JP3599256B2 - Voltage applied current measurement circuit - Google Patents

Voltage applied current measurement circuit Download PDF

Info

Publication number
JP3599256B2
JP3599256B2 JP4343596A JP4343596A JP3599256B2 JP 3599256 B2 JP3599256 B2 JP 3599256B2 JP 4343596 A JP4343596 A JP 4343596A JP 4343596 A JP4343596 A JP 4343596A JP 3599256 B2 JP3599256 B2 JP 3599256B2
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
output terminal
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4343596A
Other languages
Japanese (ja)
Other versions
JPH09236637A (en
Inventor
憲治 伊澤
好弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP4343596A priority Critical patent/JP3599256B2/en
Publication of JPH09236637A publication Critical patent/JPH09236637A/en
Application granted granted Critical
Publication of JP3599256B2 publication Critical patent/JP3599256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は例えばCMOS型ICのように能動素子が反転動作するときだけ大きな負荷電流を消費し、定常状態では微小電流しか消費しないICの、特に電源電圧供給端子に定常時の電圧を与えた状態で流れる微小電流を測定する電圧印加電流測定回路に関する。
【0002】
【従来の技術】
図5に従来から用いられている電圧印加電流測定回路の概略の構成を示す。この電圧印加電流測定回路は概略、電圧供給回路10と電流測定手段20とによって構成される。電圧供給回路10は非反転入力端子に一定電圧Vinが与えられた演算増幅器11と、この演算増幅器11から出力される電圧Vを出力し、この出力電圧Vを負荷25に供給する電圧出力端子TOと、電圧出力端子TOに出力される電圧Vを演算増幅器11の反転入力端子に負帰還させる負帰還回路12と、演算増幅器11の出力端子と電圧出力端子TOとの間に直列に接続された電流測定用抵抗器13と、この電流測定用抵抗器13と並列に接続されたダイオードの逆並列回路14と、電流測定用抵抗器13及び逆並列接続されたダイオードとの並列接続回路に更に並列接続した位相補償コンデンサ15と、電圧出力端子TOと共通電位点に接続されたバイパスコンデンサ16とによって構成される。
【0003】
電流測定手段20は電流測定用抵抗器13に発生する電圧を取出す差動増幅器21と、この差動増幅器21で検出した電圧値をAD変換して取出すAD変換器22とによって構成することができる。尚、演算増幅器11の非反転入力端子に一定電圧Vinを供給する電圧源18は一般にDA変換器が用いられ、DA変換器に与えるディジタル値によって演算増幅器11の非反転入力端子に与える電圧値Vinを任意の電圧に設定できるように構成される。
【0004】
電圧出力端子TOと共通電位間に負荷25が接続される。負荷25はここではCMOS型ICであるものとし、そのCMOS型ICの定常状態における消費電流値を測定する。
つまり、負荷25がCMOS型ICである場合、CMOS型IC内の能動素子(FET)が反転動作する毎に、図6Aに示すような動作電流IPが流れ、反転動作が終了すると、電流消費量は極端に少なくなり、定常電流ΔIが流れる。動作電流IPと定常電流ΔIとの比は例えば1000:1程度の大きな比率を持つ。よって定常電流ΔIを正確に測定するには動作電流IPが流れた後、定常電流ΔIに切替わった時点から充分に時間が経過し、電圧出力端子TOの電圧Vが安定した時点(以下この電圧Vが安定するまでの時間をセットリングタイムと称す)で電流測定手段20でAD変換動作を実行すればよい。
【0005】
負荷25となる被試験ICの動作速度が遅く、動作電流IPが流れる周期が充分長ければセットリングタイムが長くても定常電流ΔIを正確に測定することはできる。然し乍ら、ICには高速化が要求されており、動作電流IPが流れる周期は年々短かくなる傾向にある。従って従来より、この種の電圧印加電流測定回路ではセットリングタイムを短かくする工夫を種々施している。
【0006】
その1つとしては電圧出力端子TOにバイパスコンデンサ16を接続し、このバイパスコンデンサ16に常時定常電圧Vを充電しておき、動作電流IPが負荷25に流れるとき、負荷25に流れる動作電流IPの大部分をこのバイパスコンデンサ16から放出させ、負荷25で必要とする動作電流IPを過不足なく供給できるようにしている。
【0007】
更に、電流測定用抵抗器13に対してダイオードの逆並列回路14を接続し、動作電流IPが流れている最中に、電流測定用抵抗器13に大きな電圧降下を発生させない工夫をしている
動作電流IPが流れた際に、電圧出力端子TOの電圧変動を小さくするためには、バイパスコンデンサ16の容量値を大きく設定するとよい。バイパスコンデンサ16の容量値を大きく設定すると、演算増幅器11から成る負帰還回路の動作が不安定(発振現象が見られる)になる。この現象を除去するために位相補償コンデンサ15の容量値を大きく設定し、不安定現象を除去している。
【0008】
【発明が解決しようとする課題】
ところで、位相補償コンデンサ15の容量値を大きく採ると、電流測定用抵抗器13の抵抗値も大きいことから、電流測定用抵抗器13と位相補償コンデンサ15の時定数が大きくなり、この時定数に従って電圧出力端子TOの電圧が元の定常電圧に復帰するから、時定数が大きい分だけセットリングタイムが長くなり高速動作型のICの定常電流を測定できないことになる。
【0009】
以下にセットリングタイムの一例を数値を掲げて説明する。高速の負荷変動特性を得るためには演算増幅器11を含む回路全体の周波数特性を高くすることが要求される。また、微小の定常電流ΔIを測定するためには電流測定用抵抗器13の抵抗値Rを大きなものが必要となる。
CMOS型ICの動作時に流れる動作電流IPはその流れている時間は通常数ns〜数10nsであり、演算増幅器11を用いた負帰還型の電圧供給回路10では動作電流IPが流れている期間内は負荷変動を補償できない。従って従来よりバイパスコンデンサ16を設け、動作電流IPが流れている期間はこのバイパスコンデンサ16から負荷25に電流を供給し、動作電流IPの終了後、演算増幅器11側から消費した電荷をバイパスコンデンサ16に供給している。
【0010】
動作電流IPが流れている時間TPが短かく、動作電流IPが定電流であるものとすると、バイパスコンデンサ16に蓄えられる電荷Qは一般にQ=C※V=I※Tであるから、電圧出力端子TOの電圧変動ΔVはΔV≒IP※TP/C16となり、バイパスコンデンサ16に必要な容量値C16はC16≒IP※TP/ΔVとなる。
【0011】
一般的な例としてIP=500mA,TP=100ns,ΔV=200mVとすると、
16≒IP※TP/ΔV= 500mA※ 100ns/ 200mV=0.25μF
となる。
電圧出力端子TOを流れる電流が定常状態になったときの電流測定分解能を100nA、電流測定手段20に設けた差動増幅器21の利得を10倍、A/D変換器22の測定分解能を1mVとすると、電流測定用抵抗器13の抵抗値Rは、
=1mV/(100nA※10)=1KΩ
となる。
【0012】
演算増幅器11の周波数応答特性を図7に示す。図中曲線Aはオクターブ当り−6dBの減衰特性、曲線Bはオクターブ当り−12dBの減衰特性を示す。図示する周波数f1〜f2の間はオクターブ当り−12dBの減衰特性を呈し、このオクターブ−12dBの減衰特性のまま0dBに達すると周知のように系は不安定な動作となる。この周波数応答特性において、周波数f1は、
f1≒1/(2π※R※C16)=636Hz
を100MHzとして回路を安定に動作させるための周波数f2を100KHzに採ると、この周波数f2を与える位相補償コンデンサ15の容量値Cは、
f2=1/(2π※R※C
から、
=1/(2π※R※f2)
=1600PF
となる。
【0013】
電流測定時のセットリングタイムは電流測定用抵抗器13の抵抗値Rと位相補償コンデンサ15の容量値Cの時定数で決まる。
動作電流IPが流れている期間に電流測定用抵抗器13の両端に発生する電圧はダイオードの逆並列回路14の順方向電圧にクランプされる。動作電流IPが流れている期間の電流測定用抵抗器13に発生する電圧を700mVとすると、時定数τ=R※Cで決まる電流測定用抵抗器13の両端電圧が1mVに回復するまでの放電時間TS(セットリングタイム)は、
loge(1mV/700mV)=−6.55
から、

Figure 0003599256
となる。
【0014】
結局、図6Bに示した電圧出力端子TOの電圧変動ΔVが定常値V=Vinに復帰するまでに約10.4μsのセットリングタイムTSを要し、このセットリングタイムTSを経過した時点でなければ電流測定手段20は電流測定しても誤差値の大きい電流値を測定してしまう不都合が生じる。セットリングタイムTSが10.4μsであるとすると、1/10.4μs≒0.1×10=100KHzとなり、動作電流IPの繰返し周波数が100KHzより低い周波数のICしか定常電流ΔIを測定することができないことになる。
【0015】
この発明の目的は、セットリングタイムTSを短かくし、高速動作型のICの定常電流ΔIを正確に測定することができる電圧印加電流測定回路を提供しようとするものである。
【0016】
【課題を解決するための手段】
この発明では非反転入力端子に一定電圧が与えられた演算増幅器及びこの演算増幅器の出力電圧が与えられ、周期的に定常時の電流より尖頭値が大きい動作電流を消費する負荷にその出力電圧を供給する電圧出力端子、この電圧出力端子の電圧を上記演算増幅器の反転入力端子に帰還する帰還回路によって構成した電圧供給回路と、この電圧供給回路を構成する演算増幅器の出力端子と電圧出力端子との間に接続した電流測定用抵抗器と、上記電圧出力端子と上記演算増幅器の反転入力端子との間を接続した帰還回路と、上記電圧出力端子と共通電位点との間に接続したバイパスコンデンサと、上記電流測定用抵抗器に並列接続したダイオードの逆並列接続回路と、上記電流測定用抵抗器に並列接続した位相補償コンデンサと、上記電流測定用抵抗器に発生する電圧を測定し、上記演算増幅器から電圧出力端子に出力される電流値を測定する電流測定手段とを具備して構成される電圧印加電流測定回路において、
電圧出力端子にこの電圧出力端子の電圧が規定値より低下したことを検出して電圧出力端子に電流を流し込む電流供給回路と、電圧供給端子の電圧が定常値より高くなったことを検出して電圧供給端子より電流を吸引する電流吸引回路とを付加した電圧印加電流測定回路を提供する。
【0017】
この出願の請求項2では請求項1で提案した電圧印加電流測定回路において、周期的に流れる動作電流が断になった時点から所定時間経過後に電流供給回路及び電流吸引回路を電圧供給端子から切離す切替回路を付加した電圧印加電流測定回路を提供する。
この出願の請求項3では請求項1で提案した電圧印加電流測定回路において、電流供給回路は電圧供給端子に出力される定常時の電圧値よりわずかに低い電圧を出力する電圧源と、この電圧源の電圧がアノードに与えられ、カソードが電圧供給端子に接続されたダイオードと、このダイオードのアノードに電流出力端子を接続した電流源とによって構成した電圧印加電流測定回路を提供する。
【0018】
この出願の請求項4では、請求項1で提案した電圧印加電流測定回路において、電流吸引回路は電圧出力端子の定常時の電圧よりわずかに高い電圧を出力する電圧源と、この電圧源の電圧がカソードに与えられ、アノードが電圧出力端子に接続されたダイオードと、このダイオードのカソードと電圧源との接続点に接続され、電圧供給端子の電圧が電圧源の電圧より高くなった時点でダイオードを通じて電圧供給端子から電流を吸引する電流源とによって構成した電圧印加電流測定回路を提供する。
【0019】
【作用】
この出願の請求項1で提案した電圧印加電流測定回路によれば、負荷となる被試験ICに尖頭値が大きい動作電流IPが流れたために、電圧出力端子の電圧が低下方向に変動すると、その電圧の低下を負帰還ループで構成される電圧供給回路とは別に設けた電流供給回路が検出し、電圧出力端子に電流を供給する。この電流の供給により、従来は電圧供給回路だけから供給されていた電流が、この発明では電流供給回路からも供給されて補足するから、電圧出力端子の電圧変動幅を小さく抑えることができる。
【0020】
電圧出力回路の電圧変動幅を小さくできることから、バイパスコンデンサの容量値を小さい値に設定することが可能となり、これがために電圧供給回路の電圧が定常時の電圧に復帰するまでの時間(セットリングタイム)を短かくすることができる。
この発明では更に電圧供給回路の電圧出力端子に、この電圧出力端子の電圧が上昇した場合には、その電圧の上昇を検知して電流を吸引する電流吸引回路を設けた構成を提案する。この電流吸引回路を設けたことにより、負荷に動作電流が流れ、その動作電流が断になって定常電流に戻るとき、電圧出力端子の電圧にオーバーシュートが発生したとすると、そのオーバーシュートを検出して電流を吸引する。この電流の吸引によりオーバーシュートを制限する。この電圧制限動作により電圧出力端子の電圧は早期に定常電圧に復帰し、オーバーシュートが発生してもセットリングタイムを短かくすることができる。
【0021】
請求項2で提案した電圧印加電流測定回路によれば動作電流が断になった時点から所定の時間が経過した時点で電流供給回路及び電流吸引回路を電圧出力端子から切離す切替回路を設けた構成を提案したから、電流供給回路及び電流吸引回路を流れる電流によって電流測定値に誤差が発生しない電圧印加電流測定回路を提供することができる。
【0022】
【発明の実施の形態】
図1にこの発明による電圧印加電流測定回路の一実施例を示す。
図1において、図5と対応する部分には同一符号を付けて示す。つまり、10は電圧供給回路、TOは電圧出力端子、25は被試験ICで構成される負荷、30はこの発明で付加する電流供給回路、40は電流吸引回路を示す。
【0023】
電圧供給回路10の構成及びその動作は図5で説明したと同じであるからここではその重複説明は省略する。この発明の特徴とする構成は、電圧出力端子TOに電流供給回路30と電流吸引回路40も合わせて接続した点である。
電流供給回路30は電圧出力端子TOの定常状態における電圧V=Vinに安定した状態の電圧によりわずかに低い電圧VLを発生する電圧源31と、この電圧源31の電圧がアノードに印加され、カソードが電圧出力端子TOに接続され、更にアノードに電流源32の電流出力端子が接続されたダイオード33と、このダイオード33のアノードと電圧源31との間に接続したダイオード34とによって構成することができる。
【0024】
電流吸引回路40は定常時の電圧出力端子TOの出力電圧V=Vinよりわずかに高い電圧VHを出力する電圧源41と、この電圧源41の電圧VHがカソードに与えられアノードが電圧出力端子TOに接続され、更にカソードに吸引電流源42が接続されたダイオード43と、このダイオード43のカソードと電圧源41との間に接続したダイオード44とによって構成することができる。
【0025】
電圧出力端子TOの電圧がV=Vinの状態にある定常状態では電流供給回路30のダイオード34と電流吸引回路40のダイオード44は図2CとDに示すようにオンの状態に保持され、ダイオード33と43はオフの状態に維持される。従って電流源32から供給される電流I1はダイオード34と電圧源31を通じて共通電位点COMに流れる。また電流源42で吸引する電流I2は共通電位点COMから電圧源41とダイオード44を通じて電流源42に吸引される。
【0026】
この状態で負荷25に動作電流IP(図2A)が流れ、この動作電流IPが流れたことにより、電圧出力端子TOの電圧Vが図2Bに示すように低下し、その電圧Vが電圧源31の電圧VLより低くなるとダイオード34はオフに制御され、代わってダイオード33がオンになるため、電流源32から供給される電流I1は電圧出力端子TOに注入される。
【0027】
電流供給回路30から電圧出力端子TOに電流が注入されることにより、バイパスコンデンサ16はこの電流I1により充電され、電圧変動ΔVは電圧VL以下には低下しないようにクランプされる。この結果、電圧出力端子TOの電圧変動ΔVの変動幅は電圧源31の電圧VLによって決まる小さい変動幅に抑制される。電圧変動幅が小さい値に抑制されるために、電圧出力端子TOの電圧は動作電流IPが断になった時点から極く短かい時間内に定常値V=Vinに復帰することができる。
【0028】
ここで電圧出力端子TOの電圧変動ΔVの変動幅が小さくできることから、バイパスコンデンサ16の容量値C16を小さくできる利点が得られる。バイパスコンデンサ16の容量値C16は、
電流供給回路30のスイッチング時間(動作電流IPが流れる時間)を2nSとすると、
Figure 0003599256
となる。
【0029】
電流測定用抵抗器13の抵抗値Rは変化がなく1KΩである。
バイパスコンデンサ16の容量値C16が決まることにより図7に示した周波数特性の周波数f1は、
f1≒1/(2π※R※C16)=31.8kHz
を100MHzとして回路を安定に動作させるための周波数f2を1MHzとすると、位相補償コンデンサ15の容量値C
=1/(2π※R※f2)=160PF
となる。
【0030】
このように、位相補償コンデンサ15の容量値Cが従来の約1/10になるため、電流測定用抵抗器13の抵抗値Rと位相補償コンデンサ15の容量値Cによって決まる放電時間TS(セットリングタイム)は
TS=6.55τ=6.55※1KΩ※160PF=1.04μs
となり、セットリングタイムTSを1/10に短縮することができる。
【0031】
一方、この発明では動作電流IPが断になった時点で電流供給回路30からの電流の注入量が大きいと、電圧出力端子TOの電圧が図2Bに実線で示すように過渡的に上昇するいわゆるオーバーシュートが発生することが考えられる。このオーバーシュートが発生し、オーバーシュートの電圧が電圧源41の電圧VHを越えると電流吸引回路40に設けたダイオード43がオンとなり、電圧出力端子TOから電流源42が電流I2を吸引する。この電流の吸引によってオーバーシュートの電圧は電圧源41の電圧VHにクランプされ、電圧VH以上に上昇することを抑制する。この結果、オーバーシュートの量は制限されるため、オーバーシュートが発生してもセットリングタイムを短かくすることができる。
【0032】
図3はこの出願の請求項2で提案する切替回路50と60を付加した実施例を示す。図3では電圧供給回路10を省略して示している。この実施例では負荷25に動作電流IPが流れている時点では切替回路50と60のダイオード52と62は、電圧源51と61が出力する正電圧Vswp と負電圧Vswn によってオンの状態に制御され、電流源32と42を電流供給回路30と電流吸引回路40に接続した状態に保持される。従って電流供給回路30と電流吸引回路40は図1で説明したと同様に電流の供給と、吸引動作を実行する。動作電流IPが断になった時点から所定の時間TM(図4B参照)経過した時点で電圧源51と61から発生している電圧Vswp とVswn を0(ゼロ)に戻し、ダイオード52と62をオフに制御する。この結果電流源32と42は電流供給回路30と電流吸引回路40から切離され、電流源32と42の電流が電圧出力端子TOに漏れることを阻止する。よって電流源32と42が回路から切離された後に電流測定手段20で電流を測定することにより、電流源32と42の電流の影響を受けることなく、電流を測定することができる。
【0033】
【発明の効果】
以上説明したように、この発明によれば負帰還回路で構成される電圧供給回路10の電流供給機能を電流供給回路30で補足し、尖頭値の大きい動作電流IPが流れても、電圧出力端子TOの電圧変動量を低減させる構成としたから、電圧供給回路10の電流供給容量を軽減させることができる。つまりバイパスコンデンサ16の容量値C16を小さい値に設定することができる。バイパスコンデンサ16の容量値C16を小さい値に設定することができることから、位相補償コンデンサ15の容量値Cも小さい値に設定することができ、電流測定用抵抗器13との時定数R※Cを小さくすることができる。これによって尖頭値の大きい動作電流IPが流れて直後の電圧出力端子TOの電圧が定常時の電圧に復帰するまでのセットリングタイムを短かくすることができ、この結果として動作電流IPの繰返し周期が高速繰返し周期でも定常時の電流ΔIを正確に測定することができることになる。
【0034】
また、請求項2で提案した電圧印加電流測定回路によれば電流測定時点では電流補足用の電流供給回路30及びオーバーシュート除去用の電流吸引回路40を構成する各電流源31と41を回路から切離す構成としたから、スイッチ用のダイオード33及び43の漏れ電流による影響を受けることがない。従って、電流供給回路30と電流吸引回路40を設けたことにより電流測定値の信頼性が損なわれることはない。
【0035】
更に、電流供給回路30及び電流吸引回路40は動作電流IPが流れている期間が終了し、定常状態での微小電流測定時ではダイオード33及び43がオフの状態に制御され、電圧出力端子TO側に電流を出力することがない。この結果、電流源32,42及び電圧源31,41には高速応答性のみが要求され、低ノイズ特性、高精度の出力電圧安定度は要求されないため、装置を簡単に作成することができる。
【0036】
また、バイパスコンデンサ16の容量値C16を小さい値に設定することができることから、ノイズによる不確定電流の影響を小さくすることができる。つまり、電圧供給回路10の出力にノイズが存在すると、バイパスコンデンサ16にノイズ電流が流れ、このノイズ電流が微小電流測定時の不確定電流となる。
因みに100KHzで10μVのノイズが発生していると、ノイズ電流は、
従来、C16=0.250μF
=1/(2π※f※0.250μF)=6.3Ω
ノイズ電流=10μV/6.3Ω=1.58μA
本発明、C16=0.005μF
=1/(2π※f※0.005μF)=318Ω
ノイズ電流=10μV/318Ω=0.03μA
となり、電圧供給回路10に要求されるノイズ特性も大幅に緩和させることができる。
【図面の簡単な説明】
【図1】この発明の一実施例を説明するための接続図。
【図2】図1の動作を説明するための波形図。
【図3】この発明の請求項2で提案する要部の回路構成を説明するための接続図。
【図4】図3の動作を説明するための波形図。
【図5】従来の技術を説明するための接続図。
【図6】図5の動作を説明するための波形図。
【図7】図5の動作を説明するための周波数特性曲線図。
【符号の説明】
10 電圧供給回路
11 演算増幅器
12 負帰還回路
13 電流測定用抵抗器
14 ダイオードの逆並列回路
15 位相補償コンデンサ
16 バイパスコンデンサ
TO 電圧出力端子
18 電圧源
20 電流測定手段
25 負荷
30 電流供給回路
40 電流吸引回路
50,60 切替回路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an IC, such as a CMOS IC, which consumes a large load current only when an active element performs an inverting operation and consumes only a small current in a steady state, particularly a state in which a steady state voltage is applied to a power supply voltage supply terminal. The present invention relates to a voltage application current measurement circuit for measuring a minute current flowing through the circuit.
[0002]
[Prior art]
FIG. 5 shows a schematic configuration of a conventional voltage application current measurement circuit. This voltage application current measurement circuit is generally constituted by a voltage supply circuit 10 and a current measurement unit 20. An operational amplifier 11 which has a constant voltage V in the voltage supply circuit 10 to the non-inverting input terminal is given, and outputs the voltage V 0 which is output from the operational amplifier 11, a voltage and supplies the output voltage V 0 to the load 25 an output terminal tO, a negative feedback circuit 12 for negative feedback to the inverting input terminal of the voltage output terminal calculates voltage V 0 to be output to the tO amplifier 11, series between the output terminal and the voltage output terminal tO of the operational amplifier 11 , A current measuring resistor 13, an anti-parallel circuit 14 of a diode connected in parallel with the current measuring resistor 13, and a parallel connection of the current measuring resistor 13 and a diode connected in anti-parallel. The circuit comprises a phase compensation capacitor 15 connected in parallel with the circuit, and a bypass capacitor 16 connected to the voltage output terminal TO and a common potential point.
[0003]
The current measuring means 20 can be constituted by a differential amplifier 21 for extracting a voltage generated in the current measuring resistor 13 and an AD converter 22 for AD-converting and extracting a voltage value detected by the differential amplifier 21. . The voltage source 18 supplies a constant voltage V in to the non-inverting input terminal of the operational amplifier 11 generally to the DA converter is used, the voltage value applied by the digital value applied to the DA converter to the non-inverting input terminal of the operational amplifier 11 composed of a V in so that it can be set to any voltage.
[0004]
The load 25 is connected between the voltage output terminal TO and the common potential. Here, it is assumed that the load 25 is a CMOS IC, and a current consumption value of the CMOS IC in a steady state is measured.
That is, when the load 25 is a CMOS IC, an operating current IP as shown in FIG. 6A flows each time an active element (FET) in the CMOS IC performs an inversion operation. Becomes extremely small, and a steady current ΔI flows. The ratio between the operating current IP and the steady-state current ΔI has a large ratio of, for example, about 1000: 1. Therefore, in order to accurately measure the steady-state current ΔI, a sufficient time has elapsed since the operation current IP was switched to the steady-state current ΔI, and the time when the voltage V 0 of the voltage output terminal TO became stable (hereinafter, this time). The time required for the voltage V 0 to stabilize is referred to as a settling time.
[0005]
If the operating speed of the IC under test as the load 25 is slow and the cycle of the operating current IP is sufficiently long, the steady current ΔI can be accurately measured even if the settling time is long. However, ICs are required to operate at higher speeds, and the cycle at which the operating current IP flows tends to become shorter year by year. Therefore, conventionally, in this type of voltage applied current measuring circuit, various measures have been taken to shorten the settling time.
[0006]
As one of them, a bypass capacitor 16 is connected to the voltage output terminal TO, and the bypass capacitor 16 is always charged with a steady voltage V 0. When the operating current IP flows through the load 25, the operating current IP flowing through the load 25 is changed. Is discharged from the bypass capacitor 16 so that the operating current IP required by the load 25 can be supplied without excess or deficiency.
[0007]
Further, an anti-parallel circuit 14 of a diode is connected to the current measuring resistor 13 so that a large voltage drop does not occur in the current measuring resistor 13 while the operating current IP is flowing . .
In order to reduce the voltage fluctuation of the voltage output terminal TO when the operating current IP flows, the capacitance value of the bypass capacitor 16 may be set to be large. If the capacitance value of the bypass capacitor 16 is set large, the operation of the negative feedback circuit including the operational amplifier 11 becomes unstable (oscillation phenomenon is observed). In order to eliminate this phenomenon, the capacitance value of the phase compensation capacitor 15 is set to a large value to eliminate the unstable phenomenon.
[0008]
[Problems to be solved by the invention]
When the capacitance value of the phase compensation capacitor 15 is large, the time constant of the current measurement resistor 13 and the phase compensation capacitor 15 increases because the resistance value of the current measurement resistor 13 is large. Since the voltage at the voltage output terminal TO returns to the original steady voltage, the settling time is lengthened by the larger time constant, and the steady current of the high-speed operation type IC cannot be measured.
[0009]
An example of the settling time will be described below with numerical values. In order to obtain high-speed load fluctuation characteristics, it is necessary to improve the frequency characteristics of the entire circuit including the operational amplifier 11. Also, large is needed the resistance value R m of the current measuring resistor 13 to measure the steady-state current ΔI of the minute.
The operating current IP flowing during the operation of the CMOS type IC normally flows for several ns to several tens of ns. In the negative feedback type voltage supply circuit 10 using the operational amplifier 11, the operating current IP Cannot compensate for load fluctuations. Therefore, a bypass capacitor 16 is conventionally provided, and a current is supplied from the bypass capacitor 16 to the load 25 during a period when the operating current IP is flowing. To supply.
[0010]
Assuming that the time TP during which the operating current IP flows is short and the operating current IP is a constant current, the charge Q stored in the bypass capacitor 16 is generally Q = C * V = I * T. The voltage fluctuation ΔV 0 at the terminal TO is ΔV 0 ≒ IP * TP / C 16 , and the capacitance value C 16 required for the bypass capacitor 16 is C 16 ≒ IP * TP / ΔV 0 .
[0011]
As a general example, if IP = 500 mA, TP = 100 ns, and ΔV 0 = 200 mV,
C 16 @ IP * TP / ΔV = 500 mA * 100 ns / 200 mV = 0.25 μF
It becomes.
The current measurement resolution when the current flowing through the voltage output terminal TO is in a steady state is 100 nA, the gain of the differential amplifier 21 provided in the current measurement means 20 is 10 times, and the measurement resolution of the A / D converter 22 is 1 mV. Then, the resistance value R m of the current measuring resistor 13,
R m = 1mV / (100nA * 10) = 1KΩ
It becomes.
[0012]
FIG. 7 shows the frequency response characteristics of the operational amplifier 11. In the figure, a curve A indicates an attenuation characteristic of -6 dB per octave, and a curve B indicates an attenuation characteristic of -12 dB per octave. Between the frequencies f1 and f2 shown in the figure, the attenuation characteristic of -12 dB per octave is exhibited, and when the attenuation characteristic reaches 0 dB with the attenuation characteristic of octave -12 dB, the system becomes unstable as is well known. In this frequency response characteristic, the frequency f1 is
f1 ≒ 1 / (2π * R m * C 16 ) = 636 Hz
Taking f n the frequency f2 to operate stably circuit as 100MHz to 100 KHz, the capacitance value C m of the phase compensation capacitor 15 to provide the frequency f2 is
f2 = 1 / (2π * R m * C m )
From
C m = 1 / (2π * R m * f2)
= 1600PF
It becomes.
[0013]
Settling time when the current measurement is determined by the time constant of the capacitance value C m of the resistance value R m and the phase compensation capacitor 15 of the current measuring resistor 13.
The voltage generated across the current measuring resistor 13 during the period when the operating current IP is flowing is clamped to the forward voltage of the anti-parallel circuit 14 of the diode. When the voltage generated in the current measuring resistor 13 periods operating current IP is flowing and 700 mV, the voltage across the time constant τ = R mcurrent measuring resistor 13 determined by C m until restored to 1mV Is the discharge time TS (settling time) of
log (1 mV / 700 mV) = − 6.55
From
Figure 0003599256
It becomes.
[0014]
After all, it takes a set ring time TS of about 10.4μs on until the voltage fluctuation ΔV o of the voltage output terminal TO shown in FIG. 6B is restored to the steady-state value V 0 = V in, it has passed the set ring time TS If it is not the time, even if the current measurement unit 20 measures the current, there is a problem that a current value having a large error value is measured. Assuming that the settling time TS is 10.4 μs, 1 / 10.4 μs ≒ 0.1 × 10 6 = 100 KHz, and only the IC having a repetition frequency of the operating current IP lower than 100 KHz measures the steady-state current ΔI. Can not do.
[0015]
SUMMARY OF THE INVENTION An object of the present invention is to provide a voltage application current measurement circuit capable of shortening the settling time TS and accurately measuring the steady-state current ΔI of a high-speed operation type IC.
[0016]
[Means for Solving the Problems]
According to the present invention, an operational amplifier in which a constant voltage is applied to a non-inverting input terminal and an output voltage of the operational amplifier are applied to a load which periodically consumes an operating current having a peak value larger than a steady state current. A voltage output circuit for supplying a voltage output terminal for supplying the voltage of the voltage output terminal to the inverting input terminal of the operational amplifier; and a voltage output terminal and a voltage output terminal of the operational amplifier included in the voltage supply circuit. A feedback circuit connected between the voltage output terminal and the inverting input terminal of the operational amplifier; and a bypass connected between the voltage output terminal and a common potential point. A capacitor, an anti-parallel connection circuit of a diode connected in parallel to the current measuring resistor, a phase compensation capacitor connected in parallel to the current measuring resistor, The voltage generated in the resistor is measured, the voltage source current measurement circuit configured to include a current measuring means for measuring a current value output from the operational amplifier to the voltage output terminal,
The voltage output terminal detects that the voltage of the voltage output terminal has fallen below a specified value, and supplies a current to the voltage output terminal, and detects that the voltage of the voltage supply terminal has become higher than the steady value. Provided is a voltage applied current measuring circuit to which a current attracting circuit for attracting a current from a voltage supply terminal is added.
[0017]
According to a second aspect of the present invention, in the voltage application current measurement circuit proposed in the first aspect, the current supply circuit and the current attraction circuit are disconnected from the voltage supply terminal after a lapse of a predetermined time from the time when the periodically flowing operating current is interrupted. Provided is a voltage application current measurement circuit to which a separation switching circuit is added.
According to a third aspect of the present invention, in the voltage application current measurement circuit proposed in the first aspect, the current supply circuit outputs a voltage slightly lower than a steady state voltage value output to the voltage supply terminal; A voltage applied current measuring circuit is provided which includes a diode having a source supplied to an anode, a cathode connected to a voltage supply terminal, and a current source having a current output terminal connected to the anode of the diode.
[0018]
According to a fourth aspect of the present invention, in the voltage application current measurement circuit proposed in the first aspect, the current suction circuit outputs a voltage slightly higher than a steady state voltage of the voltage output terminal, and a voltage of the voltage source. Is applied to the cathode, the anode is connected to the diode connected to the voltage output terminal, and the diode is connected to the connection point between the cathode of this diode and the voltage source. When the voltage of the voltage supply terminal becomes higher than the voltage of the voltage source, And a current source for drawing a current from a voltage supply terminal through the voltage supply current measuring circuit.
[0019]
[Action]
According to the voltage applied current measuring circuit proposed in claim 1 of the present application, when the operating current IP having a large peak value flows through the IC under test as a load, and the voltage of the voltage output terminal fluctuates in a decreasing direction, The decrease in the voltage is detected by a current supply circuit provided separately from a voltage supply circuit constituted by a negative feedback loop, and a current is supplied to a voltage output terminal. By supplying this current, the current that has been conventionally supplied only from the voltage supply circuit is also supplied from the current supply circuit and supplemented in the present invention, so that the voltage fluctuation width of the voltage output terminal can be reduced.
[0020]
Since the voltage fluctuation range of the voltage output circuit can be reduced, it is possible to set the capacitance value of the bypass capacitor to a small value, and as a result, the time until the voltage of the voltage supply circuit returns to the steady state voltage (settling time) Time) can be shortened.
The present invention further proposes a configuration in which, when the voltage of this voltage output terminal rises, a current attraction circuit is provided at the voltage output terminal of the voltage supply circuit to detect the rise in voltage and to attract the current. By providing this current attraction circuit, when the operating current flows to the load and the operating current is interrupted and returns to the steady current, if an overshoot occurs in the voltage of the voltage output terminal, the overshoot is detected. To draw current. The attraction of this current limits overshoot. Due to this voltage limiting operation, the voltage of the voltage output terminal returns to the steady state voltage early, and the settling time can be shortened even if an overshoot occurs.
[0021]
According to the voltage application current measurement circuit proposed in claim 2, a switching circuit is provided which disconnects the current supply circuit and the current attraction circuit from the voltage output terminal when a predetermined time has elapsed from the time when the operating current is cut off. Since the configuration has been proposed, it is possible to provide a voltage application current measurement circuit in which an error does not occur in the current measurement value due to the current flowing through the current supply circuit and the current suction circuit.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of a voltage applied current measuring circuit according to the present invention.
In FIG. 1, portions corresponding to those in FIG. 5 are denoted by the same reference numerals. That is, 10 is a voltage supply circuit, TO is a voltage output terminal, 25 is a load constituted by the IC under test, 30 is a current supply circuit added in the present invention, and 40 is a current suction circuit.
[0023]
The configuration and operation of the voltage supply circuit 10 are the same as those described with reference to FIG. The feature of the present invention is that the current supply circuit 30 and the current attraction circuit 40 are also connected to the voltage output terminal TO.
The current supply circuit 30 includes a voltage source 31 that generates a slightly lower voltage VL by a voltage in a steady state at a voltage V 0 = Vin in a steady state of the voltage output terminal TO, and the voltage of the voltage source 31 is applied to the anode. A diode 33 having a cathode connected to the voltage output terminal TO, an anode connected to the current output terminal of the current source 32, and a diode 34 connected between the anode of the diode 33 and the voltage source 31. be able to.
[0024]
Current absorbing circuit 40 is a voltage source 41 that outputs a slightly higher voltage VH than the output voltage V 0 = V in the voltage output terminal TO of the steady state, the anode voltage VH of the voltage source 41 is applied to the cathode voltage output The diode 43 is connected to the terminal TO, and further has a cathode connected to an attraction current source 42, and a diode 44 connected between the cathode of the diode 43 and the voltage source 41.
[0025]
In a steady state in which the voltage of the voltage output terminal TO is in the state of V 0 = V in , the diode 34 of the current supply circuit 30 and the diode 44 of the current attraction circuit 40 are kept on as shown in FIGS. Diodes 33 and 43 are kept off. Therefore, the current I1 supplied from the current source 32 flows to the common potential point COM through the diode 34 and the voltage source 31. The current I2 drawn by the current source 42 is drawn from the common potential point COM to the current source 42 through the voltage source 41 and the diode 44.
[0026]
In this state, the operating current IP (FIG. 2A) flows through the load 25, and as the operating current IP flows, the voltage V 0 of the voltage output terminal TO decreases as shown in FIG. 2B, and the voltage V 0 becomes the voltage. When the voltage becomes lower than the voltage VL of the source 31, the diode 34 is controlled to be turned off, and the diode 33 is turned on instead. Therefore, the current I1 supplied from the current source 32 is injected into the voltage output terminal TO.
[0027]
By current from the current supply circuit 30 to the voltage output terminal TO is injected, the bypass capacitor 16 is charged by the current I1, voltage variation [Delta] V 0 is below the voltage VL is clamped so as not to decrease. As a result, the fluctuation width of the voltage fluctuation ΔV 0 at the voltage output terminal TO is suppressed to a small fluctuation width determined by the voltage VL of the voltage source 31. For the voltage fluctuation width is suppressed to a small value, the voltage of the voltage output terminal TO may be operating current IP returns to the steady value V 0 = V in the very short a paddle time after they become cross .
[0028]
Here, since the fluctuation range of the voltage fluctuation ΔV 0 of the voltage output terminal TO can be reduced, there is obtained an advantage that the capacitance value C 16 of the bypass capacitor 16 can be reduced. The capacitance value C 16 of the bypass capacitor 16 is
Assuming that the switching time of the current supply circuit 30 (the time during which the operating current IP flows) is 2 ns,
Figure 0003599256
It becomes.
[0029]
The resistance value R m of the current measuring resistor 13 is 1KΩ no change.
Frequency f1 of the frequency characteristics shown in FIG. 7 by the capacitance value C 16 in the bypass capacitor 16 is determined, the
f1 ≒ 1 / (2π * R m * C 16 ) = 31.8 kHz
When the f n and 1MHz frequency f2 to operate stably circuit as 100 MHz, the capacitance C m of the phase compensation capacitor 15 C m = 1 / (2π ※ R m ※ f2) = 160PF
It becomes.
[0030]
As described above, since the capacitance value C m of the phase compensation capacitor 15 is about 1/10 of the conventional value, the discharge time TS determined by the resistance value R m of the current measuring resistor 13 and the capacitance value C m of the phase compensation capacitor 15 is obtained. (Settling time) TS = 6.55τ = 6.55 * 1KΩ * 160PF = 1.04μs
And the settling time TS can be reduced to 1/10.
[0031]
On the other hand, in the present invention, when the amount of current injected from the current supply circuit 30 is large at the time when the operating current IP is cut off, the voltage at the voltage output terminal TO transitionally increases as shown by a solid line in FIG. 2B. It is possible that overshoot occurs. When this overshoot occurs and the overshoot voltage exceeds the voltage VH of the voltage source 41, the diode 43 provided in the current attraction circuit 40 is turned on, and the current source 42 attracts the current I2 from the voltage output terminal TO. The voltage of the overshoot is clamped to the voltage VH of the voltage source 41 due to the attraction of the current, and is suppressed from rising to the voltage VH or more. As a result, the amount of overshoot is limited, so that the settling time can be shortened even if overshoot occurs.
[0032]
FIG. 3 shows an embodiment to which switching circuits 50 and 60 proposed in claim 2 of this application are added. In FIG. 3, the voltage supply circuit 10 is omitted. In this embodiment, when the operating current IP flows through the load 25, the diodes 52 and 62 of the switching circuits 50 and 60 are turned on by the positive voltage V swp and the negative voltage V swn output by the voltage sources 51 and 61. The current sources 32 and 42 are controlled so as to be connected to the current supply circuit 30 and the current suction circuit 40. Accordingly, the current supply circuit 30 and the current attraction circuit 40 perform the current supply and the attraction operation as described with reference to FIG. The voltages V swp and V swn generated from the voltage sources 51 and 61 are returned to 0 (zero) when a predetermined time TM (see FIG. 4B) has elapsed from the time when the operating current IP is cut off, and the diode 52 62 is turned off. As a result, the current sources 32 and 42 are disconnected from the current supply circuit 30 and the current suction circuit 40, and prevent the current of the current sources 32 and 42 from leaking to the voltage output terminal TO. Therefore, by measuring the current with the current measuring means 20 after the current sources 32 and 42 are disconnected from the circuit, the current can be measured without being affected by the currents of the current sources 32 and 42.
[0033]
【The invention's effect】
As described above, according to the present invention, the current supply function of the voltage supply circuit 10 constituted by the negative feedback circuit is supplemented by the current supply circuit 30 so that the voltage output is maintained even when the operating current IP having a large peak value flows. Since the amount of voltage fluctuation at the terminal TO is reduced, the current supply capacity of the voltage supply circuit 10 can be reduced. That it is possible to set the capacitance value C 16 in the bypass capacitor 16 to a small value. Since it is possible to set the capacitance value C 16 in the bypass capacitor 16 to a small value, capacitance value C m of the phase compensation capacitor 15 can also be set to a small value, the constant R m when the current measuring resistor 13 ※ can be reduced C m. As a result, the settling time until the voltage at the voltage output terminal TO immediately after the operation current IP having a large peak value flows and the voltage at the voltage output terminal TO returns to the steady state voltage can be shortened. As a result, the repetition of the operation current IP Even when the cycle is a high-speed repetition cycle, the steady-state current ΔI can be accurately measured.
[0034]
According to the voltage application current measurement circuit proposed in claim 2, at the time of current measurement, each of the current sources 31 and 41 constituting the current supply circuit 30 for supplementing the current and the current suction circuit 40 for removing the overshoot are removed from the circuit. Since the switching diodes 33 and 43 are separated from each other, the switching diodes 33 and 43 are not affected by leakage current. Therefore, the reliability of the measured current value is not impaired by providing the current supply circuit 30 and the current attraction circuit 40.
[0035]
Further, in the current supply circuit 30 and the current attraction circuit 40, the period during which the operating current IP is flowing ends, and the diodes 33 and 43 are controlled to be in an off state when measuring a small current in a steady state, and the voltage output terminal TO side No current is output. As a result, only high-speed response is required for the current sources 32 and 42 and the voltage sources 31 and 41, and low noise characteristics and high-precision output voltage stability are not required. Therefore, the device can be easily manufactured.
[0036]
Further, since it is possible to set the capacitance value C 16 in the bypass capacitor 16 to a small value, it is possible to reduce the influence of the uncertainty current due to noise. That is, if noise is present in the output of the voltage supply circuit 10, a noise current flows through the bypass capacitor 16, and this noise current becomes an uncertain current when measuring a minute current.
By the way, if noise of 10 μV is generated at 100 kHz, the noise current becomes
Conventionally, C 16 = 0.250 μF
Z C = 1 / (2π * f * 0.250 μF) = 6.3Ω
Noise current = 10 μV / 6.3Ω = 1.58 μA
The present invention, C 16 = 0.005 μF
Z C = 1 / (2π * f * 0.005 μF) = 318Ω
Noise current = 10 μV / 318Ω = 0.03 μA
Thus, the noise characteristics required for the voltage supply circuit 10 can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a connection diagram for explaining an embodiment of the present invention.
FIG. 2 is a waveform chart for explaining the operation of FIG.
FIG. 3 is a connection diagram for explaining a circuit configuration of a main part proposed in claim 2 of the present invention.
FIG. 4 is a waveform chart for explaining the operation of FIG. 3;
FIG. 5 is a connection diagram for explaining a conventional technique.
FIG. 6 is a waveform chart for explaining the operation of FIG. 5;
FIG. 7 is a frequency characteristic curve diagram for explaining the operation of FIG. 5;
[Explanation of symbols]
REFERENCE SIGNS LIST 10 voltage supply circuit 11 operational amplifier 12 negative feedback circuit 13 current measuring resistor 14 antiparallel circuit of diode 15 phase compensation capacitor 16 bypass capacitor TO voltage output terminal 18 voltage source 20 current measuring means 25 load 30 current supply circuit 40 current suction Circuit 50, 60 switching circuit

Claims (4)

入力端子に一定電圧が与えられた演算増幅器と、この演算増幅器の出力電圧が与えられ、周期的に定常時の電流より尖頭値が大きい動作電流を消費する負荷にその出力電圧を供給する電圧出力端子、この電圧出力端子の電圧を上記演算増幅器の反転入力端子に帰還する帰還回路によって構成した電圧供給回路と、この電圧供給回路を構成する演算増幅器の出力端子と電圧出力端子との間に接続した電流測定用抵抗器と、上記電圧出力端子と共通電位点との間に接続したバイパスコンデンサと、上記電流測定用抵抗器に並列接続した位相補償コンデンサと、上記電流測定用抵抗器に発生する電圧を測定し、上記演算増幅器から電圧出力端子に出力される電流値を測定する電流測定手段とを具備して構成される電圧印加電流測定回路において、
上記電圧出力端子にこの電圧出力端子の電圧が定常時の電圧よりも僅かに低下したことを検出して上記電位供給端子に電流を流し込む電流供給回路と、上記電圧供給端子の電圧が定常時の電圧よりも僅かに高くなったことを検出して上記電圧供給端子より電流を吸引する電流吸引回路とを付加したことを特徴とする電圧印加電流測定回路。
An operational amplifier whose input terminal is given a constant voltage, and a voltage that is supplied with the output voltage of the operational amplifier and supplies the output voltage to a load that periodically consumes an operating current whose peak value is larger than a steady-state current between the output terminal, a voltage supply circuit constituted by a feedback circuit for feeding back the voltage of the voltage output terminal to the inverting input terminal of the operational amplifier, the output terminal and the voltage output terminal of the operational amplifier constituting the voltage supply circuit a current measuring resistor connected to a bypass capacitor connected between the common potential point and the voltage output terminal, and a phase compensation capacitor connected in parallel to the upper Symbol current measuring resistor, said current measuring resistor And a current measuring means for measuring a current value output from the operational amplifier to a voltage output terminal.
A current supply circuit for detecting that the voltage of the voltage output terminal is slightly lower than the voltage at the time of steady state at the voltage output terminal, and supplying a current to the potential supply terminal ; A voltage application current measurement circuit, further comprising: a current suction circuit for detecting that the voltage has become slightly higher than the voltage and sucking a current from the voltage supply terminal.
請求項1記載の電圧印加電流測定回路において、上記周期的に流れる動作電流が断になった時点から所定時間経過後に上記電流供給回路及び電流吸引回路を上記電圧供給端子から切離す切替回路を付加したことを特徴とする電圧印加電流測定回路。2. The voltage application current measurement circuit according to claim 1, further comprising: a switching circuit for disconnecting the current supply circuit and the current attraction circuit from the voltage supply terminal after a predetermined time has elapsed from a point in time when the operation current flowing periodically is interrupted. A voltage applied current measuring circuit, characterized in that: 請求項1記載の電圧印加電流測定回路において、上記電流供給回路は上記電圧供給端子に出力される定常時の電圧値よりわずかに低い電圧を出力する電圧源と、この電圧源の電圧がアノードに与えられ、カソードが上記電圧供給回路の電圧出力端子に接続されたダイオードと、このダイオードのアノードに電流出力端子を接続した電流源とによって構成したことを特徴とする電圧印加電流測定回路。2. The voltage application current measurement circuit according to claim 1, wherein the current supply circuit outputs a voltage slightly lower than a steady state voltage value output to the voltage supply terminal, and the voltage of the voltage source is connected to an anode. A voltage applied current measuring circuit, comprising: a diode having a cathode connected to a voltage output terminal of the voltage supply circuit; and a current source having a current output terminal connected to an anode of the diode. 請求項1記載の電圧印加電流測定回路において、上記電流吸引回路は上記電圧出力端子の定常時の電圧よりわずかに高い電圧を出力する電圧源と、この電圧源の電圧がカソードに与えられ、アノードが上記電圧出力端子に接続されたダイオードと、上記ダイオードのカソードと上記電圧源との接続点に接続され、上記電圧供給端子の電圧が上記電圧源の電圧より高くなった時点で上記ダイオードを通じて上記電圧出力端子から電流を吸引する電流源とによって構成したことを特徴とする電圧印加電流測定回路。2. The voltage applying current measuring circuit according to claim 1, wherein the current attracting circuit outputs a voltage slightly higher than a steady state voltage of the voltage output terminal; Is connected to a connection point between the diode connected to the voltage output terminal and the cathode of the diode and the voltage source, and when the voltage of the voltage supply terminal becomes higher than the voltage of the voltage source, the diode is connected through the diode. A voltage application current measurement circuit, comprising: a current source that draws a current from a voltage output terminal.
JP4343596A 1996-02-29 1996-02-29 Voltage applied current measurement circuit Expired - Fee Related JP3599256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343596A JP3599256B2 (en) 1996-02-29 1996-02-29 Voltage applied current measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343596A JP3599256B2 (en) 1996-02-29 1996-02-29 Voltage applied current measurement circuit

Publications (2)

Publication Number Publication Date
JPH09236637A JPH09236637A (en) 1997-09-09
JP3599256B2 true JP3599256B2 (en) 2004-12-08

Family

ID=12663628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343596A Expired - Fee Related JP3599256B2 (en) 1996-02-29 1996-02-29 Voltage applied current measurement circuit

Country Status (1)

Country Link
JP (1) JP3599256B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674005B2 (en) * 2001-07-04 2011-04-20 株式会社アドバンテスト Power supply device and test device
JP4152676B2 (en) 2002-06-13 2008-09-17 株式会社アドバンテスト Differential voltage measuring equipment, semiconductor testing equipment
DE112006003066T5 (en) 2005-10-27 2008-09-25 Advantest Corporation Test device and test method
JP4936134B2 (en) * 2007-09-20 2012-05-23 横河電機株式会社 Voltage applied current measurement circuit
JP5012430B2 (en) * 2007-11-07 2012-08-29 横河電機株式会社 DC test equipment and semiconductor test equipment
JP2009243937A (en) * 2008-03-28 2009-10-22 Yokogawa Electric Corp Voltage supplying device
US11300608B2 (en) * 2016-03-18 2022-04-12 Analog Devices, Inc. Segmented pin driver system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217666A (en) * 1985-07-17 1987-01-26 Advantest Corp Apparatus for measuring current through voltage application
JP3109329B2 (en) * 1993-05-28 2000-11-13 安藤電気株式会社 Clamp circuit and IC tester using the same
JPH07218596A (en) * 1994-02-03 1995-08-18 Mitsubishi Electric Corp Semiconductor testing apparatus

Also Published As

Publication number Publication date
JPH09236637A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
US8604809B2 (en) Current sensor capacity measuring system
JPH0420238B2 (en)
US7362104B2 (en) Current measurement device and test device
US8736354B2 (en) Electronic device and method providing a voltage reference
JP3072880B2 (en) Voltage generator for IC test
JP3599256B2 (en) Voltage applied current measurement circuit
KR101108131B1 (en) Power supply stabilizing circuit, electronic device, and test apparatus
EP0547916B1 (en) A voltage regulator control circuit
JP4031630B2 (en) Amplitude control of AC signals generated by electronic devices such as oscillator circuits
US4488438A (en) Square-wave current generator
JPWO2004104606A1 (en) Power supply device, test device, and power supply voltage stabilization device
KR100272951B1 (en) Circuit for voltage applying
JPH06196976A (en) Signal generator
US3939365A (en) Pulse peak detector
JP4412917B2 (en) Current measuring device and test device
JPS6217666A (en) Apparatus for measuring current through voltage application
JP3312763B2 (en) Voltage applied current measurement circuit
KR0154843B1 (en) Minimum power consumption current detecting circuit with temperature compensation
CN110596568A (en) Operational amplifier test circuit and system
JP2002123320A (en) Voltage generator with current limiting function
JPH10319055A (en) Voltage comparing circuit
JPH1038930A (en) Circuit for detecting peak voltage
JPH06258382A (en) Voltage impressing current measuring circuit
JP3965608B2 (en) Low pressure fluorescent lamp control device
JP3743129B2 (en) Temperature detection circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees