JPH0380512A - Laminated type silicon oxide thin film capacitor and manufacture thereof - Google Patents

Laminated type silicon oxide thin film capacitor and manufacture thereof

Info

Publication number
JPH0380512A
JPH0380512A JP21602389A JP21602389A JPH0380512A JP H0380512 A JPH0380512 A JP H0380512A JP 21602389 A JP21602389 A JP 21602389A JP 21602389 A JP21602389 A JP 21602389A JP H0380512 A JPH0380512 A JP H0380512A
Authority
JP
Japan
Prior art keywords
silicon oxide
film
oxide film
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21602389A
Other languages
Japanese (ja)
Inventor
Naomichi Sakai
直道 坂井
Masanaga Kikuzawa
菊澤 将長
Yoshitaka Kubota
吉孝 窪田
Hiroshi Yamamura
山村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21602389A priority Critical patent/JPH0380512A/en
Priority to US07/568,994 priority patent/US5088003A/en
Priority to EP19900309256 priority patent/EP0414542A3/en
Priority to CA002023842A priority patent/CA2023842A1/en
Publication of JPH0380512A publication Critical patent/JPH0380512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To enhance frequency characteristic by alternately laminating a silicon oxide film and an electrode film on the surface of a semiconductor silicon substrate, and providing a structure in which electrodes are led in parallel at every other layer including the substrate. CONSTITUTION:When a first layer of silicon oxide film 3 on a semiconductor silicon substrate 1 is formed by an oxide film method, the surface of the substrate is heat treated at a high temperature to be oxidized in an atmosphere in which oxygen partial pressure is controlled or in a gas flow containing steam to form an oxide film 3 of a predetermined thickness. Then, a metal electrode film 2 of white metal is formed on the film 3 by a method such as sputtering, etc. Thus, excellent frequency characteristic of the silicon oxide and temperature characteristic are provided, and reduction in thickness of the film, lamination are facilitated, thereby obtaining a capacitor having a small size and a large capacity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は積層型酸化珪素薄膜コンデンサ及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multilayer silicon oxide thin film capacitor and a method for manufacturing the same.

[従来技術及び発明が解決しようとする課8]コンデン
サは電気、電子回路を形成する上で必要な部品であり、
テレビ、VTR,OA機器などには数多くのコンデンサ
が使用されている。
[Issue 8 to be solved by the prior art and the invention] Capacitors are necessary components for forming electrical and electronic circuits.
Many capacitors are used in televisions, VTRs, OA equipment, etc.

近年、装置の小型化、高性能化、低価格化に伴いその内
部部品であるコンデンサにも小型で大容量であること、
低誘電損失であること、容量の温度特性、周波数特性が
安定であること、低価格であることなどが要求されてい
る。従来使用されているきたコンデンサには、温度補償
用積層セラミックスコンデンサ、高誘電率系積層セラミ
ックスコンデンサ、マイカコンデンサ、タンタル電解コ
ンデンサなどがあり、これらは用途に応じて選択され使
用されている。これらの内、温度補償用積層セラミック
スコンデンサは、容量、誘電損失の温度特性、周波数特
性に優れた材料を用い、グリ−ンシート法などによって
積層し作製されるが、誘電率が比較的小さく、これの大
容量のものを得るには、−層あたりの膜厚を薄くするか
、積層数を増化させねばならない。現在、グリーンシー
ト法で得られる一層あたりの最低膜厚は10〜20μm
が限界であり、それ以上薄くすると耐電圧の低下やピン
ホールなどによる絶縁破壊などの問題を生じ、容量、誘
電損失の温度特性、周波数特性に優れたコンデンサを得
ようとすると、必然的に大型化せざるを得ないなどの欠
点があった。
In recent years, with the miniaturization, higher performance, and lower price of devices, the capacitors that are internal components have also become smaller and larger in capacity.
It is required to have low dielectric loss, stable capacitance temperature characteristics and frequency characteristics, and low cost. Conventionally used capacitors include temperature-compensating multilayer ceramic capacitors, high dielectric constant multilayer ceramic capacitors, mica capacitors, and tantalum electrolytic capacitors, which are selected and used depending on the application. Among these, temperature-compensated multilayer ceramic capacitors are manufactured by laminating them using materials such as the green sheet method using materials with excellent capacitance, dielectric loss temperature characteristics, and frequency characteristics. In order to obtain a large capacity, the film thickness per layer must be reduced or the number of laminated layers must be increased. Currently, the minimum film thickness per layer obtained using the green sheet method is 10 to 20 μm.
is the limit, and making it thinner than that will cause problems such as a drop in withstand voltage and dielectric breakdown due to pinholes, etc., and if you try to obtain a capacitor with excellent capacitance, dielectric loss temperature characteristics, and frequency characteristics, you will inevitably have to make it large. There were drawbacks such as the fact that it had no choice but to change.

一方、小型で大容量の高誘電率系積層セラミックスコン
デンサがあるが、このものは容量、誘電損失の温度特性
、周波数特性等が必ずしも良好でない。又、マイカコン
デンサは、容量、誘電損失の温度特性、周波数特性は優
れているが、これは、天然のマイカを使用するため性能
にバラツキがあり、又、−層あたりの厚さにも限界があ
り、大容量のものを得ようとすると大型化せざるを得な
い。
On the other hand, there are small-sized, large-capacity high-permittivity multilayer ceramic capacitors, but these capacitances, temperature characteristics of dielectric loss, frequency characteristics, etc. are not necessarily good. Mica capacitors have excellent capacitance, dielectric loss, temperature characteristics, and frequency characteristics, but because they use natural mica, there are variations in performance, and there is also a limit to the thickness per layer. Therefore, if you want to obtain a large capacity, you have to increase the size.

容量、誘電損失の温度特性、周波数特性に優れ、小型で
大容量のコンデンサとしては、タンタル電解コンデンサ
があるが、このものは電解コンデンサであるために漏れ
電流や極性′を持つなどの問題があり、また、原料とし
て用いるタンタルが高価であるため経済面で問題がある
Tantalum electrolytic capacitors are small, large-capacity capacitors with excellent capacitance, dielectric loss temperature characteristics, and frequency characteristics, but because they are electrolytic capacitors, they have problems such as leakage current and polarity. Moreover, since tantalum used as a raw material is expensive, there is an economic problem.

本発明で用いる酸化珪素は、誘電率、誘電損失の周波数
特性、温度特性に優れた材料として古くから知られてい
たが、このものを通常の単体コンデンサとして使用とす
ると、誘電率が非常に低い(約4)ため、得られる容量
が実用上申さすぎ、低容量のコンデンサしか得ることが
できない欠点があった。このため、酸化珪素は、この分
野ではICの絶縁材料などとして用いられているにすぎ
ない。
The silicon oxide used in the present invention has been known for a long time as a material with excellent dielectric constant, frequency characteristics of dielectric loss, and temperature characteristics, but when this material is used as a normal single capacitor, it has a very low dielectric constant. (approximately 4), the capacitance obtained is too small for practical use, and there is a drawback that only a low capacitance capacitor can be obtained. For this reason, silicon oxide is only used as an insulating material for ICs in this field.

本発明は、上述した従来のコンデンサの持つ欠点を解決
するもので、酸化珪素の優れた周波数特性、温度特性を
利用したものであり、酸化膜法、塗布法などの手法を用
いて薄膜化、積層化することにより、周波数特性、温度
特性に優れた小型、大容量、低価格の積層型酸化珪素薄
膜コンデンサ及びその製造方法を提供することを目的と
するものである。
The present invention solves the above-mentioned drawbacks of conventional capacitors, and utilizes the excellent frequency characteristics and temperature characteristics of silicon oxide. The object of the present invention is to provide a small, large-capacity, and low-cost multilayer silicon oxide thin film capacitor with excellent frequency characteristics and temperature characteristics, and a method for manufacturing the same.

[課題を解決するための手段及び作用コ本発明の積層型
酸化珪素薄膜コンデンサは、半導性シリコン基板表面に
酸化珪素膜と電極膜を交互に積層してなり、シリコン基
板を含めて一層おきに電極を並列に取り出した溝造を有
することを特徴とする。更に本発明者らは、このような
コンデンサの一製法として、例えば、第一層目の酸化珪
素膜はシリコン基板表面を熱酸化処理することにより、
あるいは熱処理によって酸化珪素膜となる酸化珪素前駆
体を同表面に塗布し、これを熱処理することにより形成
する方法、及び、電極膜を介して形成する第二層目以降
の酸化珪素膜は、熱処理により酸化珪素膜となる酸化珪
素前駆体の熱処理により形成する方法を見出した。次に
本発明をさらに詳しく説明する。
[Means and effects for solving the problem] The multilayer silicon oxide thin film capacitor of the present invention is formed by alternately stacking silicon oxide films and electrode films on the surface of a semiconducting silicon substrate. It is characterized by having a groove structure in which electrodes are taken out in parallel. Furthermore, the present inventors have found that, as one method for manufacturing such a capacitor, for example, the first layer of silicon oxide film is formed by thermally oxidizing the surface of the silicon substrate.
Alternatively, a silicon oxide precursor that becomes a silicon oxide film through heat treatment is coated on the same surface and then heat treated to form the silicon oxide film, and the second and subsequent layers formed through the electrode film are formed by heat treatment. discovered a method of forming a silicon oxide film by heat treating a silicon oxide precursor. Next, the present invention will be explained in more detail.

本発明で用いる導電性基板は、比抵抗の低い半導性シリ
コン基板、好ましくは(1,1Ω・叩以下の比抵抗をも
つ半導性シリコンを用いる。基板上の第一層目の酸化珪
素膜を、シリコン基板表面を熱酸化する酸化膜法によっ
て形成する場合、その基板表面を、酸素分圧を制御した
雰囲気又は水蒸気を含んだ気流中において、800℃以
上の高温で熱処理することにより酸化し、所定膜厚の酸
化膜を形成させる。上記方法で、0.1〜0.5μmの
膜厚の酸化膜を得るには、酸素分圧760〜80 to
rr 。
The conductive substrate used in the present invention is a semiconducting silicon substrate with a low resistivity, preferably a semiconducting silicon having a resistivity of 1.1 Ω or less. When a film is formed by an oxide film method in which the surface of a silicon substrate is thermally oxidized, the surface of the substrate is oxidized by heat treatment at a high temperature of 800°C or higher in an atmosphere with a controlled oxygen partial pressure or in an air flow containing water vapor. and form an oxide film with a predetermined thickness.In order to obtain an oxide film with a thickness of 0.1 to 0.5 μm using the above method, the oxygen partial pressure is 760 to 80 to
rr.

水分圧0〜700Lorrの雰囲気で900〜1100
°C,O。
900 to 1100 in an atmosphere with water pressure of 0 to 700 Lorr
°C, O.

5〜24時間熱処理を行う。Heat treatment is performed for 5 to 24 hours.

次いでこの酸化膜表面に電極膜を形成させるがこれは、
スパッタリング法、蒸着法、塗布法、メツキ法などの通
常の方法により、高温焼成に耐え得る電極、好ましくは
白金属系の金属電極膜を形成させる。ここで、電極を形
成する金属層と酸化珪素との接着強度を向上させるため
に、Ni、 Orなどの接着層をこれらの間に形成させ
ることも好ましい結果を得る。又シリコン基板表面に、
第一層目の酸化珪素膜形成を、熱処理により酸化珪素膜
となる酸化珪素前駆体を塗布し、これを加熱することに
より酸化珪素膜とする事もできる。
Next, an electrode film is formed on the surface of this oxide film.
An electrode, preferably a platinum-based metal electrode film, that can withstand high-temperature firing is formed by a conventional method such as sputtering, vapor deposition, coating, or plating. Here, in order to improve the adhesive strength between the metal layer forming the electrode and the silicon oxide, it is also preferable to form an adhesive layer of Ni, Or, etc. between them. Also, on the silicon substrate surface,
The first layer of silicon oxide film can be formed by applying a silicon oxide precursor that becomes a silicon oxide film through heat treatment and heating this.

この塗布法により酸化珪素膜形成を行う方法は、熱酸化
法、又は塗布法により第一層目の酸化珪素膜を形成し、
電極膜を形成した後第二層以降の酸化珪素膜を形成する
場合に適用する。
The method of forming a silicon oxide film using this coating method is to form a first layer of silicon oxide film by a thermal oxidation method or a coating method,
This method is applied when forming a second layer or subsequent silicon oxide films after forming an electrode film.

この塗布法は、まず、シリコン基板あるいは電極膜表面
に、熱処理により酸化珪素膜となる酸化珪素前駆体、例
えば有機珪素化合物、具体的には、テトラメトキシシラ
ン、テトラエトキシシラン、テトライソプロポコキシシ
ラン、テトラn−プロポジキシシラン、テトラブトキシ
シラン等をエタノール、プロパツール、ブタノールを等
の溶媒に溶解した溶液を、スピンコーティング、デイツ
プコーティングなどの方法により塗布し、この塗布面を
乾燥して酸化珪素前駆体から溶媒を除去する。
In this coating method, first, a silicon oxide precursor, such as an organic silicon compound, such as tetramethoxysilane, tetraethoxysilane, or tetraisopropoxysilane, which becomes a silicon oxide film by heat treatment, is applied to the surface of a silicon substrate or an electrode film. A solution of , tetra-n-propoxysilane, tetrabutoxysilane, etc. dissolved in a solvent such as ethanol, propatool, butanol, etc. is applied by a method such as spin coating or dip coating, and the coated surface is dried and oxidized. Removing the solvent from the silicon precursor.

この塗布、乾燥の操作を、必要な膜厚を得るまで繰り返
した後に、熱処理を行い酸化珪素膜を得る。
After repeating this coating and drying operation until the required film thickness is obtained, heat treatment is performed to obtain a silicon oxide film.

この塗布法による膜の膜厚は、塗布、乾燥の操作の繰り
返し回数、前駆体溶液の濃度、あるいは塗布速度などを
制御することによって行うことができる。前記した前駆
体膜の乾燥は200℃以上、熱処理は600℃以上で行
うことが好ましい。又、熱処理の雰囲気は大気中で良く
、熱処理時間は10分以上である。更に電極膜及び酸化
珪素膜の積層数を増加させるためには、その後引き続き
、前記した電極膜作製工程、塗布法による酸化珪素膜作
成工程を必要回数繰り返して酸化珪素薄膜積層体を製造
する。この際、最上層の表層は電極膜であることが望ま
しい。
The thickness of the film formed by this coating method can be controlled by controlling the number of repetitions of coating and drying operations, the concentration of the precursor solution, the coating speed, and the like. It is preferable that the precursor film described above be dried at 200°C or higher and the heat treatment performed at 600°C or higher. Further, the atmosphere for the heat treatment may be air, and the heat treatment time may be 10 minutes or more. In order to further increase the number of laminated electrode films and silicon oxide films, the above-described electrode film fabrication process and silicon oxide film fabrication process by coating method are repeated as many times as necessary to produce a silicon oxide thin film laminate. At this time, it is desirable that the uppermost surface layer is an electrode film.

シリコン基板表面に形成する酸化珪素膜の第−層の形成
は、熱酸化法、塗布法のいづれでも良いが、酸化処理法
は、通常広く行われているシリコン半導体作成技術を用
いることができるので比較的容易であり、工程の簡略化
が可能となるので好ましい。
The first layer of silicon oxide film to be formed on the surface of the silicon substrate may be formed by either a thermal oxidation method or a coating method, but the oxidation treatment method can use commonly used silicon semiconductor fabrication techniques. This is preferable because it is relatively easy and the process can be simplified.

上記した方法で得た酸化珪素膜、電極膜は夫々0.03
〜O、Burn 、 0.03〜O、lumの膜厚のも
のである。
The silicon oxide film and electrode film obtained by the above method were each 0.03
The film thickness is ~O, Burn, 0.03~O, lum.

本発明のコンデンサーの電極は、シリコン基板を含めて
一層おきに並列にとり出した構成である。
The electrodes of the capacitor of the present invention have a structure in which every other layer including the silicon substrate is taken out in parallel.

「発明の効果コ 本発明の積層型酸化珪素薄膜コンデンサは、材料として
酸化珪素を用いており、酸化珪素の有する優れた周波数
特性、及び温度特性を有し、かつ薄膜化、積層化が容易
となり、小型で大容量のコンデンサを提供し得る。また
、基板としてシリコンを用いることにより低価格化が可
能である。
"Effects of the Invention The multilayer silicon oxide thin film capacitor of the present invention uses silicon oxide as a material, has excellent frequency characteristics and temperature characteristics that silicon oxide has, and can be easily made thin and laminated. , it is possible to provide a small capacitor with a large capacity.Furthermore, by using silicon as the substrate, it is possible to reduce the cost.

[実施例コ 以下1本発明を実施例に裁づいて詳細に説明する。[Example code] Hereinafter, the present invention will be explained in detail based on examples.

実施例1 導電性基板基板として比抵抗0.01Ω・CIIIの半
導体シリコン基板を用い、95℃の温水中を通した酸素
ガスを3L/minで流した気流中において、シリコン
基板を1050℃で1時間熱処理し0.3μmの酸化珪
素膜を得た。得られた酸化珪素膜表面に通常のスパッタ
法によりNi/Pt電極を付け、ゾル−ゲル法による成
膜用の基板とした。酸化珪素前駆体溶液はテトラエトキ
シシラン、水、プロピルアルコールをモル比で178/
10に混合した溶液を用い、塗布、乾燥を各々3回繰り
返した。ここで、塗布はスピンコーティングで5000
rpIIl、乾燥は300℃、1分間行った。更に、9
00℃、20分間焼成し、0.3μmの酸化珪素膜を得
た。その後酸化珪素膜表面にA1電極を付け、一部HP
溶液にてエツチングしてpt電極取り出し口を作り、図
3に示すように、基板と表面電極を接続し、内部電極と
並列に電極を取り出し積層型酸化珪素薄膜コンデンサを
得た。
Example 1 A semiconductor silicon substrate with a specific resistance of 0.01 Ω/CIII was used as a conductive substrate, and the silicon substrate was heated at 1050°C for 1 hour in an airflow of 3L/min of oxygen gas passed through warm water at 95°C. A 0.3 μm silicon oxide film was obtained by heat treatment for a period of time. A Ni/Pt electrode was attached to the surface of the obtained silicon oxide film by a normal sputtering method to prepare a substrate for film formation by the sol-gel method. The silicon oxide precursor solution contains tetraethoxysilane, water, and propyl alcohol in a molar ratio of 178/
Coating and drying were repeated three times each using a solution mixed with No. 10. Here, the coating is done by spin coating at 5000
rpIIl, drying was performed at 300°C for 1 minute. Furthermore, 9
It was baked at 00° C. for 20 minutes to obtain a 0.3 μm silicon oxide film. After that, an A1 electrode was attached to the surface of the silicon oxide film, and some HP
A PT electrode outlet was created by etching with a solution, and as shown in FIG. 3, the substrate and surface electrode were connected, and the electrode was extracted in parallel with the internal electrode to obtain a multilayer silicon oxide thin film capacitor.

このようにして得られた積層型酸化珪素薄膜コンデンサ
の静電容量−周波数特性及び静電容量−温度特性を図1
及び図2に示す。図に示すように。
Figure 1 shows the capacitance-frequency characteristics and capacitance-temperature characteristics of the multilayer silicon oxide thin film capacitor thus obtained.
and shown in FIG. As shown in the figure.

静電容量−周波数特性及び静電容量−温度特性に優れた
積層型酸化珪素薄膜コンデンサを得ることができた。
A multilayer silicon oxide thin film capacitor with excellent capacitance-frequency characteristics and capacitance-temperature characteristics could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明によって得られた積層型酸化珪素薄膜コン
デンサの容量−周波数特性を、図2は容量−温度特性を
、図3は本発明によって得られた積層型酸化珪素薄膜コ
ンデンサ断面模型を示す。 図3中1はシリコン基板、2は酸化珪素膜、3は電極層
、4は電極を夫々示す。
FIG. 1 shows the capacitance-frequency characteristics of a multilayer silicon oxide thin film capacitor obtained by the present invention, FIG. 2 shows the capacitance-temperature characteristics, and FIG. 3 shows a cross-sectional model of the multilayer silicon oxide thin film capacitor obtained by the present invention. . In FIG. 3, 1 is a silicon substrate, 2 is a silicon oxide film, 3 is an electrode layer, and 4 is an electrode.

Claims (1)

【特許請求の範囲】 1)半導性シリコン基板表面に、酸化珪素膜と電極膜を
積層した積層膜を一層以上形成してなり、電極を並列に
取り出した構造を有することを特徴とする積層型酸化珪
素薄膜コンデンサ。 2)半導性シリコン基板表面を熱酸化して酸化珪素膜と
し、又は半導性シリコン基板表面に塗布した酸化珪素前
駆体を熱処理して酸化珪素膜とし、前記酸化珪素膜上に
電極膜を形成することを特徴とする積層型薄膜コンデン
サの製造方法。 3)半導性シリコン基板表面を熱酸化して酸化珪素膜と
し、又は半導性シリコン基板表面に塗布した酸化珪素前
駆体を熱処理して酸化珪素膜とし、前記酸化珪素膜上に
電極膜を形成し、電極膜を介して形成する第二層目以降
の酸化珪素膜は、酸化珪素前駆体の熱処理により形成す
ることを特徴とする積層型薄膜コンデンサの製造方法。
[Claims] 1) A laminated film characterized by forming one or more laminated films of a silicon oxide film and an electrode film on the surface of a semiconducting silicon substrate, and having a structure in which electrodes are taken out in parallel. type silicon oxide thin film capacitor. 2) The surface of the semiconducting silicon substrate is thermally oxidized to form a silicon oxide film, or the silicon oxide precursor coated on the surface of the semiconducting silicon substrate is heat-treated to form a silicon oxide film, and an electrode film is formed on the silicon oxide film. 1. A method for manufacturing a multilayer thin film capacitor, characterized by forming a multilayer thin film capacitor. 3) The surface of the semiconducting silicon substrate is thermally oxidized to form a silicon oxide film, or the silicon oxide precursor coated on the surface of the semiconducting silicon substrate is heat-treated to form a silicon oxide film, and an electrode film is formed on the silicon oxide film. A method for producing a multilayer thin film capacitor, characterized in that the second and subsequent silicon oxide films formed via the electrode film are formed by heat treatment of a silicon oxide precursor.
JP21602389A 1989-08-24 1989-08-24 Laminated type silicon oxide thin film capacitor and manufacture thereof Pending JPH0380512A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21602389A JPH0380512A (en) 1989-08-24 1989-08-24 Laminated type silicon oxide thin film capacitor and manufacture thereof
US07/568,994 US5088003A (en) 1989-08-24 1990-08-17 Laminated silicon oxide film capacitors and method for their production
EP19900309256 EP0414542A3 (en) 1989-08-24 1990-08-23 Laminated silicon oxide film capacitors and method for their production
CA002023842A CA2023842A1 (en) 1989-08-24 1990-08-23 Laminated silicon oxide film capacitors and method for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21602389A JPH0380512A (en) 1989-08-24 1989-08-24 Laminated type silicon oxide thin film capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0380512A true JPH0380512A (en) 1991-04-05

Family

ID=16682087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21602389A Pending JPH0380512A (en) 1989-08-24 1989-08-24 Laminated type silicon oxide thin film capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0380512A (en)

Similar Documents

Publication Publication Date Title
TWI270326B (en) Thin film dielectrics for capacitors and methods of making thereof
JP2006523153A (en) Multilayer structure containing barium strontium titanate on metal foil
US5088003A (en) Laminated silicon oxide film capacitors and method for their production
JP3995619B2 (en) Thin film capacitor element, manufacturing method thereof, and electronic device
WO2005102958A1 (en) Composition for thin film capacitive device, insulating film with high dielectric constant, thin film capacitive device, thin-film laminated capacitor and process for producing thin film capacitive device
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
JP2000124056A (en) Thin-film laminated capacitor and its manufacture
JPH0380512A (en) Laminated type silicon oxide thin film capacitor and manufacture thereof
JPH06305714A (en) Formation of ferroelectric film by sol-gel method and production of capacitor
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JP2008235088A (en) Dielectric thin film, dielectric thin film capacitor, and manufacturing method of dielectric thin film capacitor
JPH05335173A (en) Laminated ceramic electronic component and manufacture thereof
JPH11214245A (en) Thin film monolithic capacitor and manufacture thereof
CN107516599B (en) A kind of three-dimensional structure ceramic capacitor and preparation method thereof
JPH03123084A (en) Manufacture of silicon oxide thin film capacitor
Jackson Dielectric materials in thin film capacitors
JPH07226334A (en) Thin film capacitor and its manufacture
JPH08264381A (en) Laminated capacitor and its manufacture
JPH0610926B2 (en) Dielectric film manufacturing method
JPH0338008A (en) Thin-film capacitor and manufacture thereof
JPH09293629A (en) Thin film capacitor
JPH0254895A (en) Manufacture of electroluminescence element
JPH11126977A (en) Manufacture of wiring substrate
JP2000252154A (en) Composite laminated ceramic capacitor
JPH0388313A (en) Laminated capacitor