JPH0380528B2 - - Google Patents

Info

Publication number
JPH0380528B2
JPH0380528B2 JP8705884A JP8705884A JPH0380528B2 JP H0380528 B2 JPH0380528 B2 JP H0380528B2 JP 8705884 A JP8705884 A JP 8705884A JP 8705884 A JP8705884 A JP 8705884A JP H0380528 B2 JPH0380528 B2 JP H0380528B2
Authority
JP
Japan
Prior art keywords
hollow fibers
hollow
hollow fiber
membrane
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8705884A
Other languages
Japanese (ja)
Other versions
JPS60227801A (en
Inventor
Tsutomu Kawamura
Kazuhiko Matsunaga
Masaru Kaneizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP8705884A priority Critical patent/JPS60227801A/en
Publication of JPS60227801A publication Critical patent/JPS60227801A/en
Publication of JPH0380528B2 publication Critical patent/JPH0380528B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高分子重合体より構成される中空糸膜
に関するもので小型で高性能を有する限外過、
透析装置に使用される中空糸膜捲取体に関するも
のである。 従来の技術 近年海水、工業排水、下水道排水、血液等の液
状混合物より特定の成分をその用途、目的に応じ
て多孔質膜を利用して分離する処理方法が研究さ
れ純水、無菌水の製造、血液の浄化、食品の濃縮
等に応用されている。実際にこれらの用途に多孔
質膜を利用するに当つては、それぞれの用途に応
じて被処理液体の導入口、導出口、透過液の導出
口、透析液の導入口、導出口を種々に組合せても
つ容器に多孔質膜を収納したいわゆるモジユール
という形がとられる。この場合多孔質膜を中空糸
状で利用することは広い膜面積が利用でき有用で
ある。分離、濃縮、透析等の機能をもつ膜として
は多様な高分子重合体系材料がすでに実用に供さ
れているが、なかでもセルロース・エステル系材
料は多種多様な製膜方法が可能であり、またその
製膜方法に応じて広範囲の機能をもつ膜が得られ
有用な材料である。 前述したように中空糸膜はモジユールという形
で利用されるわけであるが、その性能特に限外
過速、透析速度が大きい程小型化が可能である。
特に腎不全患者を救うために使用されている中空
糸型血液透析モジユールでは小型化が体外循環血
液量の減少の面から強く要請されている。またこ
れに伴い限外過速度の増大、膜厚の低下が求め
られている。このような要請のもと例えば特開昭
56−307号公報にみられるように種々の努力が払
れてはいるが未だ十分な特性をもつモジユールは
得られてはいない。この原因としては高い限外
過速度を有する中空糸膜を得ようとすれば、その
膜の開孔率を必然的に高めることが求められその
結果中空糸としての機械的強力が低下することが
避けられなく、また薄膜化を計る場合も同様のこ
とが云える。従つてこのような中空糸膜をモジユ
ールに組立る場合細心の注意を払つて取扱わねば
ならず、僅かのトラブルでも中空糸膜を損傷し、
使用時に損傷部位よりリーク現象を起し中空糸膜
が本来もつ機能が十分に発揮されないばかりか、
人工腎臓用モジユールとして用いられる場合には
人命をも損う事態を招きかねない。 発明の目的 本発明者等はこのような問題を解決すべく鋭意
研究を重ねてきた結果本発明を完成するに到つた
ものである。即ち本発明は中空糸状限外過膜に
おいて37℃における水の透過速度をL(ml/m2
mmHghr)、引張時における降伏強力をS(g重)
とするとき、製膜紡糸時に次の一般式(1)で示され
る中空糸(A)と一般式(2)で示される中空糸(B)がその
本数に関して一般式(3)で示される割合にて合糸捲
取られたことを特徴とする中空糸状透析膜捲取体
である。 L≧S、L≧15、L+S≧30 (1) L≦20、S≧17 (2) SA・nA+SB・nB≧18(nA+nB)、 0.34≧nB/nA≧0.14 8≧nA+nB (3) (ただしnAは中空糸(A)の本数、nBは中空糸(B)の本
数である。SAは中空糸(A)の、SBは中空糸(B)の降
伏強力である。) 発明の構成 本発明でいう中空糸状限外過膜とは高分子重
合体を主成分とする中空糸状多孔質膜であり、ポ
リエチレン、ポリプロピレン、ポリ塩化ビニデン
ポリ酢酸ビニル、ポリエステル、ナイロン、セル
ロース、セルロースエステル、ポリビニルアルコ
ール、ポリメチルメタアクリレートエチレン−酢
酸ビニル共重合体等よりなるものであるがなかで
もセルロース・エステル系の材料が先述の理由で
好ましい。これらの材料の併用及び充填剤、添加
剤が使用される場合も本発明に含まれる。本発明
の中空糸を得るに当つては従来から行なわれてい
る製膜紡糸方法がすべて採用できる。即ち溶融紡
糸法、乾式紡糸法、湿式紡糸法、半乾式・湿式紡
糸法(エアーギヤツプ紡糸法)は全て採用するこ
とができる。製膜紡糸後本発明の捲取体は、モジ
ユール製造時に解除捲戻しされ所定の長さ、形態
に収束され、容器に収納されその端部が目的に応
じ開口された形で接着固定される。本発明を得る
に当つては中空糸(A)と中空糸(B)を一般式(3)の範囲
で合糸して捲取るわけであるがその方法としては
同一の紡糸方法を用いて中空糸(A)及び中空糸(B)を
得、合糸し捲取る方法と異種の紡糸方法を用いて
中空糸(A)及び中空糸(B)を得る方法があるが何れか
に限定されるものではない。具体的に述べれば湿
式紡糸法にて中空糸(A)中空糸(B)を得、合糸捲取る
方法、溶融紡糸法にて中空糸(A)を得、乾式紡糸法
にて中空糸(B)を得、合糸捲取る方法等があるがこ
れらの方法に限定されるものではない。例えば同
一紡糸法を採用する場合は中空糸(A)と中空糸(B)を
その膜厚を変えることにより同一の紡糸工程を採
用し得ることができる。また湿式紡糸法を採用す
る場合にはその組成が異なる複数の紡糸原液を用
いて各々別個のノズルより吐出し同一の凝固・水
洗・後処理を施したのち捲取り、直前に合糸捲取
る方法が有利であるがこれに限定されるものでは
ない。本発明は前述した式(1)、(2)、(3)の範囲に限
定されるが(1)式の範囲外の中空糸のみを用いてモ
ジユールを作成する場合はその限外過速度が小
さく本発明の目的を達成することができない。一
方(1)式で示される中空糸膜(A)のみを用いる場合
は、その機械的特性が劣つている故モジユール製
造時に損傷しやすく実用に供しない。例えばモジ
ユールの製造が可能であつたとしてもそのような
中空糸を用いた場合は、中空糸の膜厚が大きい場
合に限られモジユールケースに収納される中空糸
数が減少する故小型高性能モジユールの提供とい
う本発明の目的を逸脱する。(2)式で示される中空
糸(B)のみを用いる場合はモジユール製造に際し中
空糸が損傷する場合は少ないがその限外過速度
が小さく本発明の趣旨に反する。中空糸(A)と中空
糸(B)とを式(3)で示される割合で合糸し捲取つた場
合のみ本発明の目的を達成する捲取体が得られ
る。即ち、SA・nA+SB・nB<18(nA+nB)の場合
はモジユール製造時に中空糸膜が損傷しやすく、
又0.34<nB/nAあるいは0.14>nA/nBの場合はそ
の機械的特性、限外過速度のバランスが悪く本
発明の目的に適うモジユールを得ることができな
い。nA+nB>8の場合は紡糸捲取時に中空糸が損
傷しやすく好ましくない。 発明の効果 このようにして得られる本発明捲取体は小型で
高性能を発揮するモジユールが得られ、モジユー
ル製造に係る解除、ケーシング接着等の工程で損
傷することが少なく極めて有用である。 実施例 次に本発明の内容を実施例により詳しく説明す
る。 比較例 1 セルロース・ジアセテート26重量部、N−メチ
ル−2−ピロリドン60重量部、エチレングリコー
ル14重量部よりなる紡糸原液を、流動パラフイン
を芯材として8ホール2重管ノズルより吐出し、
中空部を0.01秒通過させた後、N−メチル−2−
ピロリドン21重量部、エチレングリコール4重量
部、水75重量部からなる凝固浴中に導き3.9秒間
通過させその後、水洗浴を通過させ、更に濃度49
%のグリセリン水溶液中を5.1秒間通過させ、雰
囲気温度70℃のゾーンを通過させた後合糸し50
m/minの速度でボビンに捲取つた。この工程に
於ては芯材の吐出量は常に一定で得られる糸の内
半径が200μmとなるようにした。一方ドープの
吐出量を変更し膜厚5μmから27μmの糸を得た。
得られた糸を解除し、内液を除き円筒状ケースに
収納し、両端部を樹脂で接着後切断開口させ透析
用モジユールを作成しその水の透過速度を測定し
た。その結果を中空糸の他の特性とともに表−1
に示す。 比較例 2 セルロース・ジアセテート33重量部、N−メチ
ル−2−ピロリドン54重量部、エチレングリコー
ル13重量部からなる紡糸原液を用い比較例1と同
様の操作を行つた。結果を表−1に示す。 実施例 8ホールあるいは4ホールノズルを用いて比較
例1、比較例2で使用した組成のドープを併用し
比較例1の方法で製膜紡糸した。得られた捲取体
を用いて比較例1と同様の操作を行つた。結果を
表−1に示す。 比較例 3 使用ドープの割合を変え実施例と同様の操作を
行つた。結果を表−1に示す。 比較例 4 12ホールノズルを用いて比較例2と同様の操作
を試みたが捲取体を解除してみると中空糸の損傷
部位が多く実用に供することができなかつた。 表−1より本発明が極めて有用であることが判
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a hollow fiber membrane composed of a high-molecular polymer.
This invention relates to a hollow fiber membrane winding body used in a dialysis device. Conventional technology In recent years, research has been conducted on treatment methods that use porous membranes to separate specific components from liquid mixtures such as seawater, industrial wastewater, sewage wastewater, and blood, depending on their use and purpose, and have led to the production of pure water and sterile water. It is applied to blood purification, food concentration, etc. When actually using porous membranes for these applications, the inlet and outlet for the liquid to be treated, the outlet for the permeate, and the inlet and outlet for the dialysate must be set in various ways depending on the application. It takes the form of a so-called module, in which a porous membrane is housed in a combined container. In this case, it is useful to use a porous membrane in the form of hollow fibers because a wide membrane area can be utilized. A variety of polymer-based materials have already been put into practical use as membranes with functions such as separation, concentration, and dialysis, but cellulose ester-based materials in particular can be fabricated using a wide variety of membrane methods. It is a useful material that can produce films with a wide range of functions depending on the film forming method. As mentioned above, the hollow fiber membrane is used in the form of a module, and the larger its performance, especially its ultraspeed and dialysis rate, the more compact it can be.
In particular, there is a strong demand for miniaturization of hollow fiber hemodialysis modules used to rescue patients with renal failure from the viewpoint of reducing the amount of extracorporeally circulating blood. In addition, along with this, an increase in ultra-limit overspeed and a decrease in film thickness are required. Based on such requests, for example,
Although various efforts have been made as seen in Publication No. 56-307, a module with sufficient characteristics has not yet been obtained. The reason for this is that in order to obtain a hollow fiber membrane with a high ultimate overspeed, it is necessary to increase the porosity of the membrane, which results in a decrease in the mechanical strength of the hollow fiber. This is unavoidable, and the same can be said when trying to make the film thinner. Therefore, when assembling such hollow fiber membranes into modules, they must be handled with extreme care, as even the slightest trouble can damage the hollow fiber membranes.
During use, leakage occurs from the damaged area, and the hollow fiber membrane's original functions are not fully demonstrated.
If used as a module for an artificial kidney, it may lead to a situation in which human life is lost. Purpose of the Invention The present inventors have completed the present invention as a result of intensive research to solve such problems. That is, the present invention reduces the water permeation rate at 37°C in a hollow fiber ultrafiltration membrane to L (ml/m 2
mmHghr), the yield strength in tension is S (g weight)
When, during membrane spinning, the ratio of the number of hollow fibers (A) represented by the following general formula (1) and hollow fibers (B) represented by general formula (2) as shown in general formula (3) is This is a hollow fiber-shaped dialysis membrane wound body characterized in that it is wound up with doubling yarns. L≧S, L≧15, L+S≧30 (1) L≦20, S≧17 (2) S A・n A +S B・n B ≧18 (n A +n B ), 0.34≧n B /n A ≧0.14 8≧n A +n B (3) (where n A is the number of hollow fibers (A), n B is the number of hollow fibers (B). S A is the number of hollow fibers (A), and S B is the number of hollow fibers (A). This is the yield strength of the hollow fiber (B).) Constitution of the Invention The hollow fiber ultrafiltration membrane as used in the present invention is a hollow fiber porous membrane whose main component is a high molecular weight polymer, such as polyethylene, polypropylene, polychlorinated These materials include vinylene polyvinyl acetate, polyester, nylon, cellulose, cellulose ester, polyvinyl alcohol, polymethyl methacrylate ethylene-vinyl acetate copolymer, and among others, cellulose ester materials are preferred for the reasons mentioned above. The present invention also includes cases where these materials are used in combination and fillers and additives are used. In obtaining the hollow fibers of the present invention, all conventional membrane-spinning methods can be employed. That is, melt spinning, dry spinning, wet spinning, and semi-dry/wet spinning (air gap spinning) can all be used. After membrane-forming and spinning, the wound body of the present invention is unwound and unwound during module production, converged to a predetermined length and shape, and then stored in a container and adhesively fixed with its end opened according to the purpose. To obtain the present invention, hollow fibers (A) and hollow fibers (B) are combined within the range of general formula (3) and wound. There are two methods: obtaining yarn (A) and hollow fiber (B), doubling and winding the yarn, and using different spinning methods to obtain hollow fiber (A) and hollow fiber (B), but the method is limited to either method. It's not a thing. Specifically speaking, hollow fibers (A) and (B) are obtained by a wet spinning method, hollow fibers (A) are obtained by a method of doubling and winding, and hollow fibers (A) are obtained by a melt spinning method, and hollow fibers (A) are obtained by a dry spinning method. There are methods such as obtaining B) and winding up the yarn, but the method is not limited to these methods. For example, when employing the same spinning method, the same spinning process can be employed by changing the thickness of the hollow fibers (A) and hollow fibers (B). In addition, when using a wet spinning method, multiple spinning stock solutions with different compositions are discharged from separate nozzles, subjected to the same coagulation, water washing, and post-processing, and then wound up, and immediately before winding up the doubling solution. is advantageous, but is not limited to this. Although the present invention is limited to the ranges of formulas (1), (2), and (3) described above, when creating a module using only hollow fibers outside the range of formula (1), the ultimate overspeed of the module is It is too small to achieve the purpose of the present invention. On the other hand, when only the hollow fiber membrane (A) represented by formula (1) is used, it is not practical due to its poor mechanical properties and is easily damaged during module production. For example, even if it were possible to manufacture a module, using such hollow fibers would only be possible if the hollow fibers had a large membrane thickness, and the number of hollow fibers to be housed in the module case would be reduced, resulting in a small, high-performance module. This deviates from the purpose of the present invention, which is to provide the following. When only the hollow fibers (B) represented by formula (2) are used, the hollow fibers are less likely to be damaged during module production, but the ultimate overspeed is small, which is contrary to the purpose of the present invention. A wound body that achieves the object of the present invention can be obtained only when the hollow fibers (A) and hollow fibers (B) are combined and wound at the ratio shown by formula (3). In other words, if S A・n A + S B・n B < 18 (n A + n B ), the hollow fiber membrane is likely to be damaged during module manufacture;
Further, in the case of 0.34<n B /n A or 0.14>n A /n B , the mechanical properties and the extreme overspeed are unbalanced, and a module that meets the purpose of the present invention cannot be obtained. If n A + n B > 8, the hollow fibers are likely to be damaged during spinning and winding, which is undesirable. Effects of the Invention The thus-obtained wound body of the present invention is a compact module that exhibits high performance, and is extremely useful as it is less likely to be damaged during steps such as release and casing adhesion related to module production. Examples Next, the contents of the present invention will be explained in detail by examples. Comparative Example 1 A spinning dope consisting of 26 parts by weight of cellulose diacetate, 60 parts by weight of N-methyl-2-pyrrolidone, and 14 parts by weight of ethylene glycol was discharged from an 8-hole double tube nozzle using liquid paraffin as a core material.
After passing through the hollow part for 0.01 seconds, N-methyl-2-
It was introduced into a coagulation bath consisting of 21 parts by weight of pyrrolidone, 4 parts by weight of ethylene glycol, and 75 parts by weight of water, passed for 3.9 seconds, then passed through a water washing bath, and further concentrated to 49 parts by weight.
% glycerin aqueous solution for 5.1 seconds, and after passing through a zone with an ambient temperature of 70°C, the yarn was doubled.
It was wound onto a bobbin at a speed of m/min. In this process, the amount of core material discharged was always constant so that the inner radius of the yarn obtained was 200 μm. On the other hand, by changing the amount of dope discharged, yarns with a film thickness of 5 μm to 27 μm were obtained.
The obtained thread was released, the internal liquid was removed, it was stored in a cylindrical case, and both ends were glued with resin and cut open to create a dialysis module, and the water permeation rate was measured. The results are shown in Table 1 along with other properties of the hollow fiber.
Shown below. Comparative Example 2 The same operation as in Comparative Example 1 was carried out using a spinning dope consisting of 33 parts by weight of cellulose diacetate, 54 parts by weight of N-methyl-2-pyrrolidone, and 13 parts by weight of ethylene glycol. The results are shown in Table-1. Example A membrane was formed and spun using the method of Comparative Example 1 using an 8-hole or 4-hole nozzle and using the dope having the composition used in Comparative Example 1 and Comparative Example 2 in combination. The same operation as in Comparative Example 1 was performed using the obtained rolled body. The results are shown in Table-1. Comparative Example 3 The same operation as in Example was carried out by changing the proportion of the dope used. The results are shown in Table-1. Comparative Example 4 The same operation as in Comparative Example 2 was attempted using a 12-hole nozzle, but when the winding body was released, there were many damaged parts of the hollow fibers, making it impossible to put it to practical use. It can be seen from Table 1 that the present invention is extremely useful.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 中空糸状限外過膜に於て37℃における水の
透過速度をL(ml/m2mmHghr)、引張時における
降伏強力をS(g重)とするとき、製膜紡糸時に
下記の一般式(1)で示される中空糸(A)と下記の一般
式(2)で示される中空糸(B)がその本数に関して下記
の一般式(3)で示される割合にて捲取られたことを
特徴とする中空糸膜捲取体。 L≧S、L≧15、L+S≧30 (1) L≦20、S≧17 (2) SA・nA+SB・nB≧18(nA+nB)、 0.34≧nB/nA≧0.14、 8≧nA+nB (3) (ただしnAは中空糸(A)の本数nBは中空糸(B)の本数
である。SAは中空糸(A)の、SBは中空糸(B)の降伏
強力である。) 2 中空糸がセルロース・エステル系材料を主成
分とするものである特許請求の範囲第1項記載の
捲取体。
[Claims] 1. When the water permeation rate at 37°C in a hollow fiber ultrafiltration membrane is L (ml/m 2 mmHghr), and the yield strength under tension is S (g weight), During spinning, the hollow fibers (A) represented by the following general formula (1) and the hollow fibers (B) represented by the following general formula (2) are mixed in the ratio shown by the following general formula (3) with respect to their number. A hollow fiber membrane wound body characterized by being wound. L≧S, L≧15, L+S≧30 (1) L≦20, S≧17 (2) S A・n A +S B・n B ≧18 (n A +n B ), 0.34≧n B /n A ≧0.14, 8≧n A +n B (3) (where n A is the number of hollow fibers (A) n B is the number of hollow fibers (B). S A is the number of hollow fibers (A), S B is the number of hollow fibers (A) 2. The wound body according to claim 1, wherein the hollow fiber is mainly composed of a cellulose ester material.
JP8705884A 1984-04-27 1984-04-27 Winding body of hollow yarn membrane Granted JPS60227801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8705884A JPS60227801A (en) 1984-04-27 1984-04-27 Winding body of hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8705884A JPS60227801A (en) 1984-04-27 1984-04-27 Winding body of hollow yarn membrane

Publications (2)

Publication Number Publication Date
JPS60227801A JPS60227801A (en) 1985-11-13
JPH0380528B2 true JPH0380528B2 (en) 1991-12-25

Family

ID=13904336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8705884A Granted JPS60227801A (en) 1984-04-27 1984-04-27 Winding body of hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS60227801A (en)

Also Published As

Publication number Publication date
JPS60227801A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
KR100432464B1 (en) Polysulfone Hollow Fiber Semipermeable Membrane
US5340480A (en) Polysulfone-based hollow fiber membrane and process for manufacturing the same
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
CA2202969C (en) Selectively permeable hollow fiber membrane and process for producing same
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
US5783124A (en) Cellulose acetate hemodialysis membrane
JPS63296940A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPH0369573B2 (en)
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH10216489A (en) Cellulose hollow fiber membrane and its production
JPH0380528B2 (en)
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
WO1996035504A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JP3424807B2 (en) Hollow fiber membrane
JPH0475052B2 (en)
JP3770145B2 (en) Method for producing semipermeable membrane and dialyzer using the semipermeable membrane
JPH10263375A (en) Selective permeable hollow fiber membrane
CN1317345A (en) Material of artificial kidney for hemodialysis and its preparing process
JP3236233B2 (en) Method for producing selectively permeable hollow fiber membrane
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane
JPS5891806A (en) Hollow filament film for dialysis
JPH10165774A (en) Permselective hollow yarn membrane
JPS61185305A (en) Preparation of cellulose acetate hollow yarn
JP2000210544A (en) Production of semipermeable membrane
JP2710711B2 (en) Cellulose diacetate hollow fiber