JPH0122843B2 - - Google Patents

Info

Publication number
JPH0122843B2
JPH0122843B2 JP14670380A JP14670380A JPH0122843B2 JP H0122843 B2 JPH0122843 B2 JP H0122843B2 JP 14670380 A JP14670380 A JP 14670380A JP 14670380 A JP14670380 A JP 14670380A JP H0122843 B2 JPH0122843 B2 JP H0122843B2
Authority
JP
Japan
Prior art keywords
suspension
styrene
polymerization
weight
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14670380A
Other languages
Japanese (ja)
Other versions
JPS5770111A (en
Inventor
Hiroshi Matsui
Mitsuo Furuichi
Yoshinari Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP14670380A priority Critical patent/JPS5770111A/en
Publication of JPS5770111A publication Critical patent/JPS5770111A/en
Publication of JPH0122843B2 publication Critical patent/JPH0122843B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粒度分布の狭いスチレン系重合体粒子
の製造方法に関するものである。本発明の実施に
より得られるスチレン系重合体粒子は、発泡性ス
チレン系重合体ビーズ用の粒子として特に有用で
ある。 従来、スチレン系重合体粒子は、スチレンモノ
マーを重合開始剤、懸濁安定剤の存在下に懸濁重
合して製造されている。この懸濁重合により得た
粒子の粒度分布は、撹拌や、重合温度、時間、ス
チレンモノマーや重合開始剤の添加方法等を種々
選択しても小さな径から大きな径の粒子を幅広く
含む分布をなしており、次の欠点がある。 (i) 重合体粒子を押出成形する際、小さい径の粒
子と大きな径の粒子が原料ホツパーや押出機の
供給部スクリユー部分で分離し、押出量変動の
原因となる。 (ii) 懸濁重合中または懸濁重合後、発泡剤を粒子
に含浸して得られる発泡性ビーズを型物発泡さ
せた場合、ビーズ間の発泡倍率の違いにより成
型品重量が不揃いとなつたり、成型時の加熱時
間、冷却時間が一定しない。 一般に粒子径が小の発泡性ビーズは膨脹力が小
さく、加熱、冷却の時間が短い。粒子径が大きく
なるにつれ膨腸力は増大し、冷却に要する時間も
増大する。 発泡性ビーズの適正粒度は上記発泡性ビーズの
膨脹率、成形サイクル等の加工性および製品の肉
厚等に大きく制約され、大きくは成型品の肉厚が
5mm〜50mmの汎用型物分野と、肉厚が100mm以上
のブロツク型物分野の二つに分けられるが、後者
の方が当然ビーズ径は大となる。しかしながら、
これらの2つの分野においても用途に応じて後記
の表1に示す数段の粒径範囲内のグレードに粒子
は篩分けられて用いられているのが実情である。
そして、懸濁重合の条件を最適に選択しても得ら
れた粒子群が1グレードに適する量は高々、30重
量%前後(比較例5参照)である。 この従来の懸濁重合法の欠点を改良する手段と
して、予じめ篩分けしたスチレン系重合体粒子を
水性懸濁させ、この懸濁系に重合開始剤を溶解し
たスチレンモノマーを定量的に添加し、所望の粒
子径まで懸濁重合により成長させて粒度のそろつ
たスチレン系重合体粒子を製造する方法が提案さ
れている(特公昭46−2987号公報)。 この方法は従前の方法と比較し、かなり粒度分
布の狭いスチレン系重合体粒子を製造することが
できるが、次の欠点を有する。 (i) 種となるスチレン系重合体粒子の粒子径範囲
を揃える必要がある。 (ii) 規格外品の微細粒子が8〜13重量%製造され
る。 一方、スチレン系重合体をスチレン等のエチレ
ン性不飽和単量体に溶解して25℃の粘度が15〜
60000センチポイズ(CPS)となる様調製し、こ
の重合体溶液を水性懸濁液中に供給し、懸濁安定
剤および発泡剤の存在下で懸濁重合して収縮巣の
ない理想的球状をした発泡性スチレン系粒子を製
造する方法は知られている(特公昭40−824号公
報)。 この公報には、理想の球状を有する発泡性粒子
を製造できることは記載がなされているが、得ら
れる粒子の粒度分布について何ら記載はなされて
いない。 また、この方法で得られる粒子群は、規格外の
大粒子分の生成比率が3〜5重量%に達するとと
もに、ポリスチレンを溶解するビニル単量体の種
類によつてはゲル化がたびたび起る欠点を有す
る。 本発明はこれら従来の方法の欠点を改良する目
的で規格外品が少なく、また1グレード中に含ま
れる粒子の量が50%以上の粒度分布の狭いスチレ
ン系重合体粒子を製造する方法、即ち、スチレン
系重合体をスチレンモノマーに溶解して20℃にお
ける粘度が100〜10000センチポイズの重合体溶液
を調製し、この重合体溶液を懸濁安定剤を含む水
中に供給、分散し、次いで重合開始剤の存在下で
懸濁重合を開始し、懸濁反応系における未重合の
スチレンモノマーの量が重合体とスチレンモノマ
ーの和の60重量%以下となつた時点で、懸濁反応
系内の重合体とスチレンモノマーの和100重量部
に対し、新たにスチレンモノマーを200〜900重量
部の割合で懸濁反応系に供給し、ひき続いて懸濁
重合を完了することを特徴とするスチレン系重合
体粒子の製造方法を提供するものである。 本発明の実施において、スチレンモノマーに溶
解されるスチレン系重合体は、一般に分子量が10
万〜60万のスチレンのホモ重合体または、スチレ
ンを主成分(50重量%以上、好ましくは90重量%
以上)とし、これと他のエチレン性不飽和単量体
との共重合体である。このスチレン系重合体は、
好ましくは本発明の実施により得られたスチレン
系重合体粒子、特に格外品の重合体粒子を用いる
と経済的である。 上記共重合体成分のスチレンと共重合可能なエ
チレン性不飽和単量体としてはα−メチルスチレ
ン、ジビニルベンゼン、アクリロニトリル、炭素
数が1〜8のアルコールとアクリル酸またはメタ
クリル酸とを反応させて得られるエステル、例え
ばメチルメタクリレート、エチルアクリレート
等、モノメチルマレエート、モノメチルフマレー
ト、ジメチルマレエート、モノエチルイタコネー
ト等が挙げられる。 このスチレン系重合体粒子はスチレンモノマー
に溶解されて20℃における粘度が100〜
10000CPS、好ましくは100〜5000CPSとなるよう
に調節される。 この際、スチレンモノマーの一部(50重量%以
下、好ましくは10重量%以下)をスチレンと共重
合可能な他のエチレン性不飽和単量体におきかえ
ることも可能である。かかるエチレン性不飽和単
量体としては前述のものが使用でき、これはスチ
レン系重合体粒子を構成するエチレン性不飽和単
量体を同一であつても異つていてもよい。 然して、スチレンモノマーに溶解されたスチレ
ン系重合体溶液の20℃における粘度を100〜
10000CPSとしたのは、100CPS未満ではこの溶解
の工程をなくして懸濁重合のみでスチレン系重合
体粒子を得た場合と比較して粒度分布に差がな
く、一方、10000CPSを越えては粘度が高く、重
合体溶液を懸濁系に移す作業が面倒となるからで
ある。 粘度が100〜10000CPSに調節されたスチレン系
重合体溶液は懸濁安定剤を含む水性媒質中に撹拌
下に供給され、懸濁液となる。 この懸濁液は60〜130℃、好ましくは70〜100℃
の温度に撹拌下、重合開始剤の存在下に加熱さ
れ、スチレンを主体とするエチレン性不飽和単量
体の予備懸濁重合が行われる。 この予備懸濁重合は懸濁反応系における未重合
のスチレンを主体とする重合可能なエチレン性不
飽和単量体の量〔A〕が、重合体(スチレン系重
合体と予備懸濁重合により新たに得られた重合
体)〔B〕と未反応のスチレンを主体とするエチ
レン性不飽和単量体〔A〕との和の60重量%以
下、好ましくは45〜60重量%{〔A〕/〔A〕+
〔B〕}となる迄行なわれ、次いで、懸濁反応系内
の前記未反応のスチレンを主体とするエチレン性
不飽和単量体〔A〕と重合体〔B〕の和100重量
部に対し、新たにスチレンを主成分とするエチレ
ン性単量体を200〜900重量部、好ましくは200〜
500重量部の割合で70〜90℃の温度に調整された
懸濁反応に連続して、または断続的に供給し、70
〜130℃の温度で3〜10時間、好ましくは120〜
130℃の温度で4〜6時間懸濁重合を行い重合を
完結する。 上記懸濁安定剤としては、ポリビニルアルコー
ル、ポリビニルピロドリン、ゼラチン、カルボキ
シメチルセルロース、ヒドロキシアルキルセルロ
ース等の有機系懸濁安定剤、リン酸または炭酸の
Ca、Mg塩等の無機系懸濁安定剤が挙げられる。
中でも無機系のものが好ましく、とりわけ、第3
燐酸カルシウムと安定助剤のアニオン性界面活性
剤のドデシルベンゼンスルホン酸ソーダを併用す
る場合がよい。 懸濁安定剤の使用量はスチレン系塊状重合体ま
たは共重合体溶液の0.1〜3重量%、安定助剤は
水の0.002〜0.05重量%量である。 そして、懸濁重合におけるスチレン等のエチレ
ン性不飽和単量体およびその重合物の水に対する
重量割合(相比)は、1.0〜2.0、好ましくは1.0〜
1.5である。相比を1未満とするよりは1以上と
した方が反応器のバツチサイズが小さくすみ、経
済的であるとともに得られる粒子中に含まれる水
分が少なくなり、乾燥が容易である。また2.0を
越える相比では重合の進行につれ撹拌が困難とな
る。 また、前記重合開始剤としては一般に、10時間
の半減期を得るための分解温度が50〜155℃であ
るラジカル重合開始剤であり、具体的には、たと
えばt−ブチルパーオキシビバレート(55℃)、
ラウロイルパーオキサイド(62℃)、ベンゾイル
パーオキサイド(74℃)、シクロヘキサノンパー
オキサイド(97℃)、t−ブチルパーオキシベン
ゾエート(104℃)、ジクミルパーオキサイド
(117℃)、アゾビスイソブチロニトリル等々、ス
チレンモノマーに溶解可能なものが好ましい。 重合開始剤の量はスチレンモノマーまたはスチ
レンモノマーと他のエチレン性単量体との混合物
100重量部につき、0.01〜5重量部、好ましくは
0.01〜0.6重量部である。 重合開始剤の添加方法としては、本発明におい
て次の(イ)または(ロ)の方法が考えられる。 (イ) 懸濁重合に必要な量の重合開始剤の全量を、
スチレン系重合体粒子を溶解するスチレンを主
体とするエチレン性不飽和単量体に溶解させて
供給する。 (ロ) スチレン系重合体粒子を溶解するスチレンを
主体とするエチレン性不飽和単量体および、予
備懸濁重合後に新たに懸濁反応系に供給される
スチレンを主体とするエチレン性不飽和単量体
に別々に、重合開始剤を溶解させる。 この(イ)と(ロ)の供給方法において、(イ)の方法の方
がより狭い粒度分布を有するスチレン系重合体粒
子を得ることができる。 本発明において、新たに懸濁反応系に添加され
るスチレンを主体とするエチレン性不飽和単量体
の供給時期を、反応系内の未反応のスチレンを主
体とするエチレン性不飽和単量体の量が60重量%
以下としたのは次の理由による。 撹拌により懸濁系でスチレン系重合体溶液から
形成された懸濁油滴は、新たに供給されてくるス
チレンを主体とするエチレン性不飽和単量体の油
滴を速やかに、かつ、均一に吸収すると、得られ
るスチレン系重合体粒子の粒度分布が狭いものが
得られる。 吸収されない油滴があると、それ自身、懸濁重
合され、粒径の小さなスチレン系重合体粒子を形
成し、これと、スチレン系重合体粒子が併存し、
粒度分布は広くなり好ましくない。 この新たに反応懸濁系に供給されてくるスチレ
ンを主体とするエチレン性不飽和単量体の油滴が
スチレン系重合体溶液の油滴に吸収される速度
は、スチレン系重合液中の重合体の濃度が高い程
速い。 従つて、新たに供給されるスチレンを主体とす
るエチレン性不飽和単量体が独自に、粒径の小さ
なスチレン系重合体粒子を形成する機会を極力、
小さくするには、懸濁液中の未反応のスチレンを
主体とするエチレン性単量体の量が、重合体と未
反応のスチレンを主体とするエチレン性不飽和単
量体との和の60%以下となつたときに行うべきで
ある。 従つて、重合開始剤の添加方法において、スチ
レン系重合体粒子を溶解するスチレンを主体とす
るエチレン性不飽和単量体に重合開始剤の全量を
供給する(イ)の方法が好ましい理由も自ら理解され
るように、新たに反応懸濁系に供給されたスチレ
ンを主体とするエチレン性不飽和単量体の油滴
(重合開始剤は含まない)が、予じめスチレンモ
ノマーに溶解されたスチレン系重合体の油滴(重
合開始剤を含む)に会合する前に単独で重合する
ことが妨げられるからである。 以上、発泡剤を含有しないスチレン系重合体粒
子の製造法について述べたが、発泡剤を含有する
重合体粒子を製造する場合は、前記の懸濁重合
後、得た重合体粒子に発泡剤を含浸させるか、ま
たは重合体粒子を溶解させる際、あるいは懸濁重
合時に反応系内を発泡剤を供給し、前記重合工程
を行うことにより得られる。一般に重合工程の面
から懸濁重合時に発泡剤を供給するのが簡便であ
るが、得られる発泡性粒子の径が小径のときは、
発泡剤が粒子筬分中および貯蔵中も散逸すること
を考慮すると、懸濁重合後に粒子に発泡剤を含浸
させる方が好ましい。 かかる発泡剤としては、たとえば、プロパン、
ノルマルブタン、イソブタン、ノルマルペンタ
ン、イソペンタン、ネオペンタン、ヘキサン等の
脂肪族炭化水素、シクロブタン、シクロペンタン
等の脂環族炭化水素、塩化メチル、ジクロルジフ
ルオルメタン等のハロゲン化炭化水素等があげら
れ、これらは単独でまたは2種以上併用して用い
られる。発泡剤は、生成粒子中の発泡剤含量が5
〜20重量%程度となるように供給するのがふつう
である。 本発明の実施により得られるスチレン系重合体
粒子群は、後述の実施例の結果から理解されるよ
うに市販用一グレードに入る粒子が50%以上と高
く、かつ粒子の粒度分布も狭く篩分けが容易であ
る。また、格外品である粒径0.42mm以下の粒子お
よび2.83mm以上の粒子の含量も極めて低い利点を
有する。 以下、実施例により本発明を更に詳細に説明す
る。 実施例 1 重合度が1500のスチレンホモ重合体40gをスチ
レンモノマー160gに溶解し、20℃における粘度
が540CPSの重合体溶液を調製した。この重合体
溶液にベンゾイルパーオキサイドを0.32g加えて
重合体溶液〔〕を得た。 該重合体溶液〔〕を、2.5gの第3リン酸カ
ルシウム及び0.025gのドデシルベンゼンスルホ
ン酸ソーダを含む1000gの純水の入つた3のオ
ートクレーブ中に350rpmの撹拌下、80℃で移し
た。 次に、上記懸濁液を90℃迄昇温し、同温度で2
時間保つた後、更に同温度で、0.2重量%のベン
ゾイルパーオキサイドを溶解させたスチレンを連
続的に1時間当り、200gずつ定量的に4時間か
けて添加し、次に90℃から120℃迄、5時間かけ
て昇温した後、更に同温度で1時間加熱し、重合
を完了させた。 冷却後、水を分離、乾燥して得たスチレン重合
体粒子の粒度分布を第1表に示す。 なお、重合体溶液〔〕を赤外線吸収スペクト
ル分析し、1632cm-1の1602cm-1の吸収に対する割
合からスチレンを重合して該重合体溶液を得たと
仮定した場合の該重合体溶液〔〕のスチレンの
重合率を求めたところ、重合率は20.0重量%に相
当した。 また、90℃で2時間予備懸濁重合させて得た重
合体溶液についても同様にして赤外線吸収スペク
トル分析し、重合率を求めたところ、43.7重量%
であつた。 このことは、予備懸濁系内に新たにスチレンが
添加される前の未反応のスチレンモノマーの量が
56.3重量%であることに相当する。 実施例 2 実施例1において、スチレンホモ重合体を溶解
したスチレンモノマーに配合するベンゾイルパー
オキサイドの量を4.7gにし、新たに懸濁反応系
に添加するスチレンモノマー中にはそれを含有さ
せない他は同様にして表1に示す粒度分布を有す
るスチレン重合体粒子を得た。 実施例 3 実施例1において、懸濁重合開始後6時間目で
ペンタン70gを反応系内に添加した外は同様に重
合を行つて表1に示す粒度分布を示す発泡性スチ
レン系重合体粒子を得た。 重合体粒子中の発泡剤含有量は6.2重量%であ
つた。これを97℃の温度に保持された水蒸気槽で
3分間、予備発泡したところ、17.5g/の見掛
比重のビーズを得た。 比較例 1、2 実施例1において、懸濁重合開始後、スチレン
溶液を添加するまでの予備懸濁重合時間を各々、
0時間及び1時間に変更した他は、全く同様の条
件で重合を完了させた。 得たスチレン重合体粒子の粒度分布、塊状重合
液の粘度及び重合率、更に、スチレン溶液添加直
前の重合率を各々、第1表に示す。 比較例 3、4 スチレンホモ重合体を溶解するスチレンモノマ
ーの量を変えて、20℃における粘度が150CPSお
よび14000CPSの重合体溶液を得た。 この重合体溶液200gに、ベンゾイルパーオキ
サイドを5.0g加え、この溶液を2.5gの第3リン
酸カルシウム及び0.025gのドデシルベンゼンス
ルホン酸ソーダを含む1000gの純水中に350rpm
の撹拌下、70℃で移した。 次に上記懸濁液を、90℃迄昇温し、90℃から
120℃迄連続的に5時間で昇温した後、更に125℃
に昇温させ、同温度で2時間加熱し、重合を完了
させた。 冷却後、水を分離し、乾燥して得たスチレン系
重合体粒子の粒度分布を第1表に示す。 比較例 5 3の重合器内に、2.5gの第3リン酸カルシ
ウムおよび0.025gのドデシルベンゼンスルホン
酸ソーダを含む1000gの純水を供給し、次いで重
合器内に窒素ガスを導き、空気を置換した。 この器内に、2gのベンゾイルパーオキサイド
を溶解しているスチレン1002gを撹拌下に供給
し、30分かけて90℃迄昇温し、以下実施例1と同
様にして表1に示す粒度分布を有するスチレン系
重合体粒子を得た。
The present invention relates to a method for producing styrenic polymer particles having a narrow particle size distribution. Styrenic polymer particles obtained by practicing the present invention are particularly useful as particles for expandable styrenic polymer beads. Conventionally, styrenic polymer particles have been produced by suspension polymerizing styrene monomers in the presence of a polymerization initiator and a suspension stabilizer. The particle size distribution of the particles obtained by this suspension polymerization remains a distribution that includes a wide range of particles from small to large diameters, regardless of the stirring, polymerization temperature, time, addition method of styrene monomer and polymerization initiator, etc. It has the following disadvantages. (i) When extruding polymer particles, particles with small diameters and particles with large diameters separate in the raw material hopper or the screw section of the feed section of the extruder, causing fluctuations in the amount of extrusion. (ii) When foaming beads obtained by impregnating particles with a blowing agent during or after suspension polymerization is used to foam a molded product, the weight of the molded product may be uneven due to the difference in expansion ratio between the beads. , Heating time and cooling time during molding are not constant. Generally, expandable beads with a small particle size have a small expansion force and short heating and cooling times. As the particle size increases, the distension force increases and the time required for cooling also increases. The appropriate particle size of expandable beads is greatly restricted by the expansion rate of the expandable beads, processability such as molding cycle, and product wall thickness, and is mainly used in the field of general-purpose molded products where the wall thickness of molded products is 5 mm to 50 mm. There are two types of block type products with a wall thickness of 100 mm or more, but the latter naturally has a larger bead diameter. however,
In these two fields as well, the reality is that particles are sieved into grades within several particle size ranges shown in Table 1 below, depending on the application.
Even if the suspension polymerization conditions are optimally selected, the amount of the obtained particle group suitable for one grade is at most about 30% by weight (see Comparative Example 5). As a means to improve this drawback of the conventional suspension polymerization method, styrene polymer particles that have been sieved in advance are suspended in water, and styrene monomer in which a polymerization initiator is dissolved is quantitatively added to this suspension system. However, a method has been proposed in which styrenic polymer particles of uniform particle size are produced by growing the particles to a desired particle size by suspension polymerization (Japanese Patent Publication No. 46-2987). Although this method can produce styrenic polymer particles with a considerably narrower particle size distribution than conventional methods, it has the following drawbacks. (i) It is necessary to align the particle size range of the styrene polymer particles that serve as seeds. (ii) 8-13% by weight of substandard fine particles are produced. On the other hand, when a styrenic polymer is dissolved in an ethylenically unsaturated monomer such as styrene, the viscosity at 25℃ is 15~15.
60,000 centipoise (CPS), this polymer solution was supplied into an aqueous suspension, and suspension polymerized in the presence of a suspension stabilizer and a blowing agent to form an ideal spherical shape without shrinkage cavities. A method for producing expandable styrenic particles is known (Japanese Patent Publication No. 824/1982). Although this publication describes that expandable particles having an ideal spherical shape can be produced, there is no description whatsoever regarding the particle size distribution of the resulting particles. In addition, in the particles obtained by this method, the production ratio of non-standard large particles reaches 3 to 5% by weight, and gelation often occurs depending on the type of vinyl monomer that dissolves polystyrene. It has its drawbacks. In order to improve the drawbacks of these conventional methods, the present invention provides a method for producing styrenic polymer particles with a narrow particle size distribution, with fewer non-standard products, and with the amount of particles contained in one grade being 50% or more. , a styrenic polymer is dissolved in a styrene monomer to prepare a polymer solution with a viscosity of 100 to 10,000 centipoise at 20°C, this polymer solution is supplied and dispersed in water containing a suspension stabilizer, and then polymerization is initiated. Suspension polymerization is started in the presence of the suspension reaction system, and when the amount of unpolymerized styrene monomer in the suspension reaction system becomes 60% by weight or less of the sum of the polymer and styrene monomer, the polymerization in the suspension reaction system is started. A styrenic polymer characterized in that styrene monomer is newly supplied to the suspension reaction system at a ratio of 200 to 900 parts by weight to 100 parts by weight of the combined styrene monomer and the suspension polymerization is subsequently completed. A method for producing coalesced particles is provided. In the practice of this invention, the styrenic polymer dissolved in the styrene monomer generally has a molecular weight of 10
A homopolymer of styrene of 10,000 to 600,000 styrene, or styrene as the main component (50% by weight or more, preferably 90% by weight)
above) and is a copolymer of this and other ethylenically unsaturated monomers. This styrenic polymer is
Preferably, it is economical to use styrenic polymer particles obtained by carrying out the present invention, especially polymer particles of inferior quality. Examples of ethylenically unsaturated monomers that can be copolymerized with styrene as the copolymer component include α-methylstyrene, divinylbenzene, acrylonitrile, and alcohols having 1 to 8 carbon atoms reacted with acrylic acid or methacrylic acid. The resulting esters include, for example, methyl methacrylate, ethyl acrylate, etc., monomethyl maleate, monomethyl fumarate, dimethyl maleate, monoethyl itaconate, and the like. These styrenic polymer particles are dissolved in styrene monomer and have a viscosity of 100~100℃ at 20℃.
It is adjusted to 10,000 CPS, preferably 100 to 5,000 CPS. At this time, it is also possible to replace a part of the styrene monomer (50% by weight or less, preferably 10% by weight or less) with another ethylenically unsaturated monomer copolymerizable with styrene. As such ethylenically unsaturated monomers, those mentioned above can be used, and the ethylenically unsaturated monomers constituting the styrenic polymer particles may be the same or different. Therefore, the viscosity at 20°C of a styrenic polymer solution dissolved in styrene monomer is 100~
The reason for setting 10,000 CPS is that at less than 100 CPS, there is no difference in particle size distribution compared to when styrenic polymer particles are obtained only by suspension polymerization without this dissolution step, whereas at more than 10,000 CPS, the viscosity decreases. This is because it is expensive and the work of transferring the polymer solution to the suspension system becomes troublesome. A styrenic polymer solution whose viscosity is adjusted to 100 to 10,000 CPS is fed into an aqueous medium containing a suspension stabilizer under stirring to form a suspension. This suspension is 60-130℃, preferably 70-100℃
The mixture is heated to a temperature of 100% with stirring in the presence of a polymerization initiator, and pre-suspension polymerization of ethylenically unsaturated monomers mainly consisting of styrene is carried out. In this pre-suspension polymerization, the amount [A] of polymerizable ethylenically unsaturated monomers mainly composed of unpolymerized styrene in the suspension reaction system is 60% by weight or less, preferably 45 to 60% by weight of the sum of the polymer obtained in [B] and the unreacted styrene-based ethylenically unsaturated monomer [A], preferably 45 to 60% by weight {[A]/ [A]+
[B]}, and then, based on the sum of 100 parts by weight of the unreacted styrene-based ethylenically unsaturated monomer [A] and polymer [B] in the suspension reaction system. , 200 to 900 parts by weight, preferably 200 to 900 parts by weight of a new ethylenic monomer mainly composed of styrene.
500 parts by weight is continuously or intermittently fed to a suspension reaction adjusted to a temperature of 70 to 90 °C, and 70
3-10 hours at a temperature of ~130℃, preferably 120~
Suspension polymerization is carried out at a temperature of 130° C. for 4 to 6 hours to complete the polymerization. Examples of the above-mentioned suspension stabilizers include organic suspension stabilizers such as polyvinyl alcohol, polyvinyl pyrodrine, gelatin, carboxymethyl cellulose, and hydroxyalkyl cellulose, and phosphoric acid or carbonic acid.
Examples include inorganic suspension stabilizers such as Ca and Mg salts.
Among them, inorganic ones are preferable, especially tertiary ones.
It is preferable to use calcium phosphate in combination with sodium dodecylbenzenesulfonate, an anionic surfactant as a stabilizing agent. The amount of the suspension stabilizer used is 0.1 to 3% by weight of the styrenic bulk polymer or copolymer solution, and the amount of the stabilizing agent is 0.002 to 0.05% by weight of the water. In suspension polymerization, the weight ratio (phase ratio) of ethylenically unsaturated monomers such as styrene and their polymers to water is 1.0 to 2.0, preferably 1.0 to 2.0.
It is 1.5. Setting the phase ratio to 1 or more allows the batch size of the reactor to be smaller than setting it to less than 1, which is economical, reduces water content in the obtained particles, and facilitates drying. Furthermore, if the phase ratio exceeds 2.0, stirring becomes difficult as the polymerization progresses. In addition, the polymerization initiator is generally a radical polymerization initiator whose decomposition temperature is 50 to 155°C to obtain a half-life of 10 hours, and specifically, for example, t-butyl peroxyvivalate (55 ℃),
Lauroyl peroxide (62℃), benzoyl peroxide (74℃), cyclohexanone peroxide (97℃), t-butyl peroxybenzoate (104℃), dicumyl peroxide (117℃), azobisisobutyronitrile etc., those that can be dissolved in styrene monomer are preferred. The amount of polymerization initiator is styrene monomer or a mixture of styrene monomer and other ethylenic monomers.
0.01 to 5 parts by weight per 100 parts by weight, preferably
It is 0.01-0.6 parts by weight. As a method for adding the polymerization initiator, the following method (a) or (b) can be considered in the present invention. (a) The total amount of polymerization initiator required for suspension polymerization,
Styrenic polymer particles are dissolved in an ethylenically unsaturated monomer mainly composed of styrene and supplied. (b) An ethylenically unsaturated monomer mainly composed of styrene that dissolves styrenic polymer particles, and an ethylenically unsaturated monomer mainly composed of styrene that is newly supplied to the suspension reaction system after pre-suspension polymerization. A polymerization initiator is dissolved separately in the polymer. Of the feeding methods (a) and (b), the method (a) makes it possible to obtain styrenic polymer particles having a narrower particle size distribution. In the present invention, the supply timing of the ethylenically unsaturated monomer mainly composed of styrene newly added to the suspension reaction system is adjusted to The amount of is 60% by weight
The reason for the following is as follows. Suspended oil droplets formed from a styrenic polymer solution in a suspension system by stirring quickly and uniformly absorb newly supplied oil droplets of ethylenically unsaturated monomers mainly composed of styrene. Upon absorption, the resulting styrenic polymer particles have a narrow particle size distribution. If there are oil droplets that are not absorbed, they themselves undergo suspension polymerization, forming styrene polymer particles with a small particle size, and these and styrene polymer particles coexist.
The particle size distribution becomes wide, which is not preferable. The rate at which the oil droplets of the ethylenically unsaturated monomer mainly composed of styrene newly supplied to the reaction suspension system are absorbed into the oil droplets of the styrenic polymer solution is determined by The higher the concentration of coalescence, the faster it is. Therefore, we are trying to maximize the opportunity for newly supplied ethylenically unsaturated monomers mainly composed of styrene to independently form styrenic polymer particles with small particle diameters.
To reduce the amount, the amount of unreacted ethylenic monomer mainly composed of styrene in the suspension should be 60% of the sum of the polymer and the unsaturated ethylenic monomer mainly composed of unreacted styrene. This should be done when the percentage is below %. Therefore, in the method of adding a polymerization initiator, the reason why the method (a) in which the entire amount of the polymerization initiator is supplied to the ethylenically unsaturated monomer mainly composed of styrene that dissolves the styrenic polymer particles is preferable is also self-explanatory. As will be understood, oil droplets of styrene-based ethylenically unsaturated monomer (without polymerization initiator) freshly fed into the reaction suspension system were previously dissolved in styrene monomer. This is because it prevents the oil from polymerizing independently before it associates with the oil droplets (including the polymerization initiator) of the styrenic polymer. The method for producing styrenic polymer particles that do not contain a blowing agent has been described above, but when producing polymer particles that contain a blowing agent, a blowing agent is added to the obtained polymer particles after the suspension polymerization described above. It can be obtained by supplying a blowing agent into the reaction system during impregnation or dissolving the polymer particles, or during suspension polymerization, and performing the polymerization step. Generally, it is convenient to supply a blowing agent during suspension polymerization from the viewpoint of the polymerization process, but when the diameter of the resulting expandable particles is small,
Considering that the blowing agent dissipates in the particles and during storage, it is preferable to impregnate the particles with the blowing agent after suspension polymerization. Such blowing agents include, for example, propane,
Examples include aliphatic hydrocarbons such as normal butane, isobutane, normal pentane, isopentane, neopentane, and hexane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, and halogenated hydrocarbons such as methyl chloride and dichlorodifluoromethane. , these may be used alone or in combination of two or more. The blowing agent has a blowing agent content of 5 in the generated particles.
It is normal to supply the amount to about 20% by weight. As can be understood from the results of the examples described later, the styrenic polymer particles obtained by carrying out the present invention have a high proportion of particles that fall into the commercial grade of 50% or more, and the particle size distribution of the particles is also narrowly sieved. is easy. Furthermore, it has the advantage that the content of particles with particle diameters of 0.42 mm or less and particles with particle diameters of 2.83 mm or more, which are inferior products, is extremely low. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 40 g of styrene homopolymer having a degree of polymerization of 1500 was dissolved in 160 g of styrene monomer to prepare a polymer solution having a viscosity of 540 CPS at 20°C. 0.32 g of benzoyl peroxide was added to this polymer solution to obtain a polymer solution. The polymer solution [] was transferred into a No. 3 autoclave containing 1000 g of pure water containing 2.5 g of tertiary calcium phosphate and 0.025 g of sodium dodecylbenzenesulfonate at 80° C. under stirring at 350 rpm. Next, the temperature of the above suspension was raised to 90℃, and at the same temperature
After maintaining the temperature for an additional 4 hours, styrene in which 0.2% by weight of benzoyl peroxide was dissolved was continuously added quantitatively over 4 hours at a rate of 200 g per hour, and then the temperature was increased from 90°C to 120°C. After raising the temperature over 5 hours, the mixture was further heated at the same temperature for 1 hour to complete polymerization. Table 1 shows the particle size distribution of the styrene polymer particles obtained by cooling, separating water, and drying. In addition, the polymer solution [] was analyzed by infrared absorption spectrum, and from the ratio of absorption of 1632 cm -1 to 1602 cm -1 , the styrene of the polymer solution [] was calculated based on the assumption that the polymer solution was obtained by polymerizing styrene. When the polymerization rate was determined, the polymerization rate was equivalent to 20.0% by weight. In addition, the polymer solution obtained by pre-suspension polymerization at 90°C for 2 hours was similarly analyzed by infrared absorption spectrum, and the polymerization rate was determined to be 43.7% by weight.
It was hot. This means that the amount of unreacted styrene monomer in the presuspension system before new styrene is added is
This corresponds to 56.3% by weight. Example 2 Same as Example 1 except that the amount of benzoyl peroxide added to the styrene monomer in which the styrene homopolymer was dissolved was 4.7 g, and it was not added to the styrene monomer newly added to the suspension reaction system. Styrene polymer particles having the particle size distribution shown in Table 1 were obtained. Example 3 Polymerization was carried out in the same manner as in Example 1, except that 70 g of pentane was added to the reaction system 6 hours after the start of suspension polymerization, and expandable styrenic polymer particles having the particle size distribution shown in Table 1 were obtained. Obtained. The blowing agent content in the polymer particles was 6.2% by weight. When this was pre-foamed for 3 minutes in a steam bath maintained at a temperature of 97°C, beads with an apparent specific gravity of 17.5g/ were obtained. Comparative Examples 1 and 2 In Example 1, the preliminary suspension polymerization time after the start of suspension polymerization until the addition of the styrene solution was
Polymerization was completed under exactly the same conditions except that the time was changed to 0 hours and 1 hour. Table 1 shows the particle size distribution of the obtained styrene polymer particles, the viscosity and polymerization rate of the bulk polymerization solution, and the polymerization rate immediately before addition of the styrene solution. Comparative Examples 3 and 4 Polymer solutions with viscosities of 150 CPS and 14000 CPS at 20°C were obtained by varying the amount of styrene monomer used to dissolve the styrene homopolymer. Add 5.0 g of benzoyl peroxide to 200 g of this polymer solution, and add this solution to 1000 g of pure water containing 2.5 g of tribasic calcium phosphate and 0.025 g of sodium dodecylbenzenesulfonate at 350 rpm.
The mixture was transferred at 70°C under stirring. Next, the temperature of the above suspension was raised to 90℃, and from 90℃
After continuously increasing the temperature to 120℃ for 5 hours, further increasing the temperature to 125℃
The temperature was raised to 1, and the polymerization was completed by heating at the same temperature for 2 hours. After cooling, the water was separated and the particle size distribution of the styrenic polymer particles obtained by drying is shown in Table 1. 1000 g of pure water containing 2.5 g of tertiary calcium phosphate and 0.025 g of sodium dodecylbenzenesulfonate was supplied into the polymerization vessel of Comparative Example 5-3, and then nitrogen gas was introduced into the polymerization vessel to replace the air. Into this vessel, 1002 g of styrene in which 2 g of benzoyl peroxide was dissolved was fed under stirring, and the temperature was raised to 90°C over 30 minutes. Styrenic polymer particles having the following properties were obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 スチレン系重合体をスチレンモノマーに溶解
して20℃における粘度が100〜10000センチポイズ
の重合体溶液を調製し、この重合体溶液を懸濁安
定剤を含む水中に供給、分散し、次いで重合開始
剤の存在下で懸濁重合を開始し、懸濁反応系にお
ける未重合のスチレンモノマーの量が重合体とス
チレンモノマーの和の60重量%以下となつた時点
で、懸濁反応系内の重合体とスチレンモノマーの
和100重量部に対し、新たにスチレンモノマーを
200〜900重量部の割合で懸濁反応系に供給し、ひ
き続いて懸濁重合を完了することを特徴とするス
チレン系重合体粒子の製造方法。
1 Dissolve the styrene polymer in styrene monomer to prepare a polymer solution with a viscosity of 100 to 10,000 centipoise at 20°C, supply and disperse this polymer solution in water containing a suspension stabilizer, and then initiate polymerization. Suspension polymerization is started in the presence of the suspension reaction system, and when the amount of unpolymerized styrene monomer in the suspension reaction system becomes 60% by weight or less of the sum of the polymer and styrene monomer, the polymerization in the suspension reaction system is started. Add new styrene monomer to 100 parts by weight of the combined and styrene monomer.
A method for producing styrenic polymer particles, which comprises supplying styrenic polymer particles to a suspension reaction system in a proportion of 200 to 900 parts by weight, and subsequently completing suspension polymerization.
JP14670380A 1980-10-20 1980-10-20 Production of styrene polymer particle Granted JPS5770111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14670380A JPS5770111A (en) 1980-10-20 1980-10-20 Production of styrene polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14670380A JPS5770111A (en) 1980-10-20 1980-10-20 Production of styrene polymer particle

Publications (2)

Publication Number Publication Date
JPS5770111A JPS5770111A (en) 1982-04-30
JPH0122843B2 true JPH0122843B2 (en) 1989-04-28

Family

ID=15413633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14670380A Granted JPS5770111A (en) 1980-10-20 1980-10-20 Production of styrene polymer particle

Country Status (1)

Country Link
JP (1) JPS5770111A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590996B2 (en) * 1987-12-29 1997-03-19 東ソー株式会社 Manufacturing method of spherical resin
CN1158318C (en) * 1999-04-09 2004-07-21 聚合物系统有限公司 Preparation of polymer particles
JP6130700B2 (en) * 2013-03-28 2017-05-17 積水化成品工業株式会社 Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article

Also Published As

Publication number Publication date
JPS5770111A (en) 1982-04-30

Similar Documents

Publication Publication Date Title
US4271281A (en) Process for preparing styrenic polymer particles
CA2227270A1 (en) Continuous process for the preparation of expandable styrene polymers
KR100701362B1 (en) Preparation of polymer particles
US3503908A (en) Method of making expandable polymers
JPH11116610A (en) Use of substantially monodisperse polymer particle as polymerization seed, production of polymer particle and substantially monodisperse particulate polymer
US4731388A (en) Process for producing expandable styrene-based polymer beads
JP3474995B2 (en) Method for producing expandable styrene polymer particles
EP0396046B1 (en) Method for producing expandable thermoplastic polymer particles
JP5576678B2 (en) Styrene polymer particles, process for producing the same, expandable styrene polymer particles, and foamed molded article
JPH0122843B2 (en)
CN113754806B (en) Preparation method of expanded polystyrene
JP3054017B2 (en) Expandable styrene polymer particles
JP3776038B2 (en) Styrenic resin particles and method for producing expandable styrene resin particles
JPH0122842B2 (en)
JP3054015B2 (en) Method for producing expandable styrene polymer particles
JPH0122841B2 (en)
JP3054014B2 (en) Method for producing expandable styrene polymer particles
JPH02199137A (en) Production of expandable thermoplastic polymer particle
JP3054016B2 (en) Method for producing expandable styrene polymer particles
JPH0573133B2 (en)
JP3514905B2 (en) Method for producing expandable thermoplastic polymer particles
JP2832467B2 (en) Method for producing expandable thermoplastic polymer particles
JP2956043B2 (en) Method for producing thermoplastic polymer particles
JPH0573132B2 (en)
JPH11152364A (en) Preparation of foamable styrenic polymer particle