JPH0380266B2 - - Google Patents

Info

Publication number
JPH0380266B2
JPH0380266B2 JP60157267A JP15726785A JPH0380266B2 JP H0380266 B2 JPH0380266 B2 JP H0380266B2 JP 60157267 A JP60157267 A JP 60157267A JP 15726785 A JP15726785 A JP 15726785A JP H0380266 B2 JPH0380266 B2 JP H0380266B2
Authority
JP
Japan
Prior art keywords
current
load
capacitor
voltage
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60157267A
Other languages
Japanese (ja)
Other versions
JPS6217666A (en
Inventor
Yoshihiro Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP60157267A priority Critical patent/JPS6217666A/en
Publication of JPS6217666A publication Critical patent/JPS6217666A/en
Publication of JPH0380266B2 publication Critical patent/JPH0380266B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えばCMOS構造のICに一定電圧
を与え、そのとき流れる電流を測定してそのIC
が正常か否かを試験することに用いることができ
る電圧印加電流測定装置に関する。
Detailed Description of the Invention "Field of Industrial Application" This invention applies a constant voltage to, for example, an IC with a CMOS structure, and measures the current flowing at that time.
The present invention relates to a voltage applied current measuring device that can be used to test whether or not the current is normal.

「従来技術」 CMOS構造の半導体メモリのようなICは基本
的には第2図に示すようにP形FETQ1とN形
FETQ2が互いに直流電源1に対して直列接続さ
れ、これら二本のFETQ1とQ2のゲートが共通接
続され、この共通ゲートGに駆動信号を与えるこ
とによりFETQ1又はQ2の何れか一方をオンに制
御し、そのとき他方はオフに制御され、出力端子
MにH論理信号又はL論理信号を出力する構造と
なつている。このような一つの構造を1論理ゲー
ト素子等と呼んでいる。
"Prior art" ICs such as semiconductor memory with CMOS structure basically consist of P-type FETQ1 and N-type FETQ1 as shown in Figure 2.
FETQ 2 are connected in series with each other to DC power supply 1, the gates of these two FETQ 1 and Q 2 are commonly connected, and by applying a drive signal to this common gate G, either FETQ 1 or Q 2 can be activated. is controlled to be turned on, and at that time, the other is controlled to be turned off, and the structure is such that an H logic signal or an L logic signal is output to the output terminal M. One such structure is called one logic gate element or the like.

この回路はFETQ1とQ2のオンとオフの関係を
一方から他方、他方から一方の安定状態に転換す
るときFETQ1とQ2が同時にオンの状態を通過す
るため第3図Aに示すように瞬間的に大きい電流
値IPPを持つ短絡電流が流れるが、安定した状態
ではFETQ1又はQ2の何れか一方を必ずオフとな
つているからその安定状態において流れるドレイ
ン電流IDDはわずかな値ILLとなる。よつて静止状
態における電力消費量は少なくなり、例えばメモ
リの場合バツクアツプ用電池の消耗を少なくでき
る利点が得られる。
In this circuit, when changing the on/off relationship of FETQ 1 and Q 2 from one to the other and from the other to one stable state, FETQ 1 and Q 2 simultaneously pass through the on state, as shown in Figure 3A. A short-circuit current with a large current value I PP momentarily flows in the stable state, but since either FET Q 1 or Q 2 is always off in a stable state, the drain current I DD flowing in that stable state is small. The value is I LL . Therefore, power consumption in a stationary state is reduced, and for example, in the case of a memory, there is an advantage that the consumption of a backup battery can be reduced.

ところでこのような構造の論理ゲート素子を集
積したIC2においてFETQ1又はQ2の何れか一方
又は双方のオフ抵抗が規定値より小さい値となる
ように出来上がつてしまつた場合、安定状態にお
けるドレイン電流の値ILLが大きくなつてしまう
不郡合が生じる。
By the way, if the off-resistance of either or both of FETQ 1 and Q 2 is smaller than the specified value in IC 2 that integrates logic gate elements with such a structure, the drain in a stable state A disparity occurs in which the current value ILL becomes large.

例えば第4図に示すようにFETQ2のオフ抵抗
が規定値より小さい値Rnとなつて作られた場合、
FETQ1がオンでFETQ2がオフの状態では第3図
Bに示すように規定の電流値ILLより大きい電流
IMMが流れる。よつてこのような不良を具備した
FETが作られた場合はこの不良のFETがオフの
状態で待期状態に放置されると電流消費量が大き
くなり電池等の消耗が著しくなる不都合が生じ
る。
For example, as shown in Figure 4, if the off-resistance of FETQ 2 is made to be a value Rn smaller than the specified value,
When FETQ 1 is on and FETQ 2 is off, the current is larger than the specified current value I LL as shown in Figure 3B.
IMM flows. Therefore, it has such defects.
When a FET is manufactured, if this defective FET is left in a standby state in an OFF state, the current consumption increases and the battery, etc., becomes significantly depleted.

このような不良を検出するための一つの試験方
法として電圧印加電流測定装置が考えられる。こ
の電圧印加電流試験は第4図に示すように被試験
IC2の電源端子IVDDと電源1の間に電流検出用
抵抗器3を直列接続し、この電流検出用抵抗器3
の両端に発生する電圧を測定器4に取込み、その
電圧測定値から電流値を求めその電流値が規定の
範囲内の値であるか否かを判定し、良否を判定す
る試験方法である。
One possible test method for detecting such defects is a voltage applied current measuring device. This voltage applied current test is performed as shown in Figure 4.
A current detection resistor 3 is connected in series between the power supply terminal IVDD of IC2 and the power supply 1.
This is a test method in which the voltage generated at both ends of the test tube is input into the measuring device 4, the current value is determined from the voltage measurement value, and it is determined whether the current value is within a specified range or not to determine pass/fail.

CMOS構造のICを電圧印加電流測定試験によ
り良否を判定する場合、測定すべき電流は第3図
に示したように微少電流値ILLを持つ定常電流で
あるにもかかわらず、FETQ1とQ2の状態を切替
える時点でILLの数千倍〜数万倍の電流値IPPを持
つ短絡電流が流れる。つまり短絡電流と測定すべ
き電流の比IPP/ILLは非常に大きな値となる。因
みにILL=数10マイクロアンペア〜数ナノアンペ
ア、IPP=数100ミリアンペア〜数10ミリアンペア
となる。IDDがIPPの期間VDD点の電圧降下を小さく
するためには平滑用コンデンサ9が必要であり、
このため短絡電流が終了した時点から電流検出抵
抗器3を流れる電流が極めて小さい定常電流の値
ILLに安定するまでに電流検出抵抗器3と平滑用
コンデンサ9による充電時間が長く掛かる不都合
がある。つまり電流が安定するまでの時間が長く
なるとFETQ1とQ2の切替周期を長く採らなけれ
ばならない。この結果素子数が多いICでは試験
に要する時間が長くなる。例えば256×1000個の
論理ゲート素子を集積したICを1ミリ秒周期で
切替えて試験したとすると試験に要する時間は
256秒となる。1個のICを256秒も掛けて試験し
たのでは量産されるICを全量試験することは到
底不可能である。このため高速化が要求される。
When determining the pass/fail of a CMOS structure IC using a voltage applied current measurement test, the current to be measured is a steady current with a minute current value ILL as shown in Figure 3 . At the time of switching between states 2 and 2, a short-circuit current having a current value IPP that is several thousand to tens of thousands of times as large as ILL flows. In other words, the ratio I PP /I LL between the short circuit current and the current to be measured becomes a very large value. Incidentally, I LL = several tens of microamperes to several nanoamperes, and I PP = several hundred milliamps to several tens of milliamps. In order to reduce the voltage drop at the V DD point during the period when I DD is I PP , a smoothing capacitor 9 is required.
Therefore, the current flowing through the current detection resistor 3 from the point when the short circuit current ends is an extremely small steady current value.
There is an inconvenience that it takes a long time to charge the current detection resistor 3 and the smoothing capacitor 9 until it stabilizes at ILL . In other words, the longer it takes for the current to stabilize, the longer the switching cycle of FETQ 1 and Q 2 must be. As a result, the time required to test an IC with a large number of elements increases. For example, if you test an IC that integrates 256 x 1000 logic gate elements by switching them every 1 millisecond, the time required for the test is
It will be 256 seconds. If one IC was tested for 256 seconds, it would be impossible to test all mass-produced ICs. Therefore, higher speed is required.

ここで従来技術で考えられる高速化のための構
成を第5図に示す。この第5図に示す回路は演算
増幅器5の出力端子を電流検出用抵抗器3を介し
て演算増幅器5の反転入力端子に接続し、負帰還
ループを構成すると共に演算増幅器5の非反転入
力端子に電圧源7を接続し、定電圧源8を構成す
る。この定電圧源8の電圧を負荷2に供給する。
この構造により演算増幅器5は反転入力端子の電
圧が電圧源7の電圧と等しくなるように帰還動作
し、負荷2に電圧源7の電圧と等しい一定電圧
Vsを与える。負荷2は先に説明したCMOS構造
のICのように定常時は微少電流しか流れずに、
動作速度に比例した周期で大きなパルス状の電流
が流れる回路構造を持つものとする。
Here, FIG. 5 shows a configuration for increasing speed that can be considered in the prior art. In the circuit shown in FIG. 5, the output terminal of the operational amplifier 5 is connected to the inverting input terminal of the operational amplifier 5 via the current detection resistor 3, thereby forming a negative feedback loop, and the non-inverting input terminal of the operational amplifier 5. A voltage source 7 is connected to constitute a constant voltage source 8. The voltage of this constant voltage source 8 is supplied to the load 2.
With this structure, the operational amplifier 5 performs feedback operation so that the voltage at the inverting input terminal becomes equal to the voltage of the voltage source 7, and the load 2 is supplied with a constant voltage equal to the voltage of the voltage source 7.
Give Vs. Load 2 is like the CMOS structure IC described earlier, in which only a small current flows during steady state.
It is assumed that the circuit has a circuit structure in which a large pulse-like current flows at a period proportional to the operating speed.

負荷2の近くに平滑用コンデンサ9を接続す
る。この平滑用コンデンサ9は負荷2にパルス状
の大電流が流れるとき、定電圧源8の応答遅れに
よつて発生する電圧Vsの低下を補償するために
設けられる。つまり第6図Aに示すように負荷2
にパルス状の電流が流れるとき、負荷2への電流
供給点Sにおける電圧Vsは第6図Bに示すよう
に変化する。同図において曲線Aは平滑用コンデ
ンサ9を接続しないときの電圧変動特性、曲線B
は平滑用コンデンサ9を接続したきとの電圧変動
特性を示す。平滑用コンデンサ9を接続したとき
の電圧変動値VP1はVP1ILL・t/CL(ILLは定常
時の電流値、tはパルス状電流のパルス幅)とな
る。
A smoothing capacitor 9 is connected near the load 2. This smoothing capacitor 9 is provided to compensate for a drop in the voltage Vs caused by a delay in the response of the constant voltage source 8 when a large pulsed current flows through the load 2. In other words, as shown in Figure 6A, load 2
When a pulsed current flows through the load 2, the voltage Vs at the current supply point S to the load 2 changes as shown in FIG. 6B. In the figure, curve A is the voltage fluctuation characteristic when the smoothing capacitor 9 is not connected, and curve B is the voltage fluctuation characteristic when the smoothing capacitor 9 is not connected.
shows the voltage fluctuation characteristics when the smoothing capacitor 9 is connected. The voltage fluctuation value V P1 when the smoothing capacitor 9 is connected is V P1 I LL ·t/CL (I LL is the current value at steady state, and t is the pulse width of the pulsed current).

一方電流検出用抵抗器3には並列にスイツチ素
子11と、逆並列接続された一対のダイオード1
2A,12Bを並列接続する。これらスイツチ素
子11とダイオード12A,12Bは負荷8にパ
ルス状電流が流れるとき、抵抗器3に大きな電圧
降下が発生しないようにするために設けられる。
従つてスイツチ素子11は第6図Cに示すように
パルス状電流が流れる期間tを含む期間Mの間オ
ンに制御される。スイツチ素子11は高速応答が
可能でかつオン、オフ制御信号が回路に漏れな
く、リーク電流の小さいものが好ましいため一般
にFETが用いられる。
On the other hand, the current detection resistor 3 has a switch element 11 connected in parallel, and a pair of diodes 1 connected in anti-parallel.
Connect 2A and 12B in parallel. The switch element 11 and the diodes 12A and 12B are provided to prevent a large voltage drop from occurring across the resistor 3 when a pulsed current flows through the load 8.
Therefore, the switch element 11 is controlled to be on for a period M including a period t during which the pulsed current flows, as shown in FIG. 6C. As the switch element 11, an FET is generally used because it is preferably capable of high-speed response, prevents on/off control signals from leaking into the circuit, and has a small leakage current.

電流検出用抵抗器3には更に位相補償用コンデ
ンサ13が並列に接続される。この位相補償用コ
ンデンサ13を接続したことにより演算増幅器5
の位相回転量を補償し、不安定動作の防止とSN
比の向上を達している。
A phase compensation capacitor 13 is further connected in parallel to the current detection resistor 3. By connecting this phase compensation capacitor 13, the operational amplifier 5
Compensates for phase rotation amount, prevents unstable operation and improves SN
The ratio has been improved.

「発明が解決しようとする問題点」 ところで上述した回路構造によれば定電圧源8
は帰還ループを具備して帰還動作するものである
から出力インピーダンスが低くなり、また平滑用
コンデンサ9によつて負荷2に与えられる電圧の
低下を阻止する構造となつているため、かなり高
い周波数のパルス状電流を供給することができ
る。然し乍らパルス状電流の繰返し周波数を高め
ていくに従つてパルス状電流の終了から電流が定
常状態に戻るまでの時間を短くしなければならな
い問題が生じる。つまりここでは定常状態におけ
る電流値ILLを測定することを目的とするもので
あるから、パルス状電流が終了した時点から定常
電流が流れる状態に戻つた時点で定常状態の電流
を測定器4において測定しなければならない。従
つてパルス状電流の終了から定常電流に戻るまで
の時間によつてパルス状電流を流し得る上限周波
数が決まる。
"Problem to be solved by the invention" By the way, according to the circuit structure described above, the constant voltage source 8
Since it is equipped with a feedback loop and performs feedback operation, the output impedance is low, and it has a structure that prevents the voltage applied to the load 2 from decreasing by the smoothing capacitor 9, so it can be used at fairly high frequencies. A pulsed current can be supplied. However, as the repetition frequency of the pulsed current is increased, a problem arises in that the time from the end of the pulsed current until the current returns to a steady state must be shortened. In other words, since the purpose here is to measure the current value ILL in a steady state, the steady state current is measured by the measuring device 4 from the point when the pulsed current ends to the point when the steady current flow returns. Must be measured. Therefore, the upper limit frequency at which the pulsed current can flow is determined by the time from the end of the pulsed current until the current returns to the steady state.

第5図に示した回路ではパルス状電流が終了し
た時点から電流が安定するまでの時間が比較的長
く掛かる欠点がある。その理由由を以下に説明す
る。
The circuit shown in FIG. 5 has the disadvantage that it takes a relatively long time from the point at which the pulsed current ends until the current stabilizes. The reason for this will be explained below.

第7図に第5図に示す回路の各部の電圧電流波
形を示す。第7図Aは負荷2に流れる負荷電流、
第7図Bは平滑用コンデンサ9の充放電電流を示
す。つまりこの例では−ICLを放電電流、+ICLを充
電電流とする。
FIG. 7 shows voltage and current waveforms at various parts of the circuit shown in FIG. 5. Figure 7A shows the load current flowing through load 2,
FIG. 7B shows the charging and discharging current of the smoothing capacitor 9. In other words, in this example, -I CL is the discharge current, and +I CL is the charge current.

負荷2にパルス状電流が流れ始めると平滑用コ
ンデンサ9は放電電流−ICLを放出し、負荷2へ
供給する電圧Vs(第7図D)の低下を阻止するよ
うに動作する。スイツチ素子11はパルス状電流
が流れ始めるタイミングより前にオンにされてい
る。パルス状電流が断になると負荷電流ILは直ち
に定常電流ILLに戻る。
When a pulsed current begins to flow through the load 2, the smoothing capacitor 9 discharges a discharge current -I CL and operates to prevent the voltage Vs (FIG. 7D) supplied to the load 2 from decreasing. The switch element 11 is turned on before the pulsed current starts flowing. When the pulsed current is cut off, the load current I L immediately returns to the steady current I LL .

ところでパルス状電流が流れるとき、このパル
ス状電流は電流検出用抵抗器3と、ダイオード1
2Aと、スイツチ素子11と位相補償用コンデン
サ13とから成る並列回路を通じて流れる。ダイ
オード12A及びスイツチ素子11はオン抵抗が
存在する。つまり電流検出用抵抗器3の両端間を
完全にシヨート状態にすることはできない。この
ため位相補償用コンデンサ13にはダイオード1
2A及びスイツチ素子11のオン抵抗に発生する
電圧が充電される。この充電電流は出力インピー
ダンスが低い演算増幅器5から与えられるためそ
の充電時定数は極めて小さくコンデンサ13の両
端に発生する電圧VCは第7図Eに示すように短
い時間で所定の電圧VC1に達する。
By the way, when a pulsed current flows, this pulsed current flows through the current detection resistor 3 and the diode 1.
2A, flows through a parallel circuit consisting of a switch element 11 and a phase compensation capacitor 13. The diode 12A and the switch element 11 have on-resistance. In other words, it is impossible to completely shorten the current detection resistor 3 between both ends. Therefore, the phase compensation capacitor 13 has a diode 1.
2A and the voltage generated at the on-resistance of the switch element 11 is charged. Since this charging current is given from the operational amplifier 5 with low output impedance, its charging time constant is extremely small and the voltage V C generated across the capacitor 13 reaches the predetermined voltage V C1 in a short time as shown in FIG. 7E. reach

これに対し、パルス状電流が断になると位相補
償用コンデンサ13に掛かる電圧は電流検出用抵
抗器3に流れる定常電流によつて発生する電圧と
なる。この電圧はコンデンサ13に充電された電
圧VC1と比較すると非常に小さい値となる。この
結果コンデンサ13に充電された電荷はスイツチ
素子11とダイオード12Aと抵抗器3とから成
る並列回路を通じて放電される。コンデンサ13
の充電電圧VC1がダイオード12Aを導通させる
に充分な電圧値を持つときはダイオード12Aを
通じて放電するが電圧の低下に伴つてダイオード
12Aは漸次オン抵抗が大となりオフになる。結
局ダイオード12Aがオフになつた後はスイツチ
素子11と抵抗器3を通じて放電が行われる。ス
イツチ素子11のオン抵抗値をRON、抵抗器3の
抵抗値をRMとし、その大小関係がRON≪RMであ
つたとするとパルス状電流が立下がつた時点から
スイツチ素子11がオフになるまでの期間Ttに
おける放電時定数はコンデンサ13の容量値CM
とスイツチ素子11のオン抵抗値RONで決まる値
CM×RMとなる。この時定数はスイツチ素子11
のオン抵抗が例えば100Ω程度とすれば充電時の
立上り時定数より大きい値になる。
On the other hand, when the pulsed current is cut off, the voltage applied to the phase compensation capacitor 13 becomes the voltage generated by the steady current flowing through the current detection resistor 3. This voltage has a very small value compared to the voltage V C1 charged in the capacitor 13. As a result, the charge stored in the capacitor 13 is discharged through a parallel circuit consisting of the switch element 11, the diode 12A, and the resistor 3. capacitor 13
When the charging voltage V C1 has a voltage value sufficient to make the diode 12A conductive, the diode 12A is discharged, but as the voltage decreases, the on-resistance of the diode 12A gradually increases and the diode 12A turns off. Eventually, after the diode 12A is turned off, discharge occurs through the switch element 11 and the resistor 3. If the on-resistance value of the switch element 11 is R ON and the resistance value of the resistor 3 is R M , and the magnitude relationship is R ON << R M , the switch element 11 is turned off from the moment the pulsed current falls. The discharge time constant during the period Tt until the capacitance value C M of the capacitor 13 is
and the on-resistance value R ON of switch element 11.
It becomes C M × R M. This time constant is the switch element 11
If the on-resistance is, for example, about 100Ω, the value will be larger than the rise time constant during charging.

更に期間Tt後にスイツチ素子11がオフにな
ると、コンデンサ13の放電路は抵抗器3だけと
なる。抵抗器3の抵抗値RMを100KΩに選定した
とするとその時定数はスイツチ素子11がオンの
状態における時定数の1000倍の値となる。よつて
コンデンサ13の電圧は第7図Eに期間Tsに示
すように非常にゆつくりとした速度で低下してい
くこととなる。
Furthermore, when the switch element 11 is turned off after the period Tt, the resistor 3 becomes the only discharge path for the capacitor 13. If the resistance value R M of the resistor 3 is selected to be 100KΩ, its time constant will be 1000 times the time constant when the switch element 11 is in the on state. Therefore, the voltage of the capacitor 13 decreases at a very slow rate, as shown in period T s in FIG. 7E.

コンデンサ13の放電電流が抵抗器3に流れて
いる状態で抵抗器3に発生している電圧を測定回
路4において測定し、抵抗器3に流れている電流
値を測定したとすると負荷2に流れる定常電流を
正確に測定したとは言えない。
If the voltage generated across resistor 3 is measured in measuring circuit 4 while the discharge current of capacitor 13 is flowing through resistor 3, and the value of the current flowing through resistor 3 is measured, then the voltage flowing through resistor 3 will flow to load 2. It cannot be said that the steady current was accurately measured.

このためコンデンサ13の放電時間を短くする
ことが要求される。コンデンサ13の放電時間を
短くするためにはコンデンサ13の容量値CM
小さくするか、又は電流検出用抵抗器3の抵抗値
RMを小さく選定するかの何れか一方、又は双方
を小さくすること、或いはスイツチ素子11のオ
ン抵抗値RONを充分小さくすることで実現でき
る。
Therefore, it is required to shorten the discharge time of the capacitor 13. In order to shorten the discharge time of the capacitor 13, the capacitance value C M of the capacitor 13 should be reduced, or the resistance value of the current detection resistor 3 should be reduced.
This can be achieved by selecting one or both of R M to be small, or by sufficiently reducing the on-resistance value R ON of the switch element 11.

然し乍ら電流検出用抵抗器3の抵抗値RMの値
は微少電流を電圧として取出す条件を満たすため
には小さくすることはできない。
However, the resistance value R M of the current detection resistor 3 cannot be made small in order to satisfy the conditions for extracting a minute current as a voltage.

またスイツチ素子11のオン抵抗値RONはスイ
ツチ素子11としてリーク電流が小さく、オンオ
フ制御信号が回路に漏れないようなFETを利用
する限りにおいてはそのオン抵抗は数Ω〜数十Ω
程度が下限でありこれ以上小さいオン抵抗のスイ
ツチ素子を求めることはできない。
In addition, the on-resistance value R ON of the switch element 11 is several Ω to several tens of Ω as long as the switch element 11 uses a FET that has a small leakage current and does not leak the on/off control signal into the circuit.
This is the lower limit, and a switch element with an on-resistance smaller than this cannot be obtained.

このような理由から最終的にコンデンサ13の
放電時定数を小さくするためにはコンデンサ13
の容量値を小さく選定する方法でしか解決するこ
とはできない。然し乍らコンデンサ13の容量値
CMを小さく選定すると定電圧源8を構成する閉
ループの安定性が悪くなり負荷2に流れるパルス
状電流の繰返し周波数を高くした場合定電圧源8
が発振したりする不安定な状態となる。
For this reason, in order to ultimately reduce the discharge time constant of the capacitor 13, the capacitor 13
This problem can only be solved by selecting a small capacitance value. However, the capacitance value of capacitor 13
If C M is selected to be small, the stability of the closed loop that constitutes the constant voltage source 8 will deteriorate, and if the repetition frequency of the pulsed current flowing through the load 2 is increased, the constant voltage source 8
This results in an unstable state where the oscillation occurs.

負荷2が予め一定条件で動作するものと規定さ
れる場合はその条件下で安定に動作するようにコ
ンデンサ13の容量、平滑用コンデンサ9の容
量、演算増幅器の周波数特性等を適当に設定する
ことはできる。然し乍ら汎用試験器として動作さ
せるには負荷の条件が変わることを想定し、可及
的に広い範囲特に負荷の駆動周波数の変化に対し
て安定に動作するように作らなければならない。
If the load 2 is specified in advance to operate under certain conditions, the capacitance of the capacitor 13, the capacity of the smoothing capacitor 9, the frequency characteristics of the operational amplifier, etc. should be appropriately set so that it operates stably under those conditions. I can. However, in order to operate as a general-purpose tester, it must be designed to operate stably over as wide a range as possible, especially against changes in the load drive frequency, assuming that the load conditions will change.

換言すれば負荷2には先に説明したようにパル
ス状の電流が流れるためパルス状の電流が流れる
とき供給電圧の低下を低く抑えるためには比較的
大きい容量値を持つ平滑用コンデンサ9がどうし
ても必要となる。
In other words, as explained above, a pulsed current flows through the load 2, so in order to suppress the drop in supply voltage when a pulsed current flows, it is necessary to use a smoothing capacitor 9 with a relatively large capacitance value. It becomes necessary.

負荷2に対して大きい容量値を持つ平滑用コン
デンサ9が並列接続されたとき、定電圧源8から
負荷2側を見た場合、大凡、容量性負荷として見
える。容量性負荷を接続した状態において定電圧
源8を正常に動作させるために或る程度の容量を
持つ位相補償用コンデンサ13が必要となる。こ
の状態で試験に要する時間を短くするためにパル
ス状に流れる電流の周波数を高めていくと負荷と
なる平滑用コンデンサ9のインピーダンスは徐々
に小さくなつていく傾向となる。
When the smoothing capacitor 9 having a large capacitance value is connected in parallel to the load 2, when the load 2 side is viewed from the constant voltage source 8, it generally appears as a capacitive load. In order to operate the constant voltage source 8 normally with a capacitive load connected, a phase compensation capacitor 13 having a certain amount of capacity is required. In this state, if the frequency of the current flowing in a pulsed manner is increased in order to shorten the time required for the test, the impedance of the smoothing capacitor 9 serving as the load tends to gradually decrease.

この結果、パルス状に流れる電流の周波数が或
周波数以上になると負荷が限りなく容量性に近ず
き、定電圧源8の出力電圧の位相は90゜遅れ位相
に近ずく、このため定電圧源8を構成する演算増
幅器5の帰還回路は位相補償用コンデンサ13が
存在するにも関わらず正帰還状態に近ずき、つい
には発振状態に陥る。
As a result, when the frequency of the current flowing in pulse form exceeds a certain frequency, the load becomes infinitely close to capacitive, and the phase of the output voltage of the constant voltage source 8 approaches the phase delayed by 90 degrees. Despite the presence of the phase compensation capacitor 13, the feedback circuit of the operational amplifier 5 forming part 8 approaches a positive feedback state and finally falls into an oscillation state.

この発振状態を停止させ安定に動作させるため
には位相補償用コンデンサ13の容量を大きくす
れば解消されるが、コンデンサ13の容量を大き
くして解決したとすると、コンデンサ13と抵抗
器3との時定数が大きくなり、これにより先に説
明したように高速測定が阻害される。
In order to stop this oscillation state and operate stably, it can be solved by increasing the capacitance of the phase compensation capacitor 13, but if the problem is solved by increasing the capacitance of the capacitor 13, then the difference between the capacitor 13 and the resistor 3 The time constant becomes large, which inhibits high-speed measurements as explained above.

「問題点を解決するための手段」 この発明では定電圧源の出力端子と平滑用コン
デンサを含む負荷との間に減結合用抵抗器を直列
に挿入する構成としたものである。
"Means for Solving the Problems" In the present invention, a decoupling resistor is inserted in series between the output terminal of a constant voltage source and a load including a smoothing capacitor.

このように減結合用抵抗器を定電圧源8と負荷
との間に直列に挿入したことにより定電圧源8か
ら負荷を見たとき減結合用抵抗器が負荷と直列接
続されて見える。この結果、平滑用コンデンサの
インピーダンスがパルス状電流の繰り返し周波数
の変更によつて小さくなつても、減結合用抵抗器
の抵抗成分が存在するから負荷側のインピーダン
スは限りなく容量性に近ずくことはなく、定電圧
源8の出力電圧の位相が90゜遅れ位相に近ずくこ
とはない。
By inserting the decoupling resistor in series between the constant voltage source 8 and the load in this way, when the load is viewed from the constant voltage source 8, the decoupling resistor appears to be connected in series with the load. As a result, even if the impedance of the smoothing capacitor is reduced by changing the repetition frequency of the pulsed current, the impedance on the load side will approach capacitance as much as possible because of the presence of the resistance component of the decoupling resistor. Therefore, the phase of the output voltage of the constant voltage source 8 never approaches the phase delayed by 90 degrees.

よつて負荷に流れるパルス状電流の繰り返し周
波数が従来の上限値より高くなつても定電圧源8
の動作が不安定な状態に陥るおそれがない。つま
り、定電圧源8の負荷が限りなく容量性に近ずく
ことになる影響が軽減されるから位相補償用コン
デンサの容量値を小さく設定したまま定電圧源8
を定常に動作させることができる。
Therefore, even if the repetition frequency of the pulsed current flowing through the load is higher than the conventional upper limit, the constant voltage source 8
There is no risk of the operation becoming unstable. In other words, since the influence of the load on the constant voltage source 8 becoming infinitely close to capacitive is reduced, the constant voltage source 8 can be
can be operated regularly.

位相補償用コンデンサの容量値を小さくできる
ことからパルス状電流の立下りから比較的短時間
の間に位相補償用コンデンサに蓄えられた電荷を
放電させることができる。この結果パルス状電流
の立下りから定常電流を測定するまでの時間を短
縮することができるため、パルス状電流の繰返し
周波数を高く設定することができ、それに伴つて
高速試験が可能となる。
Since the capacitance value of the phase compensation capacitor can be made small, the charge stored in the phase compensation capacitor can be discharged within a relatively short time after the pulsed current falls. As a result, the time from the fall of the pulsed current to the measurement of the steady current can be shortened, so the repetition frequency of the pulsed current can be set high, thereby enabling high-speed testing.

「実施例」 第1図にこの発明による電圧印加電流測定装置
の一実施例を示す。第1図において第5図と対応
する部分には同一符号を付し、その重複する部分
の説明は省略するが、この発明においては定電圧
源8と負荷2及び平滑用コンデンサ9の接続点と
の間に直列に減結合用抵抗器15を接続した構造
を特徴とするものである。
"Embodiment" FIG. 1 shows an embodiment of the voltage applied current measuring device according to the present invention. In FIG. 1, parts corresponding to those in FIG. It is characterized by a structure in which a decoupling resistor 15 is connected in series between the two.

減結合用抵抗器15は平滑用コンデンサ9の容
量値が約0.1マイクロフアラドの場合10オーム程
度となる。
The decoupling resistor 15 has a resistance of about 10 ohms when the capacitance value of the smoothing capacitor 9 is about 0.1 microfarad.

「発明の作用効果」 このように減結合用抵抗器15を設けたことに
よりパルス状電流の繰返し周波数が各種変更され
ても定電圧源8から負荷2側を見たインピーダン
スの変化量が小さくなる。特にパルス状電流の繰
返し周波数を高い周波数にした場合、平滑用コン
デンサ9のインピーダンスは限りなくゼロに近ず
くが減結合用抵抗器15のインピーダンスは周波
数の変化に依存せずに不変であるため定電圧源8
から見た負荷インピーダンスは一定に見ることが
できる。
"Operations and Effects of the Invention" By providing the decoupling resistor 15 in this way, even if the repetition frequency of the pulsed current is variously changed, the amount of change in impedance seen from the constant voltage source 8 to the load 2 side is reduced. . In particular, when the repetition frequency of the pulsed current is set to a high frequency, the impedance of the smoothing capacitor 9 approaches zero, but the impedance of the decoupling resistor 15 remains constant regardless of changes in frequency. voltage source 8
The load impedance seen from can be seen as constant.

よつて定電圧源8は高い周波数に対しても負荷
の条件が一定に見えるようになり、この結果とし
て位相補償用コンデンサ13の容量値を小さく選
定することができるようになるため、位相補償用
コンデンサ13と電流検出用抵抗器3との時定数
を小さくすることができる。よつてパルス状電流
の立下りから位相補償用コンデンサ13の電荷が
放電されるまでの時間を短くすることができ、高
速度の試験を実行できる。
Therefore, the load condition of the constant voltage source 8 appears constant even at high frequencies, and as a result, the capacitance value of the phase compensation capacitor 13 can be selected to be small. The time constants of the capacitor 13 and the current detection resistor 3 can be made small. Therefore, the time from the fall of the pulsed current until the charge in the phase compensation capacitor 13 is discharged can be shortened, and a high-speed test can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための
接続図、第2図は電圧印加電流測定試験を行う被
試験対象の一例を説明するための接続図、第3図
は被試験対象に流れる電流波形を示す波形図、第
4図は第2図で説明した被試験対象に流れる電流
を測定する構成を説明する接続図、第5図は従来
の電圧印加電流測定装置を説明するための接続
図、第6図及び第7図は第5図の動作を説明する
ための波形図である。 2:負荷、3:電流検出用抵抗器、4:電流測
定器、5:演算増幅器、7:電圧源、8:定電圧
源、9:平滑用コンデンサ、11:スイツチ素
子、12A,12B:ダイオード、15:減結合
用抵抗器。
Fig. 1 is a connection diagram for explaining an embodiment of the present invention, Fig. 2 is a connection diagram for explaining an example of an object to be tested on which a voltage applied current measurement test is performed, and Fig. 3 is a connection diagram for explaining an example of an object to be tested. Figure 4 is a waveform diagram showing the flowing current waveform, Figure 4 is a connection diagram explaining the configuration for measuring the current flowing through the test object explained in Figure 2, and Figure 5 is a diagram illustrating the conventional voltage applied current measuring device. The connection diagram, FIGS. 6 and 7 are waveform diagrams for explaining the operation of FIG. 5. 2: Load, 3: Current detection resistor, 4: Current measuring device, 5: Operational amplifier, 7: Voltage source, 8: Constant voltage source, 9: Smoothing capacitor, 11: Switch element, 12A, 12B: Diode , 15: Decoupling resistor.

Claims (1)

【特許請求の範囲】 1 A 周期的に大きな値の負荷電流を消費する
負荷に対して一定電圧を与えるように帰還回路
を具備した定電圧源と、 B この定電圧源から上記負荷に流れる電流を測
定するための電流検出用抵抗器と、 C この電流検出用抵抗器に並列接続され上記定
電圧源を流れる負荷電流によつて定電圧源が不
安定動作となることを阻止する位相調整用コン
デンサと、 D 上記負荷に並列接続され負荷電流の変動に対
して負荷に与える電圧を安定化する平滑用コン
デンサと、 E 上記電流検出用抵抗器の両端を大きな負荷電
流が流れる期間中短絡するためのスイツチ素子
と、 F 上記定電圧源の出力端子と上記負荷及び平滑
用コンデンサの接続点の間に直列に挿入した減
結合用抵抗器と、 から成る電圧印加電流測定装置。
[Claims] 1. A constant voltage source equipped with a feedback circuit to provide a constant voltage to a load that periodically consumes a large value of load current, and B. A current flowing from this constant voltage source to the load. a current detection resistor for measuring C; D: A smoothing capacitor connected in parallel to the above load to stabilize the voltage applied to the load against fluctuations in load current; E: To short-circuit both ends of the above current detection resistor during periods when a large load current flows. A voltage applied current measuring device comprising: a switch element F; and a decoupling resistor inserted in series between the output terminal of the constant voltage source and the connection point of the load and smoothing capacitor.
JP60157267A 1985-07-17 1985-07-17 Apparatus for measuring current through voltage application Granted JPS6217666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157267A JPS6217666A (en) 1985-07-17 1985-07-17 Apparatus for measuring current through voltage application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157267A JPS6217666A (en) 1985-07-17 1985-07-17 Apparatus for measuring current through voltage application

Publications (2)

Publication Number Publication Date
JPS6217666A JPS6217666A (en) 1987-01-26
JPH0380266B2 true JPH0380266B2 (en) 1991-12-24

Family

ID=15645919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157267A Granted JPS6217666A (en) 1985-07-17 1985-07-17 Apparatus for measuring current through voltage application

Country Status (1)

Country Link
JP (1) JPS6217666A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104366B2 (en) * 1986-09-26 1995-11-13 日立電子エンジニアリング株式会社 Current measurement circuit
JPH0826837B2 (en) * 1990-12-28 1996-03-21 本田技研工業株式会社 Ignition timing control device for internal combustion engine
JP2551928B2 (en) * 1990-12-28 1996-11-06 本田技研工業株式会社 Ignition timing control device for internal combustion engine
JP3599256B2 (en) * 1996-02-29 2004-12-08 株式会社アドバンテスト Voltage applied current measurement circuit
JPH10124159A (en) * 1996-10-18 1998-05-15 Advantest Corp Voltage impressing circuit
US7973543B2 (en) * 2008-07-11 2011-07-05 Advantest Corporation Measurement apparatus, test apparatus and measurement method

Also Published As

Publication number Publication date
JPS6217666A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
KR100198617B1 (en) Circuit for detecting leakage voltage of mos capacitor
US6008664A (en) Parametric test system and method
US6323668B1 (en) IC testing device
JP3072880B2 (en) Voltage generator for IC test
US7280333B2 (en) Method and device for short circuit or open load detection
US5416470A (en) Contact judging circuit and contact judging method for impedance measuring apparatus
EP0802632B1 (en) Auto-reset circuit with improved testability
JPH0380266B2 (en)
US4985672A (en) Test equipment for a low current IC
US6731129B1 (en) Apparatus for measuring capacitance of a semiconductor device
JP4042069B2 (en) Integral input type input circuit and test method thereof
US3059177A (en) Sensitive high impedance detector
US6628125B1 (en) Method and apparatus for detecting slow and small changes of electrical signals including the sign of the changes, and circuit arrangement for the exact detection of the peak value of an alternating voltage
US6891354B2 (en) Method for detecting slow and small changes of electrical signals
JP2005539220A (en) Apparatus and method for IDDQ measurement
JP3599256B2 (en) Voltage applied current measurement circuit
JP4412917B2 (en) Current measuring device and test device
US5530361A (en) Method and apparatus for measuring the state of charge of an electrochemical cell pulse producing a high discharge current
US6313656B1 (en) Method of testing leakage current at a contact-making point in an integrated circuit by determining a potential at the contact-making point
CN217425555U (en) Capacitor storage capacity measuring circuit
JP3390533B2 (en) Voltage applied current measurement circuit
US11774517B2 (en) Leakage and loading detector circuit
JPS61228369A (en) Ic inspecting system
JP2984936B2 (en) Insulation resistance tester
JPH10293154A (en) Bias power source circuit for semiconductor testing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term