、重量が不揃いのものとなつた
り、強度が不均一となる欠点がある。 かかる欠点を回避する為にも粒度分布の狭い均
一な粒径の粒子の製造方法が望まれるのである。 この従来の懸濁重合法の欠点を改良する方法と
して、予じめ篩分けしたスチレン系重合体粒子を
水性懸濁させ、この懸濁系に重合開始剤を溶解し
たスチレン単量体を定量的に添加し、所望の粒子
径まで懸濁重合により成長させて粒度の揃つたス
チレン系重合体粒子を製造する方法が提案されて
いる。(特公昭46−2987号)。 〔発明が解決しようとする問題点〕 この方法は従前の方法と比較してかなり粒度分
布の狭いスチレン系重合体粒子を製造することが
可能であるが、目的とする粒径外の微細粒子が8
〜13重量%製造されるという欠点がある。 本発明はこれら従来の方法の欠点を改良する目
的で微細粒子の生成量が少なく、また理論的に得
られる目的粒分の量が98重量%以上の粒度分布の
狭いスチレン系重合体粒子を製造する方法を提供
するものである。 〔問題点を解決する具体的手段〕 本発明は、懸濁重合によつて得られたスチレン
系重合体粒子を篩分けすることによつて粒径が平
均粒径の±20%の範囲になるように揃え、その粒
子を水中に懸濁せしめ、10時間の半減期を得るた
めの分解温度が50〜80℃である重合開始剤を、後
で水性懸濁系に加えるスチレン系単量体の重合に
必要な量の1/2以上を水中に添加し、この水性懸
濁系にスチレン単量体を主成分とし10時間の半減
期を得るための分解温度が80℃を越え120℃以下
である重合開始剤ならびに前述の分解温度が50〜
80℃である重合開始剤の残余を含むスチレン系単
量体を連続的もしくは断続的に添加し、ついで前
記スチレン単量体を重合せしめることを特徴とす
る粒径の揃つたスチレン系重合体粒子の製造方法
を提供するものである。 本発明に於て用いられる予じめ水中に添加され
るスチレン系重合体粒子は、一般に懸濁重合によ
つて得られた樹脂粒子を使用するものであるが、
その樹脂粒子は篩分けによりあらかじめ粒径を必
要な範囲に揃えておく必要がある。粒径を揃える
場合の範囲は、平均粒径の±20%になるように篩
い分けされ、揃えられる。本発明に於て得られる
最終目的のスチレン系重合体粒子の粒径は、予じ
め水中に添加される篩分けされた粒子の粒子径、
粒子量とスチレン単量体との比で決定されるが、
使用する粒子の粒径範囲が平均粒径の±20%以上
の場合は生成粒子の粒度分布も広いものとなる。 次に本発明に於て、用いる重合開始剤として
は、スチレン系単量体の重合開始前に水性懸濁液
中に添加する低分解温度のものと、後から水性懸
濁系に添加するスチレン系単量体に溶解して用い
る高分解温度のものとがある。 重合開始前に懸濁液中に添加する重合開始剤
は、10時間の半減期を得るための分解温度が50〜
80℃のラジカル重合開始剤であり、後から添加す
るスチレン系単量体の重合に必要な量の1/2以上、
好ましくは全量を水中に添加する。かかる重合開
始剤としては、例えば、ラウロイルパーオキサイ
ド(62℃)、アゾビスイソブチルニトリル(63
℃)、t−ブチルパーオキシ−2−エチルヘキサ
ノエート(72.5℃)、ベンゾイルパーオキサイド
(74℃)等のスチレン単量体に溶解可能なもので
ある。尚、重合開始前に水中に添加する低分解温
度の重合開始剤は液体、粉体のどちらでも可能で
あるが、液体の場合はスチレン重合体粒子を溶解
し凝結粒子発生の原因となるので、乳化状態又は
撹拌下で添加するのが好ましい。また粉体の場合
は以上の様な操作の必要がなく、本発明に於ては
粉体のものを用いるのが好ましい。 次に、水性懸濁系に後から添加するスチレン系
単量体に溶解して用いる重合開始剤としては、10
時間の半減期を得るための分解温度が80℃を越え
120℃以下のラジカル重合開始剤であり、具体的
には例えばシクロヘキサノンパーオキサイド(97
℃)、t−ブチルパーオキシベンゾエート(104
℃)、ジクミールパーオキサイド(117℃)等のス
チレン単量体に溶解可能なものである。 但し、予じめ水中に添加された前述の10時間の
半減期を得るための分解温度が50〜80℃である重
合開始剤が全量でないときは、この際、残余を高
分解温度の重合開始剤とともにスチレン系単量体
に溶解して水性懸濁系に添加する。 重合開始剤は低温度分解型のもの、高温度分解
型のものいずれも併用して用いてもよい。 重合開始剤の添加量は、10時間の半減期を得る
ための分解温度が50〜80℃の重合開始剤の場合、
添加するスチレン系単量体又はスチレンを主成分
とするスチレン系単量体混合物に対して0.01〜
1.0重量%、好ましくは0.1〜0.6重量%である。ま
た、10時間の半減期を得るための分解温度が80℃
を越え120℃以下の重合開始剤は、添加するスチ
レン系単量体又はスチレンを主成分とするスチレ
ン系単量体混合物に対して0.01〜1.0重量%、好
ましくは0.05〜0.5重量%である。 本発明に於て重合開始剤の添加方法は、重合開
始剤のうち10時間の半減期を得るための分解温度
が50〜80℃である重合開始剤を後で添加するスチ
レン系単量体の重合に必要な量の1/2以上、好ま
しくは全量を水中、またはスチレン系重合体粒子
の懸濁水中に重合開始前に添加する。更に、上記
低温度分解型の重合開始剤の残りの量及び10時間
の半減期を得るための分解温度が80℃を越え120
℃以下である高温度分解型の重合開始剤を、後で
添加するスチレン系単量体に溶解して水性懸濁系
に添加して用いるものである。この場合、水中に
前添加する低温度分解型の重合開始剤の量をスチ
レン系単量体の重合に必要な量の1/2より少くす
ると微細粒子発生の原因となる。 本発明に於て用いるスチレン系単量体として
は、スチレン又はスチレンを主成分とする混合
物、例えばスチレンとα−メチルスチレン、ジビ
ニルベンゼン、アクリロニトリル、炭素数が1〜
8のアルコールとアクリル酸又はメタクリル酸と
を反応させて得られるエステル、例えばメチルメ
タクリレート、エチルアクリレート等、モノメチ
ルマレエート、モノメチルフマレート、ジメチル
マレエート、モノエチルイタコネート等の単量体
との混合物でスチレンを主成分とする単量体混合
物が用いられる。 なお本発明に於て、あらかじめ粒径が揃えられ
たスチレン系重合体粒子を水中に懸濁せしめるの
に用いられる懸濁安定剤としては、ポリビニルア
ルコール、ポリビニルピロリドン、ゼラチン、カ
ルボキシメチルセルロース、ヒドロキシアルキル
セルロース等の有機系懸濁安定剤、リン酸又は炭
酸のCa塩やMg塩等の無機系懸濁安定剤が挙げら
れる。中でも無機系のものが好ましく、とりわけ
第三燐酸カルシウムと安定助剤のアニオン性界面
活性剤のドデシルベンゼンスルホン酸ソーダを併
用する場合がよい。 更に、本発明に於て製造された粒径の揃つたス
チレン系重合体粒子に揮発性膨脹剤を含浸せし
め、発泡性スチレン系重合体粒子を製造すること
も可能である。含浸せしめる揮発性膨脹剤として
は、例えばプロパン、ブタン、ペンタン等の脂肪
族炭化水素;シクロブタン、シクロペンタン等の
脂環族炭化水素;メチルクロライド、ジクロルジ
フルオロメタ等のハロゲン化炭化水素が挙げられ
る。 これら揮発性膨脹剤は得られるスチレン系重合
体粒子の5〜20重量%の量用いる。 実施例 1 3の重合容器内に、純水800g、第三燐酸カ
ルシウム4.0g及びドデシルベンゼンスルホン酸
ソーダの1%水溶液1.0g、0.42〜0.5mmに篩分け
たスチレン重合体粒子(平均粒径0.46mm)75g及
びベンゾイルパーオキサイド(分解温度74℃)
3.76gの全量を加え、400rpmで撹拌して均一に
分散させ水性懸濁液を得た。 次に、この水性懸濁液を85℃まで昇温し、85℃
で9時間保ち、この保持時間の間に、t−ブチル
パーオキシベンゾエート(分解温度117℃)1.4g
を678gのスチレンに溶解した溶液を連続的に1
時間当り75gずつ定量的に9時間かけて添加し、
次に、85℃から120℃まで1.5時間かけて昇温した
後、更に120℃で2時間加熱して重合を完了させ
た。 冷却後、水を分離、乾燥して得られたスチレン
重合体粒子の粒度分布を第1表に示す。 比較例 1 3の重合容器内に、純水800g、第三燐酸カ
ルシウム4.0g、ドデシルベンゼンスルホン酸ソ
ーダの1%水溶液1.0gおよび実施例1で用いた
0.42〜0.5mmに篩分けたスチレン重合体粒子75g
を加え、400rpmで撹拌して均一に分散させ水性
懸濁液を得た。 次に、この水性懸濁液を85℃まで昇温し、85℃
で9時間保ち、この保持時間の間に、ベンゾイル
パーオキサイド3.76g及びt−ブチルパーオキシ
ベンゾエート1.4gを678gのスチレンに溶解した
溶液を連続的に1時間当り75gずつ定量的に9時
間かけて添加し、実施例1と同様に重合させた。 得られたスチレン重合体粒子の粒度分布を第1
表に示す。 このものは、実施例1のものと比べて微細粒子
の発生量が非常に多い。 実施例 2 実施例1と同様にスチレン重合体粒子を懸濁さ
せた後、添加すべきベンゾイルパーオキサイドの
1/2の量の1.88gを懸濁液中に添加し、残りのベ
ンゾイルパーオキサイド1.88gをt−ブチルパー
オキシベンゾエート1.4gとともにスチレンに溶
解して、実施例1と同様に重合させた。得られた
スチレン重合体粒子の粒度分布を第1表に示す。 比較例 2 実施例1と同様にスチレン重合体粒子を懸濁さ
せた後、添加すべきベンゾイルパーオキサイドの
40%の量の1.50gを懸濁液中に添加し、残りのベ
ンゾイルパーオキサイド2.26gをt−ブチルパー
オキシベンゾエート1.4gとともにスチレンに溶
解して、実施例1と同様に重合させた。 得られたスチレン重合体粒子の粒度分布を第1
表に示す。 実施例 3 3の重合容器内に、純水800g、第三燐酸カ
ルシウム4.0g、ドデシルベンゼンスルホン酸ソ
ーダの1%水溶液1.0g、実施例1で用いた0.42
〜0.5mmに篩分けたスチレン重合体粒子125g及び
ベンゾイルパーオキサイド2.50gの全量を加え、
400rpmで撹拌して均一に分散させて水性懸濁液
を得た。 次に、この懸濁液を85℃まで昇温し、85℃で5
時間保ち、この保持時間の間にt−ブチルパーオ
キシベンゾエート1.25gを625gのスチレン単量
体に溶解した溶液を連続的に1時間当り125gず
つ定量的に5時間かけて水性懸濁液に添加し、次
に85℃から120℃まで1.5時間かけて昇温した後、
更に120℃で2時間加熱して重合を完了させた。 冷却後、水を分離、乾燥して得られたスチレン
重合体粒子の粒度分布を第1表に示す。 比較例 3 3の重合容器内に、純水800g、第三燐酸カ
ルシウム4.0g、ドデシルベンゼンスルホン酸ソ
ーダの1%水溶液1.0g、及び実施例1で用いた
0.42〜0.5mmに篩分けたスチレン重合体粒子125g
を加え、400rpmで撹拌して均一に分散させて水
性懸濁液を得た。 次に、この懸濁液を85℃まで昇温し、85℃で5
時間保ち、この保持時間の間にベンゾイルパーオ
キサイド2.50gおよびt−ブチルパーオキシベン
ゾエート1.25gを625gのスチレン単量体に溶解
した溶液を連続的に1時間当り125gずつ定量的
に5時間かけて水性懸濁液に添加し、実施例1と
同様に重合させた。 得られたスチレン重合体粒子の粒度分布を第1
表に示す。 実施例 4 重合開始前に懸濁液中に前添加する重合開始剤
としてベンゾイルパーオキサイドの代りにアゾビ
スイソブチルニトリルを用いる他は実施例1と同
様にして得たスチレン重合体粒子の粒度分布を第
2表に示す。 実施例 5 実施例1において、水性懸濁液に添加するスチ
レンの代りに、スチレン80重量%とアクリロニト
リル20重量%の混合物を用いる他は同様にして、
スチレン・アクリロニトリル共重合体粒子を得
た。 得た粒子の粒度分布を第2表に示す。 実施例 6 実施例1と同様に、85℃でスチレンの添加を終
了後、スチレン重合体に対して12%のイソブタン
を含浸せしめ、発泡性スチレン重合体粒子を製造
した場合の実施例の結果を第2表に示す。 実施例 7 先に懸濁するスチレン重合体粒子として、粒径
が0.71〜0.84mmである粒子(平均粒径0.78mm)を
用いて実施例3と同様の方法で重合した場合の実
施例の結果を第2表に示す。
[Industrial Application Field] The present invention relates to a method for producing styrenic polymer particles having a narrow particle size distribution. [Prior Art] Conventionally, styrenic polymer particles have generally been produced by suspending styrene monomer in water and carrying out suspension polymerization in the presence of a polymerization initiator and suspension stabilizer. The particle size distribution of the particles obtained by this suspension polymerization is difficult to obtain even if various stirring conditions, polymerization temperature, time, addition method of styrene monomer and polymerization initiator, etc. are selected. It has been considered that it is difficult to achieve this, and that it is unavoidable that the produced styrene polymer has a continuous and wide particle size distribution ranging from small particles to large particles. Styrenic polymer particles having such a wide particle size distribution have the following drawbacks. (1) When extrusion molding polymer particles, small diameter particles and large diameter particles are separated at a raw material supply part such as a hopper, and are not easily bitten into the screw, causing fluctuations in the extrusion rate. (1) Expandable polystyrene particles obtained by impregnating the particles with a volatile expanding agent during or after suspension polymerization are used in large and small particles depending on the purpose, so each type has a size suitable for the purpose. It is preferable to select the type and amount of the blowing agent, but when directly impregnating materials with such a wide particle size distribution, the impregnation must be carried out under the same conditions, making it difficult to obtain expandable polystyrene particles with different expansion powers. As a result, foam molded products formed using these expandable particles have disadvantages of uneven weight and non-uniform strength. In order to avoid such drawbacks, a method for producing particles with a narrow particle size distribution and a uniform particle size is desired. As a method to improve this drawback of the conventional suspension polymerization method, styrene polymer particles that have been sieved in advance are suspended in water, and styrene monomer with a polymerization initiator dissolved in this suspension system is quantitatively added. A method has been proposed in which styrenic polymer particles with uniform particle size are produced by adding styrenic polymer particles to a polymer and growing the particles to a desired particle size by suspension polymerization. (Special Publication No. 46-2987). [Problems to be solved by the invention] This method makes it possible to produce styrenic polymer particles with a considerably narrower particle size distribution than previous methods, but it is possible to produce styrenic polymer particles with a considerably narrower particle size distribution. 8
The drawback is that it is produced at ~13% by weight. In order to improve these drawbacks of the conventional methods, the present invention produces styrenic polymer particles with a narrow particle size distribution that produces a small amount of fine particles and has a theoretically obtainable target particle amount of 98% by weight or more. This provides a method to do so. [Specific means for solving the problem] The present invention provides a method of sieving styrenic polymer particles obtained by suspension polymerization so that the particle size falls within a range of ±20% of the average particle size. The particles are suspended in water, and a polymerization initiator with a decomposition temperature of 50-80°C to obtain a half-life of 10 hours is added to the aqueous suspension system. Add 1/2 or more of the amount required for polymerization to water, and add styrene monomer as the main component to this aqueous suspension system. Certain polymerization initiators and the aforementioned decomposition temperatures range from 50 to
Styrenic polymer particles with uniform particle size, characterized in that a styrene monomer containing a remainder of a polymerization initiator at 80°C is added continuously or intermittently, and then the styrene monomer is polymerized. The present invention provides a method for manufacturing. The styrenic polymer particles used in the present invention, which are added in advance to water, are generally resin particles obtained by suspension polymerization.
The resin particles must be sieved to have a particle size within a required range in advance. When adjusting the particle size, the particles are sieved to be within ±20% of the average particle size. The particle size of the final target styrenic polymer particles obtained in the present invention is determined by the particle size of the sieved particles added in advance to water,
It is determined by the ratio of particle amount and styrene monomer,
When the particle size range of the particles used is ±20% or more of the average particle size, the particle size distribution of the produced particles will be wide. Next, in the present invention, the polymerization initiator used is one with a low decomposition temperature that is added to the aqueous suspension before the start of polymerization of the styrene monomer, and a styrene initiator that is added to the aqueous suspension afterward. There are those with a high decomposition temperature that are used by dissolving them in system monomers. The polymerization initiator, which is added to the suspension before the start of polymerization, has a decomposition temperature of 50~50 to obtain a half-life of 10 hours.
It is a radical polymerization initiator at 80℃, and it contains more than 1/2 of the amount required for the polymerization of the styrene monomer that will be added later.
Preferably, the entire amount is added in water. Examples of such polymerization initiators include lauroyl peroxide (62°C) and azobisisobutylnitrile (63°C).
), t-butylperoxy-2-ethylhexanoate (72.5°C), benzoyl peroxide (74°C), and other styrene monomers. The polymerization initiator with a low decomposition temperature that is added to water before the start of polymerization can be either liquid or powder, but if it is liquid, it will dissolve the styrene polymer particles and cause the generation of coagulated particles. Preferably, it is added in an emulsified state or under stirring. Further, in the case of powder, the above operations are not necessary, and it is preferable to use powder in the present invention. Next, as a polymerization initiator to be used by dissolving it in the styrene monomer that is added later to the aqueous suspension system, 10
Decomposition temperature exceeds 80℃ to obtain half-life of time
It is a radical polymerization initiator of 120℃ or less, specifically, for example, cyclohexanone peroxide (97
°C), t-butyl peroxybenzoate (104
℃), dicumyl peroxide (117℃) and other styrene monomers. However, if the entire amount of the polymerization initiator, which has a decomposition temperature of 50 to 80°C to obtain the aforementioned 10-hour half-life, is not added in advance to the water, at this time, the remaining amount is used to initiate polymerization at a high decomposition temperature. It is dissolved in a styrene monomer together with the agent and added to an aqueous suspension system. As the polymerization initiator, either a low temperature decomposition type or a high temperature decomposition type may be used in combination. The amount of polymerization initiator added is as follows:
0.01 to 0.01 to the styrenic monomer to be added or the styrenic monomer mixture containing styrene as the main component.
1.0% by weight, preferably 0.1-0.6% by weight. Additionally, the decomposition temperature is 80°C to obtain a half-life of 10 hours.
The polymerization initiator with a temperature exceeding 120° C. or less is 0.01 to 1.0% by weight, preferably 0.05 to 0.5% by weight, based on the styrenic monomer or styrene monomer mixture containing styrene as a main component. In the present invention, the method of adding a polymerization initiator is to add a polymerization initiator whose decomposition temperature is 50 to 80°C to obtain a half-life of 10 hours later. One-half or more of the amount required for polymerization, preferably the entire amount, is added to water or to water in which styrenic polymer particles are suspended before starting polymerization. Furthermore, the remaining amount of the above-mentioned low-temperature decomposition type polymerization initiator and the decomposition temperature to obtain a half-life of 10 hours exceed 80 °C and 120 °C.
A high-temperature decomposition type polymerization initiator having a temperature of 0.degree. In this case, if the amount of the low-temperature decomposition type polymerization initiator that is pre-added to the water is less than 1/2 of the amount required for polymerization of the styrenic monomer, fine particles will be generated. The styrenic monomer used in the present invention includes styrene or a mixture containing styrene as a main component, such as styrene and α-methylstyrene, divinylbenzene, acrylonitrile, and carbon atoms of 1 to 1.
Esters obtained by reacting the alcohol of No. 8 with acrylic acid or methacrylic acid, such as methyl methacrylate, ethyl acrylate, etc., mixtures with monomers such as monomethyl maleate, monomethyl fumarate, dimethyl maleate, monoethyl itaconate, etc. A monomer mixture containing styrene as the main component is used. In the present invention, suspension stabilizers used to suspend styrenic polymer particles whose particle size has been adjusted in advance in water include polyvinyl alcohol, polyvinylpyrrolidone, gelatin, carboxymethyl cellulose, and hydroxyalkyl cellulose. Examples include organic suspension stabilizers such as phosphoric acid or carbonate, and inorganic suspension stabilizers such as phosphoric acid or carbonate Ca salt or Mg salt. Among them, inorganic ones are preferable, and in particular, it is preferable to use a combination of tricalcium phosphate and anionic surfactant sodium dodecylbenzenesulfonate as a stabilizing aid. Furthermore, it is also possible to produce expandable styrenic polymer particles by impregnating the styrenic polymer particles of uniform particle size produced in the present invention with a volatile swelling agent. Examples of volatile expanding agents to be impregnated include aliphatic hydrocarbons such as propane, butane, and pentane; alicyclic hydrocarbons such as cyclobutane and cyclopentane; and halogenated hydrocarbons such as methyl chloride and dichlorodifluorometa. . These volatile swelling agents are used in an amount of 5 to 20% by weight of the styrenic polymer particles obtained. Example 1 Into the polymerization vessel of 3, 800 g of pure water, 4.0 g of tribasic calcium phosphate, 1.0 g of a 1% aqueous solution of sodium dodecylbenzenesulfonate, and styrene polymer particles sieved to 0.42 to 0.5 mm (average particle size 0.46 mm) 75g and benzoyl peroxide (decomposition temperature 74℃)
A total amount of 3.76 g was added and stirred at 400 rpm to uniformly disperse the mixture to obtain an aqueous suspension. This aqueous suspension was then heated to 85°C;
During this holding time, 1.4 g of t-butyl peroxybenzoate (decomposition temperature 117°C) was
was dissolved in 678g of styrene.
Quantitatively added 75g per hour over 9 hours.
Next, the temperature was raised from 85°C to 120°C over 1.5 hours, and then further heated at 120°C for 2 hours to complete polymerization. After cooling, water was separated and dried, and the particle size distribution of the styrene polymer particles obtained is shown in Table 1. In the polymerization container of Comparative Examples 1 and 3, 800 g of pure water, 4.0 g of tribasic calcium phosphate, 1.0 g of a 1% aqueous solution of sodium dodecylbenzenesulfonate, and the same materials used in Example 1 were placed.
75g of styrene polymer particles sieved to 0.42-0.5mm
was added and stirred at 400 rpm to uniformly disperse the mixture to obtain an aqueous suspension. This aqueous suspension was then heated to 85°C;
During this holding time, a solution of 3.76 g of benzoyl peroxide and 1.4 g of t-butyl peroxybenzoate dissolved in 678 g of styrene was continuously quantitatively added at a rate of 75 g per hour over 9 hours. was added and polymerized in the same manner as in Example 1. The particle size distribution of the obtained styrene polymer particles was
Shown in the table. This product produced a much larger amount of fine particles than that of Example 1. Example 2 After suspending styrene polymer particles in the same manner as in Example 1, 1.88 g, which is half the amount of benzoyl peroxide to be added, was added to the suspension, and the remaining benzoyl peroxide, 1.88 g, was added to the suspension. g was dissolved in styrene together with 1.4 g of t-butylperoxybenzoate, and polymerization was carried out in the same manner as in Example 1. Table 1 shows the particle size distribution of the obtained styrene polymer particles. Comparative Example 2 After suspending styrene polymer particles in the same manner as in Example 1, the amount of benzoyl peroxide to be added was
A 40% amount of 1.50 g was added into the suspension and the remaining 2.26 g of benzoyl peroxide was dissolved in styrene along with 1.4 g of t-butyl peroxybenzoate and polymerized as in Example 1. The particle size distribution of the obtained styrene polymer particles was
Shown in the table. Example 3 In the polymerization container of Example 3, 800 g of pure water, 4.0 g of tribasic calcium phosphate, 1.0 g of a 1% aqueous solution of sodium dodecylbenzenesulfonate, and 0.42 g of the same amount used in Example 1 were placed.
Add the total amount of 125 g of styrene polymer particles sieved to ~0.5 mm and 2.50 g of benzoyl peroxide,
Aqueous suspension was obtained by stirring at 400 rpm for uniform dispersion. Next, this suspension was heated to 85℃, and at 85℃
During this holding time, a solution of 1.25 g of t-butyl peroxybenzoate dissolved in 625 g of styrene monomer was continuously added quantitatively to the aqueous suspension at a rate of 125 g per hour over a period of 5 hours. Then, after raising the temperature from 85℃ to 120℃ over 1.5 hours,
The mixture was further heated at 120°C for 2 hours to complete the polymerization. After cooling, water was separated and dried, and the particle size distribution of the styrene polymer particles obtained is shown in Table 1. Comparative Example 3 In the polymerization container of 3, 800 g of pure water, 4.0 g of tribasic calcium phosphate, 1.0 g of a 1% aqueous solution of sodium dodecylbenzenesulfonate, and the same materials used in Example 1 were placed.
125g of styrene polymer particles sieved to 0.42-0.5mm
was added and stirred at 400 rpm for uniform dispersion to obtain an aqueous suspension. Next, this suspension was heated to 85℃, and at 85℃
During this holding time, a solution of 2.50 g of benzoyl peroxide and 1.25 g of t-butyl peroxybenzoate dissolved in 625 g of styrene monomer was continuously added quantitatively at a rate of 125 g per hour for 5 hours. It was added to an aqueous suspension and polymerized in the same manner as in Example 1. The particle size distribution of the obtained styrene polymer particles was
Shown in the table. Example 4 The particle size distribution of styrene polymer particles obtained in the same manner as in Example 1 except that azobisisobutylnitrile was used instead of benzoyl peroxide as a polymerization initiator pre-added to the suspension before starting polymerization. Shown in Table 2. Example 5 In the same manner as in Example 1, except that instead of the styrene added to the aqueous suspension, a mixture of 80% by weight styrene and 20% by weight acrylonitrile was used,
Styrene/acrylonitrile copolymer particles were obtained. The particle size distribution of the obtained particles is shown in Table 2. Example 6 Similar to Example 1, after finishing the addition of styrene at 85°C, the styrene polymer was impregnated with 12% isobutane to produce expandable styrene polymer particles. Shown in Table 2. Example 7 Results of an example when polymerization was carried out in the same manner as in Example 3 using particles with a particle size of 0.71 to 0.84 mm (average particle size 0.78 mm) as the styrene polymer particles to be suspended first. are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 懸濁重合によつて得られたスチレン系重合体
粒子を篩分けすることによつて粒径が平均粒径の
±20%の範囲になるように揃え、その粒子を水中
に懸濁せしめ、10時間の半減期を得るための分解
温度が50〜80℃である重合開始剤を、後で水性懸
濁系に加えるスチレン系単量体の重合に必要な量
の1/2以上を水中に添加し、この水性懸濁系にス
チレン単量体を主成分とし10時間の半減期を得る
ための分解温度が80℃を越え120℃以下である重
合開始剤ならびに前述の分解温度が50〜80℃であ
る重合開始剤の残余を含むスチレン系単量体を連
続的もしくは断続的に添加し、ついで前記スチレ
ン単量体を重合せしめることを特徴とする粒径の
揃つたスチレン系重合体粒子の製造方法。 2 前記スチレン系単量体の重合を、使用する低
い方の重合開始剤の10時間半減期を得るための分
解温度の−10〜+20℃の範囲で重合を予じめ行な
い、ついでそれより高温の100〜150℃の範囲で重
合を行うことを特徴とする特許請求の範囲第1項
記載の方法。 3 10時間の半減期を得るための分解温度が50〜
80℃である重合開始剤の全量が予じめ水中に添加
されることを特徴とする特許請求の範囲第1項記
載の方法。 4 スチレン系単量体100重量部に対し、10時間
の半減期を得るための分解温度が50〜80℃である
重合開始剤が0.01〜1重量部、10時間の半減期を
得るための分解温度が80℃を越え120℃以下であ
る重合開始剤が0.01〜1重量部の割合で用いられ
ることを特徴とする特許請求の範囲第1項記載の
方法。
[Claims] 1. Styrenic polymer particles obtained by suspension polymerization are sieved so that the particle size is within ±20% of the average particle size, and the particles are A polymerization initiator, suspended in water and having a decomposition temperature of 50 to 80 °C to obtain a half-life of 10 hours, is added later to the aqueous suspension system in the amount required for the polymerization of styrenic monomers. /2 or more in water, and add to this aqueous suspension system a polymerization initiator whose main component is styrene monomer and whose decomposition temperature is more than 80°C and less than 120°C to obtain a half-life of 10 hours, and the above-mentioned A method for obtaining uniform particle size characterized by continuously or intermittently adding a styrene monomer containing a polymerization initiator residue having a decomposition temperature of 50 to 80°C, and then polymerizing the styrene monomer. A method for producing styrenic polymer particles. 2. Polymerization of the styrenic monomer is carried out in advance at a decomposition temperature of -10 to +20°C in order to obtain a 10-hour half-life of the lower polymerization initiator used, and then at a higher temperature. The method according to claim 1, characterized in that the polymerization is carried out at a temperature in the range of 100 to 150°C. 3 The decomposition temperature to obtain a half-life of 10 hours is 50~
A method according to claim 1, characterized in that the entire amount of polymerization initiator at 80° C. is added in advance to the water. 4 For 100 parts by weight of styrene monomer, 0.01 to 1 part by weight of a polymerization initiator whose decomposition temperature is 50 to 80°C to obtain a half-life of 10 hours, and decomposition to obtain a half-life of 10 hours. The method according to claim 1, characterized in that the polymerization initiator whose temperature is above 80°C and below 120°C is used in an amount of 0.01 to 1 part by weight.
JP24852985A 1985-11-06 1985-11-06 Production of styrenic polymer particle Granted JPS62109807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24852985A JPS62109807A (en) 1985-11-06 1985-11-06 Production of styrenic polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24852985A JPS62109807A (en) 1985-11-06 1985-11-06 Production of styrenic polymer particle

Publications (2)

Publication Number Publication Date
JPS62109807A JPS62109807A (en) 1987-05-21
JPH0380802B2 true JPH0380802B2 (en) 1991-12-26

Family

ID=17179541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24852985A Granted JPS62109807A (en) 1985-11-06 1985-11-06 Production of styrenic polymer particle

Country Status (1)

Country Link
JP (1) JPS62109807A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560342B2 (en) * 1987-09-11 1996-12-04 大日本インキ化学工業株式会社 Continuous bulk polymerization of styrene resin
JPH0618917B2 (en) * 1989-04-28 1994-03-16 鐘淵化学工業株式会社 Method for producing expandable thermoplastic polymer particles
KR100417066B1 (en) 2001-01-08 2004-02-05 주식회사 엘지화학 Method for preparing thermoplastic resin having superior heat resistance

Also Published As

Publication number Publication date
JPS62109807A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
US3503908A (en) Method of making expandable polymers
JPS6041081B2 (en) Method for producing styrene suspension polymer
JPH07292150A (en) Styrenic expandable resin particle and suspension polymerization for obtaining the same
JP2659506B2 (en) Method for discontinuous production of pearl expandable styrene homo- or copolymer
US4731388A (en) Process for producing expandable styrene-based polymer beads
JPH0380802B2 (en)
US6046245A (en) Production of expandable styrene polymers
JPH02286726A (en) Production of expandable thermoplastic polymer particle
JPH0573133B2 (en)
JPH0122843B2 (en)
JPH0122842B2 (en)
JPH0573132B2 (en)
JPH0512386B2 (en)
KR100280218B1 (en) Manufacturing method of expandable polystyrene resin beads
JP2001220458A (en) Foamable styrenic resin particle
JPH11152364A (en) Preparation of foamable styrenic polymer particle
JPH0122841B2 (en)
JPH02199137A (en) Production of expandable thermoplastic polymer particle
JPH04202443A (en) Production of expandable vinyl resin particle
JPS63175043A (en) Production of foamable styrenic polymer particle
MX2008010736A (en) Process for preparing expandable styrene polymers.
JP3514905B2 (en) Method for producing expandable thermoplastic polymer particles
JP2956043B2 (en) Method for producing thermoplastic polymer particles
JP2787237B2 (en) Method for producing thermoplastic polymer particles
JPH04304201A (en) Production of vinylidene chloride resin particle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees