JPH0377646B2 - - Google Patents

Info

Publication number
JPH0377646B2
JPH0377646B2 JP59058541A JP5854184A JPH0377646B2 JP H0377646 B2 JPH0377646 B2 JP H0377646B2 JP 59058541 A JP59058541 A JP 59058541A JP 5854184 A JP5854184 A JP 5854184A JP H0377646 B2 JPH0377646 B2 JP H0377646B2
Authority
JP
Japan
Prior art keywords
electromagnet
valve
armature
piston
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59058541A
Other languages
Japanese (ja)
Other versions
JPS59211203A (en
Inventor
Pitsushingeru Furantsu
Kuroiteru Peeteru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EFU EE FUAU FUORUSHUNGUSU G FUYUURU ENERUGIITEHINITSUKU UNTO FUERUBURENNUNGUSUMOTOOREN MBH
Original Assignee
EFU EE FUAU FUORUSHUNGUSU G FUYUURU ENERUGIITEHINITSUKU UNTO FUERUBURENNUNGUSUMOTOOREN MBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EFU EE FUAU FUORUSHUNGUSU G FUYUURU ENERUGIITEHINITSUKU UNTO FUERUBURENNUNGUSUMOTOOREN MBH filed Critical EFU EE FUAU FUORUSHUNGUSU G FUYUURU ENERUGIITEHINITSUKU UNTO FUERUBURENNUNGUSUMOTOOREN MBH
Publication of JPS59211203A publication Critical patent/JPS59211203A/en
Publication of JPH0377646B2 publication Critical patent/JPH0377646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0686Braking, pressure equilibration, shock absorbing
    • F16K31/0689Braking of the valve element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/16Silencing impact; Reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/088Electromagnets; Actuators including electromagnets with armatures provided with means for absorbing shocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 この発明は、一個のばね・質量・系が電磁石に
よつて振動の最大偏差の各終端位置に保持され得
るので少くとも二つの非連続切換位置が生じ、そ
の切換位置における滞留時間が電磁石の任意の励
磁時間によつて制御され得る、電磁作動調整装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention provides that a spring/mass/system can be held by an electromagnet in each end position of maximum deviation of vibration, so that at least two discontinuous switching positions occur; The present invention relates to an electromagnetic actuation regulating device in which the residence time in can be controlled by an arbitrary excitation time of the electromagnet.

この種の調整装置は、位置にある弁のような動
かされる制御部材と、電磁石上の電機子のような
作動機構とがそれらの機能を果する切換位置を共
通しては占めないことによつて生じることがある
機能欠陥を惹起するような製造公差、熱膨脹、消
耗等が生じないようにするためには極めて正確に
調整しなければならない。
This type of regulating device is designed because the actuated control member, such as a valve located in a position, and the actuating mechanism, such as an armature on an electromagnet, do not share the switching position in which they perform their functions. Extremely precise adjustments must be made to avoid manufacturing tolerances, thermal expansion, wear, etc., which may lead to functional defects.

従来技術について この関連でドイツ連邦共和国特許(DE−PS)
第2335150号明細書には次のような記載がある。
即ち作動機構と弁の間にある伝達部材内部に一つ
の遊隙を設け、従つて閉成装置のために電磁子が
電磁石に接触し、同時に弁がその位置に当接す
る。電磁石上での電機子の衝突は、各ストローク
の終り頃圧縮される皿ばねによつて緩衝される。
ドイツ連邦共和国出願公開(DE−OS)第
3024109号明細書中には次のような提案が記載さ
れている。即ち弁棒と電機子の間の弾性結合によ
つて必要な長さ均衡が行なわれ、同時に電磁石上
での電機子の衝突の或る程度の緩衝が行なわれ
る。
Regarding the prior art Patent of the Federal Republic of Germany (DE-PS) in this connection
Specification No. 2335150 contains the following statement.
That is, a play is provided within the transmission member between the actuating mechanism and the valve, so that for the closing device the electromagnet contacts the electromagnet and at the same time the valve rests in that position. Armature strikes on the electromagnet are damped by a disc spring that is compressed towards the end of each stroke.
Federal Republic of Germany Application Publication (DE-OS) No.
The following proposal is described in the specification of No. 3024109. The elastic connection between the valve stem and the armature therefore provides the necessary length balancing and at the same time provides a certain damping of the armature's impacts on the electromagnet.

相対的に向き合つて移動する構成部分の衝突時
の接触面に生じる大きな機械的応力、騒音発生、
激突を防止するために、電磁石と連結して、封入
されたガス容量の変更作業による運動工程の全部
又は極く一部に及ぶ空気式減衰を実現する構成部
分が応用される。その場合通常では特別に追加さ
れる構成部分が用いられる。これらの構成部分は
直接には電磁石に属していない。
Large mechanical stresses, noise generation, and
In order to prevent collisions, components are applied which, in conjunction with electromagnets, provide pneumatic damping of all or a small part of the movement process by modifying the enclosed gas volume. In this case, special additional components are usually used. These components do not directly belong to the electromagnet.

これらの構成部分の役割を果すためにこれらの
構成部分は直接又は間接に電磁石の対応する構成
部分と連結されるので、これらの構成部分は電磁
石の構成部分相互の相対運動を運動工程の所望の
範囲で減衰させることができる。特許第1055091
号では電磁石に追加の減衰器をとりつけてある。
その場合減衰の役割は電機子にしつかり連結され
た蛇腹が受持つ。この蛇腹は運動過程の終り頃ス
トツパの接触によつて圧縮されるので、封入され
た空気が圧縮され、一つの開口部から流出する。
従つて予定の減衰は運動過程の終り頃行なわれ
る。
In order to fulfill their role, these components are connected directly or indirectly to the corresponding components of the electromagnet, so that these components direct the relative movement of the components of the electromagnet to each other in the desired manner of the movement process. It can be attenuated within a range. Patent No. 1055091
In this issue, an additional attenuator is attached to the electromagnet.
In this case, the role of damping is taken care of by the bellows, which are tightly connected to the armature. This bellows is compressed at the end of the movement process by the contact of the stopper, so that the enclosed air is compressed and flows out through one opening.
The planned damping therefore takes place towards the end of the movement process.

追加構成部分のこのような減衰の仕方には減衰
器、関連部分の運動及び停止に必要な伝達部材に
経費がかゝる。
This method of damping additional components involves the expense of the damper and the transmission elements necessary for movement and stopping of the associated parts.

発明の基本的課題 この発明の基本課題は、磁石上での電機子の減
衰された接触及びそれと同時に一又は数ケ所の切
換位置における動かされた制御部材の減衰された
載置を行なつて、それぞれの位置占めを正確に実
施することにある。それに加えて、移動部分の最
終位置に関して調整器の正確な調節を自動的に行
なわせることによつて構成経費、空間占位率、移
動部分の数量を減少させようとするものである。
Fundamental Problem of the Invention The basic problem of the invention is to provide a damped contact of the armature on the magnet and at the same time a damped positioning of the moved control member in one or several switching positions. The goal is to accurately position each position. In addition, the aim is to reduce construction costs, space occupancy and the number of moving parts by automatically making a precise adjustment of the regulator with respect to the final position of the moving parts.

この課題は本発明の次のような特徴によつて解
決される。即ち電機子と電磁石の間にガス容量が
封入され、その場合閉鎖された空間は弾性要素或
いは固定部分に対して移動する部分の極く僅かな
間隙を有する固定壁部によつて切換位置到達直前
にやつと形成される。封入されたガス容量はジヤ
ケツト領域内のガス容量を制限するための固定壁
部を用いる場合移動部分と移動しない部分の間の
対応間隙から逃げることができる。ジヤケツト領
域のガス容量の制限に必要な弾性部材を利用する
場合には電機子、磁石或いは弾性密封要素中に吹
出口が必要である。吹出口からの圧縮されたガス
容量流出はエネルギー変換によつて電磁石上の電
機子が切換位置に減衰されて到達する。電機子の
この減衰運動は電機子と弁の間の非摩擦・摩擦係
式結合によつて弁に伝達される。適応する構成部
分の使用によつて、弁座への弁の接近は電磁石へ
の電機子の接近と殆んど同様に経過する。その場
合それらの構成部分は弁座に対する一つ又は二つ
の電磁石のこの発明による必要な位置占めをする
か或いは電磁石が固定されている場合の弁頭に対
する電機子の位置どりが対応構造によつて実現
し、これによつて製造公差、熱膨脹、消耗が平均
される。
This problem is solved by the following features of the present invention. That is, a gas volume is enclosed between the armature and the electromagnet, in which case the closed space is closed immediately before the switching position is reached by an elastic element or by a fixed wall with a negligible gap between the moving part and the fixed part. Formed into a grin. The enclosed gas volume can escape through a corresponding gap between the moving and stationary parts when using fixed walls to limit the gas volume in the jacket area. If an elastic member is used to limit the gas capacity in the jacket area, an outlet is required in the armature, magnet or elastic sealing element. The compressed gas volume flowing out from the outlet reaches the switching position damped by the armature on the electromagnet due to the energy conversion. This damping movement of the armature is transmitted to the valve by a frictionless, frictionless connection between the armature and the valve. By using adapted components, the approach of the valve to the valve seat proceeds in much the same way as the approach of the armature to the electromagnet. In that case, those components either provide the required positioning according to the invention of one or two electromagnets relative to the valve seat or, if the electromagnets are fixed, the positioning of the armature relative to the valve head is determined by a corresponding structure. This averages out manufacturing tolerances, thermal expansion, and wear and tear.

発明の利点 この発明によつて得られるいくつかの利点は特
に次の点にある。即ち調整装置のすべての可動部
分は減衰されてその切換位置に到達し、その結果
騒音発生は大きく防止され且つ機械的応力が明ら
かに減退される。更に別の利点は次の点にある。
即ち減衰機能が電磁石中の構造空間内で実現さ
れ、同時に減衰機能のための構造費用を軽減する
ことができる。更に組立ての際にも保管の際にも
調整装置の微調整は不要である。操作中動く調整
部材或いは調整装置の長さ均衡は熱膨脹によつて
自動的に相殺される。
ADVANTAGES OF THE INVENTION Some of the advantages achieved by the invention are, in particular: This means that all moving parts of the adjusting device reach their switching position damped, so that noise generation is largely prevented and mechanical stresses are significantly reduced. Yet another advantage lies in the following points.
This means that the damping function can be implemented within the structural space in the electromagnet, and at the same time the structural outlay for the damping function can be reduced. Furthermore, no fine adjustment of the adjusting device is necessary either during assembly or during storage. The length balance of the adjusting member or device that moves during operation is automatically compensated for by thermal expansion.

実施例 いくつの実施例を示した図について更に詳記す
る。
EXAMPLES The figures showing some examples will be described in more detail.

例えば第1図に電磁石1と2及びそのコイル3
と4並びにコイルカバー5及び6を有する電磁作
用調整装置を示す。電磁石2はケーシング7に固
定結合されており、一方電磁石2はシリンダ8と
ピストン9から成る空気式バイアス装置と共通に
ケーシング7の中に案内されており、ストッパ1
0と11の間で軸方向運動をすることができる。
弁12は、ケース7に固定的に結合されている弁
案内13の中で案内される。ばね14は従来通り
ばね皿15及び弁円錐片16を介して弁12に結
合されている。電機子17は案内18によつて案
内されて、バイアス装置のピストン9に支承され
ているばね19によつて、中心板20を介して弁
12の棒端に摩擦係合している。電磁石1の位置
ぎめはバイアス装置と共に二側面に作用する長さ
均衡部材21によつてきまる。長さ均衡部材21
はねじ22によつてケーシングに固定結合されて
おり、一方垂直に移動するピストン24のフラン
ジ23はねじスリーブ25、シリンダ28を介し
て電磁石1に固定されているので、調整部材の長
さの変化が長さ均衡部材に伝達される。長さ均衡
部材の非摩擦係合式組込により圧力の伝達も引張
力の伝達も可能となる。
For example, in Figure 1, electromagnets 1 and 2 and their coil 3
4 and coil covers 5 and 6. The electromagnet 2 is fixedly connected to the casing 7, while the electromagnet 2 is guided in the casing 7 in common with a pneumatic biasing device consisting of a cylinder 8 and a piston 9, and the stop 1
Axial movement between 0 and 11 is possible.
The valve 12 is guided in a valve guide 13 which is fixedly connected to the housing 7 . The spring 14 is conventionally connected to the valve 12 via a spring plate 15 and a valve cone 16. The armature 17 is guided by a guide 18 and is in frictional engagement with the rod end of the valve 12 via a central plate 20 by means of a spring 19 which is supported on the piston 9 of the biasing device. The positioning of the electromagnet 1 is determined by a length balancing member 21 acting on two sides together with a biasing device. Length balancing member 21
is fixedly connected to the casing by a screw 22, while the flange 23 of the vertically movable piston 24 is fixed to the electromagnet 1 via a threaded sleeve 25 and a cylinder 28, so that changes in the length of the adjusting member are prevented. is transmitted to the length balancing member. The non-frictionally engaging integration of the length-balancing member allows the transmission of both pressure and tensile forces.

第2図は、電磁石1の位置ぎめのために片側作
用の長さ均衡部材26を有する電磁作動調整装置
を示す。長さ均衡部材26はバイアス装置のシリ
ンダ8のシリンダ状凹部中に挿入されて、カバー
27によつて保持される。摩擦係合式組込みは圧
力の伝達のみを可能にする。
FIG. 2 shows an electromagnetically actuated adjustment device with a unilaterally acting length balancing member 26 for positioning the electromagnet 1. FIG. The length balancing member 26 is inserted into a cylindrical recess in the cylinder 8 of the biasing device and is held by a cover 27. Frictional integration only allows the transmission of pressure.

第3図は二側面作用長さ均衡部材28を有する
電磁作動調整装置を示す。長さ均衡部材28は弁
12と固定的にねじ結合されている。長さ均衡部
材28のフランジ24はキヤツプナツト29によ
つて案内スリーブ30上に弁に対して対的に摺動
可能に電機子17と共に固定されている。
FIG. 3 shows an electromagnetically actuated adjustment device having a bilateral acting length balancing member 28. FIG. The length balancing element 28 is fixedly screwed to the valve 12. The flange 24 of the length balancing member 28 is fixed by a cap nut 29 on the guide sleeve 30 with the armature 17 so as to be slidable relative to the valve.

第4図は片側作用長さ均衡部材28を有する電
磁作動調整装置を示す。長さ均衡部材はカバー3
1を介して案内スリーブ30及び弁12に摩擦係
合しているので、圧力のみが伝達される。
FIG. 4 shows an electromagnetically actuated adjustment device having a single-sided acting length balancing member 28. FIG. The length balancing member is cover 3
1 to the guide sleeve 30 and the valve 12, so that only pressure is transmitted.

第5図は片側作用長さ均衡部材を示す。シリン
ダ構成部分32とピストン構成部分33とから構
成される液圧式長さ均衡部材はシリンダ構成部分
32とピストン構成部分33との間の蛇腹34に
よつて気密且つ液密に結合されるので、流体が出
ることも有害物質が侵入することもできない。ピ
ストン構成部分33とシリンダ構成部分32の相
対滑動套面35は同時に案内面であり且つ密封面
となつている。漏れ液室37と流体貯ぞう室38
とに対する圧力室36の密閉はピストン下縁の薄
壁延長部39によつて実現される。漏液はピスト
ン壁中の開口部40から液体貯ぞう室38の中へ
逆流することがある。液体貯ぞう室中には圧力だ
めと容量均衡部材としてのガス充填蛇腹41があ
り、このガス充填蛇はピストン上底に固定されて
いる。ピストン底部42は流出孔43とばね負荷
逆止弁44を収容するための回転部分から構成さ
れている。孔47を球48で閉鎖するばね46が
支承されるばねかで45はピストン底部の中心に
あり、ばね49よつてピストン底部に摩擦係合し
て保持される。シリンダの上部端面50は長さ均
衡部材の最大限可能なすえ込みのための端部スト
ツパとして役立てられる。ピストン構成部分33
は薄壁延長部39の上方に環状溝51をそえてい
る。環状溝は結合部52を介して漏液室37と連
絡している。
FIG. 5 shows a single-sided acting length balancing member. The hydraulic length balancing member composed of the cylinder component 32 and the piston component 33 is connected in an air-tight and liquid-tight manner by the bellows 34 between the cylinder component 32 and the piston component 33, so that fluid No substances can come out, and no harmful substances can enter. The relative sliding sleeves 35 of the piston component 33 and the cylinder component 32 are at the same time guide surfaces and sealing surfaces. Leak liquid chamber 37 and fluid storage chamber 38
The sealing of the pressure chamber 36 against the piston is achieved by a thin-walled extension 39 of the lower edge of the piston. Leakage fluid may flow back into the fluid reservoir 38 through the opening 40 in the piston wall. In the liquid storage chamber there is a pressure reservoir and a gas-filled bellows 41 as a volume balancing element, which gas-filled bellows is fixed to the top and bottom of the piston. The piston bottom 42 consists of a rotating part for accommodating an outflow hole 43 and a spring-loaded check valve 44. A spring 46, which closes the hole 47 with a ball 48, is supported by a spring 45, which is centered on the piston bottom and held in frictional engagement with the piston bottom by a spring 49. The upper end face 50 of the cylinder serves as an end stop for the maximum possible swaging of the length balancer. Piston component part 33
has an annular groove 51 above the thin-walled extension 39. The annular groove communicates with the leakage chamber 37 via the joint 52 .

第6図は二側面用長さ均衡部材を示す。 FIG. 6 shows a length balancing member for two sides.

長さ均衡部材は両側作用ピストン4と二つのシ
リンダ構成部分53及び54とから構成される。
シリンダ構成部分はスペーサ55を介して相互に
固く連結されている。ピストン24は二つの蛇腹
56及び57を介してシリンダ構成部分53及び
54に気密及び液密に連結されているので、液体
も漏れなければ有害物質も侵入することはない。
相対的に滑動する套面58及び59は同時に案内
面及び密封面として構成されている。ピストン底
部60及び61はシリンダ構成部分53,54と
共に液体容積62及び63を封入し、これらの液
体は溢流孔64及び65から液体貯ぞう室66内
へ流入することができる。ピストン辺の薄肉延長
部として構成された密封唇部67と68は液体が
密封間隙58及び59を介して漏液室69及び7
0へ流入するのを妨げ、その効果は流出溝73及
び74を介して漏液室69及び70に連絡してい
る環状溝71及び72によつて助勢される。
The length balancing member consists of a double-acting piston 4 and two cylinder components 53 and 54.
The cylinder components are firmly connected to each other via spacers 55. Since the piston 24 is air-tightly and liquid-tightly connected to the cylinder components 53 and 54 via the two bellows 56 and 57, no liquid leaks and no harmful substances enter.
The relatively sliding sleeve surfaces 58 and 59 are configured at the same time as guide surfaces and sealing surfaces. The piston bases 60 and 61 together with the cylinder components 53 and 54 enclose liquid volumes 62 and 63, which can flow into a liquid reservoir 66 through overflow holes 64 and 65. Sealing lips 67 and 68, which are constructed as thin-walled extensions of the piston sides, allow liquid to flow through sealing gaps 58 and 59 into leakage chambers 69 and 7.
This effect is assisted by annular grooves 71 and 72 which communicate with leakage chambers 69 and 70 via outflow grooves 73 and 74.

不可避の僅かな漏液流は逆流口75及び76を
介して液体貯ぞう室内へ逆流する。ピストン底部
61には逆止弁71があり、そのばねかで78は
ばね79によつてピストン底部に摩擦係合によつ
て連結されている。液体容量62中のばね80は
シリンダ構成部分53とピストン底部60に支承
されている。
The unavoidable slight leakage flow flows back into the liquid storage chamber via backflow ports 75 and 76. The piston bottom 61 has a check valve 71 whose spring 78 is connected to the piston bottom by a spring 79 in a frictional engagement. A spring 80 in the liquid volume 62 is supported on the cylinder component 53 and on the piston base 60.

第7図は電磁石1、電機子17、コイルばね1
9、コイルカバー5を有する電磁作動調整装置の
部分を示す。環状の要素82と83は磁性でない
弾性材料でできており、電磁石1と気密に結合さ
れている。吹出口84から圧縮されたガスが逃げ
ることがあり、その結果電機子17は減衰して接
触することができる。
Figure 7 shows electromagnet 1, armature 17, and coil spring 1.
9 shows the part of the electromagnetically actuated adjustment device with the coil cover 5. The annular elements 82 and 83 are made of a non-magnetic, elastic material and are hermetically coupled to the electromagnet 1. Compressed gas may escape from the outlet 84, so that the armature 17 can be damped into contact.

第8図も同様の電磁作動調整装置の部分を示
す。閉じ込められたガス容量の空間は完全には閉
鎖されず、電機子17、スリーブ85、電磁石
1、中心板0の特別の形態によつて定まる間隙が
形成され、この間隙から圧縮されたガスが流出で
きる。
FIG. 8 also shows a portion of a similar electromagnetic adjustment device. The space of the confined gas volume is not completely closed off, but a gap is formed, defined by the special configuration of the armature 17, the sleeve 85, the electromagnet 1 and the center plate 0, through which the compressed gas can escape. can.

第9図及び第10図にはピストン底部の別の構
成を拡大寸法で示してある。
9 and 10 show an alternative configuration of the piston bottom in enlarged size.

以下に片側及び両側作用の長さ均衡部材の機能
を先づ説明し、続いてこの部材の電磁作動調整装
置内での使用について説明する。
In the following, the function of the single- and double-acting length balance members will be described first, followed by a description of their use in electromagnetically actuated regulating devices.

第5図に示した長さ均衡部材に外力を加える
と、ピストン構成部分33とシリンダ構成部分3
2の間の間隔差がまだ小さいうちに既に流体空間
36内に強い圧力が生じる。この圧力によつてピ
ストン下縁の延長部39がシリンダ壁部に押しつ
けられ、その結果流体空間36は密封面35の所
で殆んど密閉される。
When an external force is applied to the length balancing member shown in FIG. 5, the piston component 33 and the cylinder component 3
2, a strong pressure already develops in the fluid space 36 while the distance difference between the two is still small. This pressure forces the piston lower edge extension 39 against the cylinder wall, so that the fluid space 36 is almost sealed at the sealing surface 35.

環状溝51と連結溝52とを介して負荷変化が
急に起る場合も案内面の間にある圧液を急速に運
び出すことができるので、延長部39の押しつけ
に必要な圧力差は自然に設定される。逆止弁44
も停止し、流出孔43を経て極く僅かな圧液が圧
力室36から液体貯ぞう室38内へ流出すること
があるので、力が作用する場合の変位は極く僅か
しか可能でない。
Even if a sudden load change occurs through the annular groove 51 and the connecting groove 52, the pressure liquid between the guide surfaces can be quickly carried away, so the pressure difference required to press the extension part 39 is naturally reduced. Set. Check valve 44
2, and only a small amount of pressure liquid can flow out of the pressure chamber 36 into the liquid storage chamber 38 via the outflow hole 43, so that only a small displacement is possible when a force is applied.

完全には避けられない僅かな漏液流は孔40か
ら貯ぞう室38内に入る。貯ぞう室の大きさは、
圧力室36から追い出された液体全体を、蛇腹4
1中のガス容量が対応して圧縮されることにより
収容できる程である。長さ均衡部材から負荷を除
くとばね49が、加わる外力によつて力の平衡が
生じる迄、ピストン33をシリンダ32から引き
出すことによつて長さの差を平均する。その際丁
度開き始めた逆止弁44と液体貯ぞう室38の僅
かな過圧とが急速な液体交換と、従つてまた力の
平衡によつて定まつた新しい位置の急速な占位に
役立つ。長さ均衡部材の最大限の偏差は蛇腹34
の最大限可能な延長によつてきまつている。外部
から導入されたトルクは蛇腹34によつて吸収さ
れる。この応力を小さなものにとどめるために、
作用するいろいろな力が大きなトルクを生じない
ように少くとも一つの端面53が形成される。
A small leakage flow, which cannot be completely avoided, enters the reservoir chamber 38 through the hole 40. The size of the storage chamber is
The entire liquid expelled from the pressure chamber 36 is transferred to the bellows 4.
1 can be accommodated by corresponding compression. When the load is removed from the length balancing member, spring 49 averages out the difference in length by pulling piston 33 out of cylinder 32 until an applied external force causes force equilibrium. The check valve 44, which has just begun to open, and the slight overpressure in the liquid reservoir 38 serve for a rapid exchange of liquid and thus also for a rapid occupation of the new position determined by the force balance. . The maximum deviation of the length balanced member is bellows 34
The focus is on maximizing the possible extension of Torque introduced from the outside is absorbed by the bellows 34. In order to keep this stress to a small level,
At least one end face 53 is formed so that the various acting forces do not result in large torques.

第6図に示した長さ調整部材の作動態様は作用
する外力の方向によつてきまる。フランジ23を
介してピストン24に加わる外力がシリンダ構成
部分54の方向へ導入されると、ピストン24と
シリンダ構成部分54の間の行程差が小さいうち
に既に圧力室63の中には高圧が生じて、この高
圧によつて延長部68がシリンダ壁に押しつけら
れ、その結果圧力室63は密封面59に沿つて殆
んど密閉される。逆止弁77もそのときの圧力室
63内の圧力によつて液体貯ぞう室66への液の
流出を妨げるので、液体は溢流口64を介しての
み圧力室63がか逃げられる。その結果シリンダ
構成部分54へのピストン24の降下は溢流孔6
4の対応構成によつて制御することができる。延
長部68の密封作用は環状溝72によつて強めら
れ、同時に密封間隙59の中にある液体は流出溝
74から急速に搬出され、その結果延長部の密封
作用は負荷に急激な変化があるときにも自然に調
整される。不可避の漏液流は逆流口76を通つて
液体貯ぞう室66内へ逆流入する。ピストン24
がシリンダ構成部分54の方向に移動中貯ぞう室
66から出た液体は溢流口65から圧力室62内
へ流出することができる。圧力と容量の変化を平
均させるために貯ぞう室にはガス充満蛇腹81を
設けてある。或る力が前記のように均衡部材に作
用すると、作用する外力と時間に応じて行程が僅
かに変化する。
The operating mode of the length adjusting member shown in FIG. 6 depends on the direction of the external force acting on it. When an external force applied to the piston 24 is introduced in the direction of the cylinder component 54 via the flange 23, a high pressure is already generated in the pressure chamber 63 while the stroke difference between the piston 24 and the cylinder component 54 is small. This high pressure then presses the extension 68 against the cylinder wall, so that the pressure chamber 63 is almost sealed along the sealing surface 59. Since the check valve 77 also prevents the liquid from flowing into the liquid storage chamber 66 depending on the pressure in the pressure chamber 63 at that time, the liquid can escape from the pressure chamber 63 only through the overflow port 64. As a result, the descent of the piston 24 into the cylinder component 54 is caused by the overflow hole 6
4 corresponding configurations. The sealing action of the extension 68 is strengthened by the annular groove 72, and at the same time the liquid present in the sealing gap 59 is quickly carried away from the outflow groove 74, so that the sealing action of the extension has a sudden change in load. Sometimes it adjusts naturally. The unavoidable leakage flow flows back into the liquid storage chamber 66 through the backflow port 76. piston 24
The liquid leaving the storage chamber 66 during its movement in the direction of the cylinder component 54 can flow into the pressure chamber 62 through the overflow opening 65 . A gas-filled bellows 81 is provided in the reservoir to equalize changes in pressure and volume. When a force is applied to the balance member as described above, the stroke changes slightly depending on the external force applied and time.

力の作用が逆転すると、ピストンはシリンダ構
成部分53内へ入り、ピストン底部60の溢流孔
65は液体が圧力室62から貯ぞう室66内へ急
速に流出するのに役立ち、その結果圧力室62の
中の圧力は極く僅かづつ強まる。しかしこの圧力
は、密封間隙の密閉を実現するのに充分な強さで
あつて、従つてピストンの降下は流出口によつて
制御することができる。ピストン底部61の逆止
弁77が開き、貯ぞう室66と圧力室63の間の
液体交換のために役立つ。均衡部材のこのような
負荷の際には作用外力と時間とによつて生じる行
程変化は比較的大きくなる。
When the force action is reversed, the piston enters the cylinder component 53 and the overflow hole 65 in the piston bottom 60 serves to quickly drain the liquid from the pressure chamber 62 into the reservoir chamber 66, so that the pressure chamber The pressure inside 62 increases very slightly. However, this pressure is strong enough to achieve sealing of the sealing gap, so that the lowering of the piston can be controlled by the outlet. A check valve 77 in the piston bottom 61 opens and serves for liquid exchange between the reservoir chamber 66 and the pressure chamber 63. When the balancing element is loaded in this way, the travel changes that occur as a result of the external forces and time are relatively large.

第1図は二個面作用長さ均衡部材21を有する
電磁作動調整装置を示す。部材21は操作中電磁
石1を次のように位置に置く。即ち電機子17の
磁極面と弁12の弁皿の間で生じる長さの変化が
電磁石1の磁極面と弁座の間の間隔に対応するよ
うな位置である。そのために部材21を、圧力室
63が第1図の上部にくるように組込む。
FIG. 1 shows an electromagnetically actuated adjustment device having a two-sided length balancing member 21. FIG. The member 21 positions the electromagnet 1 during operation as follows. That is, the position is such that the change in length that occurs between the magnetic pole surface of the armature 17 and the valve plate of the valve 12 corresponds to the distance between the magnetic pole surface of the electromagnet 1 and the valve seat. For this purpose, the member 21 is assembled so that the pressure chamber 63 is located at the top in FIG.

電磁石が遮出される時間の間ばね79により大
きな、ばね19の力が次のような結果を生じる。
即ち電磁石1がバイアス装置と共にケーシング7
に対して上方へ摺動し、その際液体が圧力室63
から出て溢流孔64を経て配量されて流出する。
電磁石1の再接続と電機子17の接近とに際して
電磁石の力がばね19の力に勝つて、電磁力1が
バイアス装置と共に電機子17に接触する迄引き
寄せられ、そのとき弁12はばね14の弾力によ
つて自分の位置にある。バイアス装置と共に行な
われる電磁石1の下方への運動は今開く逆止弁7
7と流動に好都合な形の溢流孔65とによつて助
勢され、ばね80より大きいばね79の力によつ
て支えらる。位置ぎめ工程の所望の時間経過は逆
止弁77、溢流孔64と65、ばね79と80の
対応構成によつて設定することができる。
The force of spring 19, which is greater than that of spring 79 during the time the electromagnet is blocked, has the following effect.
That is, the electromagnet 1 is connected to the casing 7 together with the bias device.
The liquid slides upward against the pressure chamber 63.
It exits from the tank and is metered out through the overflow hole 64.
Upon reconnection of the electromagnet 1 and approach of the armature 17, the force of the electromagnet overcomes the force of the spring 19, and the electromagnetic force 1 is drawn together with the biasing device until it contacts the armature 17, at which point the valve 12 is moved by the force of the spring 14. It is held in its own position by elasticity. The downward movement of the electromagnet 1, carried out together with the biasing device, causes the check valve 7 to now open.
7 and an overflow hole 65 of a favorable shape for flow, and is supported by the force of spring 79, which is greater than spring 80. The desired time course of the positioning process can be set by the corresponding arrangement of check valve 77, overflow holes 64 and 65, and springs 79 and 80.

第2図は片側作用均衡部材26を有する対応電
磁作動調整装置を示す。部材26は、圧力室36
が第2図の上方にくるように組込まれている。電
磁石1を遮断した状態ではピストン構成部分33
は圧力室36から溢流孔43を経て流出する液体
に対応してばね49の力より大きいばね19の力
によつてシリンダ構成部分内へ降下する。その結
果電磁石1がバイアス装置と共に上方へ摺動す
る。電磁石が再び接続されると、均衡部材から電
磁石へ力が伝達されることはない。ばね49によ
つて長さの差は急速に平均される。何となれば逆
止弁が開くからで、その結果貯ぞう室38から液
体は急速に圧力室36内へ流入することになる。
FIG. 2 shows a corresponding electromagnetically actuated adjustment device with a one-sided balancing member 26. FIG. The member 26 is a pressure chamber 36
It is installed so that it is located at the top of Fig. 2. When the electromagnet 1 is cut off, the piston component 33
Corresponding to the liquid flowing out from the pressure chamber 36 via the overflow hole 43, the liquid falls into the cylinder component due to the force of the spring 19, which is greater than the force of the spring 49. As a result, the electromagnet 1 slides upwards together with the biasing device. When the electromagnet is reconnected, no force is transmitted from the balance member to the electromagnet. Due to the spring 49, the length differences are quickly averaged out. This is because the check valve opens, and as a result, liquid from the storage chamber 38 rapidly flows into the pressure chamber 36.

第3図は二側面に作用する長さ均衡部材28を
有する電磁作動調整装置を示す。部材28は第1
図及び第2図に示した調整装置と異なり電機子の
磁極面と弁皿との間の間隔を電磁石の磁極面と弁
座との間の間隔に適合させている。長さ均衡部材
は、圧力室63が第3図の下方にくるように組込
まれている。
FIG. 3 shows an electromagnetically actuated adjustment device with a length balancing member 28 acting on two sides. The member 28 is the first
In contrast to the adjusting device shown in FIGS. and 2, the spacing between the pole face of the armature and the valve plate is adapted to the spacing between the pole face of the electromagnet and the valve seat. The length balancing member is installed so that the pressure chamber 63 is located at the bottom in FIG.

電磁石1を遮断し、電磁石2を接続すると、ば
ね19によつて弁12と長さ均衡部材28とが加
速され、「開かれた弁」が接続位置に運ばれてそ
こに保持され、同時に電機子17は電磁石2によ
つて開き位置に保たれ、その結果ピストン24の
位置は電磁石2に関して固定されている。部材2
8を介して弁に作用するばね19の加速力に対し
て弁の慣性力とばね14の弾力は抵抗する。逆止
弁77が停止するので、流出孔64を経て極く小
量の油が圧力室63から液体貯ぞう室66内へ流
入するので、電機子17と弁12間の相対運動は
極く僅かに可能で、その結果弁は所望の態様で開
く。電機子17は第7図或いは第8図に示された
態様によつて減衰されて電磁石2のストツパに到
達し、その場合弁の慣性力に流動する油の極く僅
かの抵抗がこの方向では停止しない逆止弁77を
介して対抗するだけなので、弁12の運動は電機
子17と弁12の強固な結合の際に生じる最大限
の行程を越えることになる。電機子が電磁石2に
よつて保持される時間の間、緊張したばね14が
ばね皿15、弁錐体16、弁12とを介して均衡
部材28に作用するので、今停止している逆止弁
77の場合には極く僅かの油量が圧力室63から
出て逆流孔64を経て貯ぞう室66内へ流入し、
これによりばね14は弁を再び電機子と弁の強力
な結合による位置の近くへ運ぶ。さて電磁石2を
遮断し、電磁石1を接続すると、ばね14によつ
て弁が部材28と共に第3図に示した位置に運ば
れ、電磁石1によつて保持される。
When the electromagnet 1 is switched off and the electromagnet 2 is connected, the valve 12 and the length balance member 28 are accelerated by the spring 19, and the "open valve" is brought into the connected position and held there, while at the same time the electrical The child 17 is kept in the open position by the electromagnet 2, so that the position of the piston 24 with respect to the electromagnet 2 is fixed. Part 2
The inertial force of the valve and the elasticity of the spring 14 resist the acceleration force of the spring 19 acting on the valve via the valve. Since the check valve 77 is stopped, a very small amount of oil flows from the pressure chamber 63 into the liquid storage chamber 66 through the outflow hole 64, so that the relative movement between the armature 17 and the valve 12 is very small. so that the valve opens in the desired manner. The armature 17 is damped in the manner shown in FIGS. 7 or 8 until it reaches the stop of the electromagnet 2, in which case the very slight resistance of the flowing oil to the inertia of the valve is Since it is only counteracted via the non-stop check valve 77, the movement of the valve 12 exceeds the maximum stroke that would occur with a rigid connection of the armature 17 and the valve 12. During the time that the armature is held by the electromagnet 2, the tensioned spring 14 acts on the balance member 28 via the spring plate 15, the valve cone 16 and the valve 12, so that the now stopped non-return check In the case of the valve 77, a very small amount of oil leaves the pressure chamber 63 and flows into the storage chamber 66 through the backflow hole 64.
This causes the spring 14 to bring the valve back close to the position of strong armature-valve coupling. When the electromagnet 2 is now switched off and the electromagnet 1 is connected, the valve is brought by the spring 14 together with the member 28 into the position shown in FIG. 3 and held by the electromagnet 1.

溢流孔64の対応する構成によつて、弁12も
電機子17も殆んど同時にその位置で減衰されて
電磁石1に接触するに到る。図示の接続位置では
電磁石1とばね19の間の力流は電機子17、中
心スリーブ20、ピストン9を介して閉ぢ込めら
れる。その場合僅かな流動抵抗に抗つて溢流孔6
5の流れを良くする構成と逆止弁77とによつて
電機子が引き寄せられる。電機子17と案内スリ
ーブ30の間の摩擦係合式結合がばね80より強
いばね79の弾性力によつて実現され、その際ば
ね79は弁12の上に支承され、弁12はばね7
9により強いばね14の力によつてその位置に保
持される。このようにして操作中に生じる弁の軸
方向の長さの変化が相殺される。
Due to the corresponding design of the overflow hole 64, both the valve 12 and the armature 17 are damped almost simultaneously in that position and come into contact with the electromagnet 1. In the illustrated connection position, the force flow between the electromagnet 1 and the spring 19 is confined via the armature 17, the central sleeve 20 and the piston 9. In that case, the overflow hole 6
The armature is drawn in by the flow-enhancing arrangement 5 and the check valve 77. The frictional connection between the armature 17 and the guide sleeve 30 is achieved by the elastic force of a spring 79 which is stronger than the spring 80, the spring 79 being supported on the valve 12 and the valve 12 being supported by the spring 7.
9 is held in position by the force of a strong spring 14. In this way changes in the axial length of the valve that occur during operation are compensated for.

第4図は片側作用長さ均衡部材29を有する電
磁作動調整装置を示す。部材29は第3図に示し
た長さ均衡部材28と同じ役割をもつている。部
材28は、圧力室36が第4図で下方にくるよう
に組込まれる。
FIG. 4 shows an electromagnetically actuated adjustment device with a single-sided acting length balancing member 29. FIG. Member 29 has the same role as length balancing member 28 shown in FIG. The member 28 is assembled so that the pressure chamber 36 is at the bottom in FIG.

開口工程は部材28について上述したように経
過する。部材29の延長になる調整装置の作動中
の長さ変化は防止することができないか又は影響
されることがない。何となれば部材29からは引
張力が伝達され得ないからである。この長さの差
はばね49によつて部材29の内部で平均され
る。
The opening process proceeds as described above for member 28. Changes in length during operation of the adjustment device resulting in an extension of the member 29 cannot be prevented or influenced. This is because no tensile force can be transmitted from the member 29. This length difference is averaged out inside member 29 by spring 49.

第7図及び第8図には電磁作動調整装置の衝撃
減衰器の実施例を示してある。
7 and 8 show an embodiment of a shock damper for an electromagnetic adjustment device.

電機子17は妨げられずに先づ電磁石1に向つ
て、弾性リング82及び83が電機子に接触し、
それによつて電機子17の磁極面、電磁石1の磁
極面、コイルカバー5とで、ガスを密封する一つ
の空間を形成する迄移動する。接触時点でこの運
動過程は封入されたガスの圧縮の影響を受ける結
果、電磁石1の上に電機子17が減衰されて載置
される。その場合密封リングは、本質的に密封作
用はあるが、緩衝作用のある機能を果す。
The armature 17 is undisturbed and first faces the electromagnet 1, the elastic rings 82 and 83 contacting the armature,
As a result, the magnetic pole face of the armature 17, the magnetic pole face of the electromagnet 1, and the coil cover 5 move until they form one space that seals the gas. At the point of contact, this movement process is influenced by the compression of the gas enclosed, so that the armature 17 rests damped on the electromagnet 1. The sealing ring then performs an essentially sealing but dampening function.

第8図に示した例では緩衝作用のあるガス容量
が完全には封入されずに、電機子17、スリーブ
85、中心板20の特種な形成によつて、電機子
17が電磁石1に接近する際狭ばまる間隙が生じ
るようになされる。それらの間隙は接近が進行す
るにつれて圧縮されたガスの流出を一層妨げるよ
うになる。
In the example shown in FIG. 8, the armature 17 approaches the electromagnet 1 due to the special formation of the armature 17, the sleeve 85 and the center plate 20, without the buffering gas volume being completely enclosed. This is done in such a way that an extremely narrow gap is created. As the approach progresses, these gaps become more and more impeded to the escape of the compressed gas.

電磁作動調整装置のための前記の衝撃緩衝は原
理的には、すべての電磁石又は、磁極面に向つて
垂直方向に移動する一つ又はいくつかの構成部分
が電磁力或いは他の力によつて一つ又はいくつか
の位置に運ばれ又は保持され得る類似の装置にお
いて、磁極面への移動構成部分の緩衝された載置
を実現するのに適している。
The above-mentioned shock damping for electromagnetically actuated regulators is possible in principle if all the electromagnets or one or several components moving perpendicularly towards the pole faces are activated by electromagnetic or other forces. In similar devices which can be carried or held in one or several positions, it is suitable for realizing a damped mounting of the moving component on the pole face.

第5図及び第6図の長さ均衡部材が第3図及び
第4図の電磁作動調整装置に組込まれると、長さ
均衡部材は著しい加速力を受ける。これらの利用
目的のために機能の確実性を保証するには、逆止
弁の構成を特別なものにする必要がある場合があ
る。
When the length balancing member of FIGS. 5 and 6 is incorporated into the electromagnetically actuated adjustment device of FIGS. 3 and 4, the length balancing member is subjected to significant acceleration forces. To guarantee functional reliability for these applications, it may be necessary to have a special construction of the check valve.

第9図及び第10図にはその場合用いるピスト
ン底部の構造を拡大して示してある。
FIGS. 9 and 10 show an enlarged view of the structure of the piston bottom used in that case.

栓88によつて予備緊張されるばね87が作用
を及ぼす球86から構成される第9図の逆止弁
は、その運動方向が弁間隙均衡部材の加速の作用
線に対して垂直方向にあるので、逆止弁の不意の
開成は球への加速力の僅かな作用によつて防止す
ることができる。
The check valve of FIG. 9 consists of a ball 86 acted upon by a spring 87 pretensioned by a plug 88, the direction of movement of which is perpendicular to the line of action of the acceleration of the valve gap balancer. Therefore, an unexpected opening of the check valve can be prevented by a slight action of acceleration force on the ball.

第10図は逆止弁の加速中性の態様を示す。円
筒状構成部分91を介して案内90に連結されて
いる球89と円筒状心棒92とから成る逆止弁
は、栓94上に支承されるばね93によつて負荷
されて液体貯ぞう室95を圧力室96に対して閉
鎖する。逆止弁の構成部分は次のような大きさに
定めてある。即ち主として生じる弁間隙均衡部材
の加速の際に逆止弁の運動方向に対して垂直方に
心棒92の質量慣性モーメントと球89及び構成
部分91のそれとが案内90に関して同じく大き
さになり、従つて逆止弁の加速によつて弁座に反
応力が生じないように定めてある。弁室97内に
は連結部98を介して常に圧力室96内と同じ圧
力水準が支配している。
FIG. 10 shows the acceleration neutral mode of the check valve. A check valve consisting of a ball 89 and a cylindrical stem 92, which is connected to a guide 90 via a cylindrical component 91, is loaded by a spring 93, which is supported on a plug 94, into a liquid reservoir 95. is closed to the pressure chamber 96. The components of the check valve are sized as follows: This means that during the acceleration of the valve gap balancer that occurs primarily, the mass moment of inertia of the stem 92 and that of the ball 89 and the component 91 in the direction perpendicular to the direction of movement of the check valve are of the same magnitude with respect to the guide 90; The valve seat is designed so that no reaction force is generated on the valve seat due to acceleration of the check valve. The same pressure level prevails in the valve chamber 97 via the connecting portion 98 as in the pressure chamber 96 at all times.

なお以下に本発明の実施の態様を列挙する。 Note that embodiments of the present invention are listed below.

(1) 圧力室を有する液圧式長さ均衡部材が気密及
び液密に密閉されており且つ長さを均衡する圧
力室に充填するための液体貯蔵室を有する、特
許請求の範囲1又は3に記載の装置。
(1) According to claim 1 or 3, the hydraulic length balancing member having a pressure chamber is hermetically and liquid-tightly sealed and has a liquid storage chamber for filling the length balancing pressure chamber. The device described.

(2) 液体貯蔵室をピストン構成部分とシリンダ構
成部分とを有するピストン・シリンダ・構造の
中空のピストン構成部分中に設けてある、前記
(1)に記載の装置。
(2) The liquid storage chamber is provided in a hollow piston component of a piston-cylinder structure having a piston component and a cylinder component.
The device described in (1).

(3) シリンダ構成部分とピストン構成部分の重な
り合つて滑動する面が二つの部分の案内を相互
に受け持つて一つの密封間〓を形成している、
前記(2)に記載の装置。
(3) The overlapping and sliding surfaces of the cylinder component and the piston component mutually guide the two parts, forming a single sealed space.
The device according to (2) above.

(4) ピストン構成部分の底辺が円筒状の細い延長
部を有し、延長部の外径はピストン構成部分の
それに一致し、延長部は圧力室の圧液の使用圧
を受けて拡張されてシリンダ面と固定的に接触
するに到り、これによつて圧力室を密閉間〓に
対して密閉する、前記(2)又は(3)に記載の装置。
(4) The bottom of the piston component has a cylindrical thin extension, the outer diameter of the extension matches that of the piston component, and the extension is expanded under the working pressure of the pressure fluid in the pressure chamber. The device according to (2) or (3) above, which comes into fixed contact with the cylinder surface, thereby sealing the pressure chamber against a sealing gap.

(5) 液体貯蔵室中にガス充満圧力貯蔵部を設けて
あり、この貯蔵部が液体貯蔵室中の圧力を殆ど
一定に保つ、前記(1)〜(4)の何れか一に記載の装
置。
(5) The device according to any one of (1) to (4) above, wherein a gas-filled pressure storage section is provided in the liquid storage chamber, and this storage section keeps the pressure in the liquid storage chamber almost constant. .

(6) ピストン・シリンダ・構造の気密及び液密閉
鎖のために用いた蛇腹を、液圧均衡部材の長さ
の延びを許容限度内に保ち且つシリンダ構成部
分とピストン構成部分との間に生じるトルクに
より損なわないようにするのに充分な機械的剛
性を有する、前記(2)〜(5)の何れか一に記載の装
置。
(6) The bellows used for airtight and liquid-tight closure of the piston, cylinder, and structure should be kept between the cylinder component and the piston component while keeping the length of the hydraulic balancing member within the permissible limit. The device according to any one of (2) to (5) above, having sufficient mechanical rigidity to avoid damage by torque.

(7) 圧力室が液体貯蔵室と流出孔を介して連絡し
ている、前記(1)〜(6)の何れか一に記載の装置。
(7) The device according to any one of (1) to (6) above, wherein the pressure chamber communicates with the liquid storage chamber via an outflow hole.

(8) 液体貯蔵室から出る圧液が逆止弁を介して急
速に圧力室中に流入することができるように構
成した、前記(1)〜(7)の何れか一に記載の装置。
(8) The device according to any one of (1) to (7) above, which is configured such that the pressure liquid exiting the liquid storage chamber can rapidly flow into the pressure chamber via the check valve.

(9) 密封間〓から漏る流れがピストン構成部分の
開口部から液体貯蔵室中に逆流することができ
るように構成した、前記(1)〜(8)の何れか一に記
載の装置。
(9) The device according to any one of (1) to (8) above, which is configured such that the flow leaking from the sealing gap can flow back into the liquid storage chamber from the opening of the piston component.

(10) 円筒状に細い延長部の押圧のために必要な圧
力差が急激な負荷変化に会つても前記延長部の
上方に液体貯蔵室と連結された環状溝を設けて
あつて、液体が密封間〓から急速に排出されて
前記延長部後方の圧力が急速に低下することに
よつて生じるように構成した、前記(4)〜(9)の何
れか一に記載の装置。
(10) An annular groove connected to a liquid storage chamber is provided above the extension, so that even if the pressure difference necessary for pressing the cylindrical thin extension encounters a sudden load change, the liquid remains The device according to any one of (4) to (9) above, wherein the device is configured such that the pressure behind the extension portion is rapidly reduced by being rapidly discharged from the sealing gap.

(11) シリンダ構成部分及び(或いは)ピストン構
成部分の端面を、支承力が外径の短い中央支承
面によつて吸収されるように構成した、前記(2)
〜(10)の何れか一に記載の装置。
(11) The end face of the cylinder component and/or the piston component is configured such that the bearing force is absorbed by the central bearing surface with a short outer diameter, as described in (2) above.
The device according to any one of (10) to (10).

(12) ピストン構成部分の底部に逆止弁を、その運
動方向が長さ均衡部材の主加速方向とは一致し
ないように設けた、前記(8)〜(11)の何れか一に記
載の装置。
(12) A check valve according to any one of (8) to (11) above, wherein a check valve is provided at the bottom of the piston component so that its movement direction does not coincide with the main acceleration direction of the length balancing member. Device.

(13) ピストン構成部分の底部に逆止弁が加速中
性であるので、弁遊〓均衡部材の加速の結果弁
と弁座の間の密封面に力が生じない構成であ
る、前記(8)〜(12)の何れか一に記載の装置。
(13) Since the check valve at the bottom of the piston component is acceleration-neutral, no force is generated on the sealing surface between the valve and the valve seat as a result of acceleration of the valve play/balance member. ) to (12).

(14) 一つ又はいくつかの電磁石の構成部分が、
少なくとも運動方向に対して垂直方向にある磁
極面の要素が空気式減衰器の実効容積を有する
一空間の部分であるように形成された、特許請
求の範囲(1)、(3)、前記(1)〜(13)の何れか一に
記載の装置。
(14) One or more electromagnetic components are
Claims (1) and (3), wherein at least the element of the pole face in the direction perpendicular to the direction of motion is formed in such a way that it is part of a space having an effective volume of the pneumatic damper. The device according to any one of 1) to (13).

(15) 減衰容量の面が運動方向に平行して構成部
分の平行或いはほぼ平行の表面によつて形成さ
れるので、その結果減衰容量がこの範囲で平行
或いはほぼ平行に一定又は一定でない幅広い密
閉間〓が紐になつている表面によつて構成され
る、特許請求の範囲(1)〜(4)、前記(1)〜(14)の
何れか一に記載の装置。
(15) The plane of the damping capacity is formed by the parallel or nearly parallel surfaces of the components parallel to the direction of motion, so that the damping capacity is constant or non-uniform in parallel or nearly parallel in this range. The device according to any one of claims (1) to (4) and (1) to (14) above, wherein the space is formed by a surface having a string.

(16) 運動方向に平行している減衰容量の面が剛
性或いは弾性材料でできている、特許請求の範
囲(1)〜(4)、前記(1)〜(15)の何れか一に記載の
装置。
(16) Claims (1) to (4) and any one of (1) to (15) above, wherein the surface of the damping capacity parallel to the direction of motion is made of a rigid or elastic material. equipment.

(17) 組になつている面によつて運動方向に平行
に形成される密封間〓が行程に応じて封入され
たガスの流出のための横断面の各種形状及び寸
法を定めるように構成した、特許請求の範囲(1)
〜(4)、前記(1)〜(16)の何れか一に記載の装
置。
(17) The sealing gap formed parallel to the direction of movement by the paired surfaces is configured to determine various shapes and dimensions of the cross section for the outflow of the sealed gas according to the stroke. , Claims (1)
-(4), the device according to any one of (1) to (16) above.

(18) 運動方向に平行な面を、ガス容量の間〓の
ない密閉が達成されるように構成した、特許請
求の範囲(1)〜(4)、前記(1)〜(17)の何れか一に
記載の装置。
(18) Any of claims (1) to (4) and (1) to (17) above, in which the plane parallel to the direction of movement is configured so that a tight seal is achieved between the gas capacities. The device described in item 1 above.

(19) ガス容量を封入するすべての構成部分に不
変の流出口を設けた、特許請求の範囲(1)〜(4)、
前記(1)〜(18)の何れか一に記載の装置。
(19) Claims (1) to (4), in which all components enclosing a gas volume are provided with a constant outlet;
The device according to any one of (1) to (18) above.

(20) 構成部分中に設けられている不変の流出口
が運動距離の経過中に他の構成部分の近くを通
過するので、いくつかの流出口が行程に応じて
異なる形状と寸法となるように構成した、特許
請求の範囲(1)〜(4)、前記(1)〜(19)の何れか一
に記載の装置。
(20) As a constant outlet provided in a component passes close to another component during the course of the movement distance, some outlets may take on different shapes and dimensions depending on the travel. The device according to any one of claims (1) to (4) and (1) to (19) above, configured as follows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による装置の第一実施例の縦
断面図、第2〜4図は第1図と同じ記載の仕方で
示した別々の実施例を示す図、第5図及び第6図
はこの発明による長さ均衡部材の好ましい実施態
様を示す図、第7図及び第8図はこの発明による
電磁作動調整装置の好ましい実施態様の部分図、
第9図及び第10図はこの発明による長さ均衡部
材の別の好ましい構成の詳細図である。 図中符号、1,2……電磁石、7……ケーシン
グ、17……電機子、21,26,28……長さ
均衡部材。
FIG. 1 is a longitudinal sectional view of a first embodiment of the device according to the invention, FIGS. 2 to 4 are views showing separate embodiments shown in the same manner as FIG. 1, and FIGS. 5 and 6. 7 and 8 are partial views of a preferred embodiment of the electromagnetic adjustment device according to the present invention, respectively,
9 and 10 are detailed views of another preferred construction of a length balancing member according to the invention. Symbols in the figure: 1, 2...electromagnet, 7...casing, 17...armature, 21, 26, 28...length balancing member.

Claims (1)

【特許請求の範囲】 1 電磁石によつて最大限の振動偏差の各最終位
置に保持される結果少なくとも二つの非連続の切
換位置が生じる、振動可能なばね・質量・系を有
するピストン機械のための電磁作動調整器用装置
において、電機子と電磁石が緩衝装置の部分とし
て構成されており、一方又は両方の電磁石が液圧
作動長さ均衝部材によつてケーシングに連結され
ていて、弁座と電磁石の磁極面との間の間隔が弁
頭と電機子の磁極面との間の間隔に適合され、電
磁石への電機子の接近と弁座への弁の接近とが同
じ態様で緩衝されて行われるように構成したこと
を特徴とする装置。 2 電磁石の対向相対移動部分を、運動距離の全
体又は一部分を通じてガス容量が封入されるよう
に構成した、特許請求の範囲1に記載の電磁作動
調整器用装置。 3 電磁石によつて最大限の振動偏差の各最終位
置に保持される結果少なくとも二つの非連続の切
換位置が生じる、振動可能なばね・質量・系を有
するピストン機械のための電磁作動調整器用装置
において、電機子と電磁石が緩衝装置の部分とし
て構成されており、電機子が液圧作動長さ均衝部
材によつて弁に連結されていて、弁頭と電機子の
磁極面の間の間隔が弁座と電磁石の磁極面との間
の間隔に適合され電磁石への電機子の接近と弁座
への弁の接近とが同じ態様で緩衝されて行われる
ように構成したことを特徴とする装置。 4 電磁石の対向相対移動部分を、運動距離の全
体又は一部分を通じてガス容量が封入されるよう
に構成した、特許請求の範囲3に記載の電磁作動
調整器用装置。
Claims: 1. For a piston machine with an oscillatory spring-mass system, which is held in each final position with maximum vibrational deviation by an electromagnet, resulting in at least two discontinuous switching positions. In the device for an electromagnetically actuated regulator, the armature and the electromagnet are constructed as part of a damping device, one or both electromagnets being connected to the casing by a hydraulically actuating length equalizer, and in which the valve seat and The spacing between the pole faces of the electromagnet is adapted to the spacing between the valve head and the pole faces of the armature, such that the approach of the armature to the electromagnet and the approach of the valve to the valve seat are damped in the same manner. A device configured to perform 2. The device for an electromagnetically actuated regulator as claimed in claim 1, wherein the opposing relatively moving parts of the electromagnet are configured such that a gas volume is enclosed throughout the whole or part of the travel distance. 3. Device for an electromagnetically actuated regulator for a piston machine with an oscillatory spring-mass system, which is held in each final position with maximum vibration deviation by an electromagnet, resulting in at least two discontinuous switching positions. in which the armature and electromagnet are configured as part of a shock absorber, the armature being connected to the valve by a hydraulically actuated length equalizing member, and the spacing between the valve head and the pole face of the armature being is adapted to the spacing between the valve seat and the magnetic pole face of the electromagnet so that the approach of the armature to the electromagnet and the approach of the valve to the valve seat are carried out in the same buffered manner. Device. 4. The device for an electromagnetically actuated regulator as claimed in claim 3, wherein the opposing relatively moving parts of the electromagnet are configured such that a gas volume is enclosed throughout the entire or part of the travel distance.
JP59058541A 1983-03-28 1984-03-28 Device for electromagnetically operating regulator Granted JPS59211203A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3311250.9 1983-03-28
DE3311250A DE3311250C2 (en) 1983-03-28 1983-03-28 Device for the electromagnetic actuation of a gas exchange valve for positive displacement machines

Publications (2)

Publication Number Publication Date
JPS59211203A JPS59211203A (en) 1984-11-30
JPH0377646B2 true JPH0377646B2 (en) 1991-12-11

Family

ID=6194877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058541A Granted JPS59211203A (en) 1983-03-28 1984-03-28 Device for electromagnetically operating regulator

Country Status (6)

Country Link
JP (1) JPS59211203A (en)
BR (1) BR8401405A (en)
DE (1) DE3311250C2 (en)
FR (1) FR2543651B1 (en)
GB (1) GB2137420B (en)
IT (1) IT1177615B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3660265D1 (en) * 1985-02-11 1988-07-07 Interatom Valve drive with hydraulic transmission
DE3616540A1 (en) * 1986-05-16 1987-11-19 Porsche Ag DEVICE FOR ACTUATING A GAS EXCHANGE VALVE OF A PISTON PISTON COMBUSTION ENGINE
US4794890A (en) * 1987-03-03 1989-01-03 Magnavox Government And Industrial Electronics Company Electromagnetic valve actuator
DE3826974A1 (en) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm CONTROL DEVICE FOR A GAS EXCHANGE VALVE
US4862127A (en) * 1988-11-23 1989-08-29 Datacard Corporation Solenoid shock absorbing bumper arrangement and method
DE3920976A1 (en) * 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg ELECTROMAGNETIC OPERATING DEVICE
DE4336287C1 (en) * 1993-10-25 1995-03-02 Daimler Benz Ag Device for the solenoid actuation of an inlet and exhaust valve
US5836521A (en) * 1995-03-09 1998-11-17 Dysekompagniet I/S Valve device with impact member and solenoid for atomizing a liquid
JP3783879B2 (en) * 1996-03-07 2006-06-07 株式会社小松製作所 safety valve
JPH09310650A (en) * 1996-05-22 1997-12-02 Denso Corp Fuel injection valve
DE19624296A1 (en) * 1996-06-18 1998-01-02 Bayerische Motoren Werke Ag Electromagnetic actuating device for internal combustion engine lift valves
JP3605476B2 (en) * 1996-08-08 2004-12-22 本田技研工業株式会社 Valve train for internal combustion engine
DE19646937C2 (en) * 1996-11-13 2000-08-31 Bayerische Motoren Werke Ag Electromagnetic actuator for an internal combustion engine lift valve
DE19647305C1 (en) * 1996-11-15 1998-02-05 Daimler Benz Ag Electromagnetic operating device e.g. for IC engine gas-exchange valve
WO1998042953A1 (en) * 1997-03-24 1998-10-01 Lsp Innovative Automotive Systems Gmbh Valve for an internal combustion engine
DE59804383D1 (en) * 1997-04-08 2002-07-18 Bayerische Motoren Werke Ag Electromagnetic actuator for controlling a gas exchange stroke valve of an internal combustion engine
DE19723792C1 (en) * 1997-06-06 1998-07-30 Daimler Benz Ag Electromagnetic actuator adjuster e.g. for piston engine gas-exchange valve
DE19723782C2 (en) * 1997-06-06 2001-02-01 Daimler Chrysler Ag Electromagnetic actuator for actuating a gas exchange valve
DE19725218C2 (en) 1997-06-15 2000-11-02 Daimler Chrysler Ag Device for actuating a gas exchange valve for an internal combustion engine
DE19728479C2 (en) 1997-07-05 2001-08-30 Daimler Chrysler Ag Device for actuating a gas exchange valve with an electromagnetic actuator
JP3518294B2 (en) * 1997-08-08 2004-04-12 トヨタ自動車株式会社 Solenoid driven valve
DE19737597A1 (en) * 1997-08-28 1999-03-04 Bayerische Motoren Werke Ag Electromagnetic actuator for controlled actuation of a gas changeover valve for an engine or processing machine
DE19737789C1 (en) * 1997-08-29 1999-03-11 Daimler Benz Ag Arrangement with an electromagnetic actuator for operating a gas changeover valve for an internal combustion engine
DE19737967A1 (en) * 1997-08-30 1999-03-04 Telefunken Microelectron Device for actuating a gas exchange valve with an electromagnetic actuator
US6125803A (en) * 1997-09-22 2000-10-03 Toyota Jidosha Kabushiki Kaisha Electromagnetically driven valve for an internal combustion engine
DE19750228C1 (en) * 1997-11-13 1998-12-03 Daimler Benz Ag Device for actuating a gas changeover valve with an electromagnetic actuator for an internal combustion engine
DE19816644C1 (en) * 1998-04-15 1999-07-29 Daimler Chrysler Ag Electromagnetic actuator for actuating a gas changeover valve for an internal combustion engine
US6354253B1 (en) * 1998-11-20 2002-03-12 Toyota Jidosha Kabushiki Kaisha Solenoid valve device
DE19928006A1 (en) * 1999-06-18 2000-12-21 Heinz Leiber Engine valve operating device with adaptive actuator adjustment provided by pressure-responsive setting element subjected to reaction force upon opening of engine valve
DE10000045A1 (en) * 2000-01-02 2001-07-05 Leiber Heinz Electromagnetic actuator
EP1124040A1 (en) 2000-02-11 2001-08-16 TRW Deutschland GmbH, Motorkomponenten Electromagnetic valve actuator
DE10008991A1 (en) 2000-02-25 2001-08-30 Bayerische Motoren Werke Ag Gas exchange valve regulation with electromagnetic actuator for IC engines has armature separating gas springs and defining damper chamber in holding position on magnet
DE10010272A1 (en) 2000-03-02 2001-09-06 Trw Deutschland Gmbh Electromagnetic valve drive for internal combustion engine gas replacement valve has shaft notches engaged by conventional conical parts, deformable ring that produces restoring force
AT511238B1 (en) * 2011-04-14 2013-03-15 Hoerbiger Kompressortech Hold PISTON COMPRESSORS WITH CONVEYOR RANGE CONTROL

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1005787B (en) * 1953-09-21 1957-04-04 Daimler Benz Ag Automatic hydraulic adjustment element
US2922614A (en) * 1956-06-18 1960-01-26 Honeywell Regulator Co Hum-free solenoid device
US2923521A (en) * 1956-09-24 1960-02-02 Gen Controls Co Hum free solenoid mechanism
CH408577A (en) * 1961-08-29 1966-02-28 Weisheit Georg Solenoid valve that can be used as an actuator in a control circuit
DE1922299A1 (en) * 1969-04-30 1970-11-12 Burkhart Kaul Cordless bowling machine
AT303474B (en) * 1970-02-16 1972-11-27 Rolf Schloesser Ing Electromagnetically operated actuator
GB1391955A (en) * 1972-07-12 1975-04-23 British Leyland Austin Morris Actuating internal combustion engine poppet valves
DE2261278C2 (en) * 1972-12-14 1983-12-15 Karl Dungs Gmbh & Co, 7067 Urbach Double valve
SU573601A1 (en) * 1975-10-22 1977-09-25 Предприятие П/Я Г-4818 Hydraulic pusher
WO1981001626A1 (en) * 1979-12-03 1981-06-11 M Gottschall A two position mechanism
CA1150384A (en) * 1980-02-26 1983-07-19 Charles F. Lloyd Remotely controlled servo device for controlling fluid flow
DE3024109A1 (en) * 1980-06-27 1982-01-21 Pischinger, Franz, Prof. Dipl.-Ing. Dr.Techn., 5100 Aachen ELECTROMAGNETIC OPERATING DEVICE
DE8017782U1 (en) * 1980-07-02 1980-10-09 G. Kromschroeder Ag, 4500 Osnabrueck SOLENOID VALVE WITH MECHANICALLY ADJUSTABLE, UNMUSHED QUICK OPENING LIFT

Also Published As

Publication number Publication date
GB2137420A (en) 1984-10-03
FR2543651B1 (en) 1987-06-12
IT8447934A1 (en) 1985-09-26
GB2137420B (en) 1987-05-20
DE3311250C2 (en) 1985-08-01
GB8407891D0 (en) 1984-05-02
BR8401405A (en) 1984-11-06
IT1177615B (en) 1987-08-26
IT8447934A0 (en) 1984-03-26
JPS59211203A (en) 1984-11-30
DE3311250A1 (en) 1984-10-11
FR2543651A1 (en) 1984-10-05

Similar Documents

Publication Publication Date Title
JPH0377646B2 (en)
US4515343A (en) Arrangement for electromagnetically operated actuators
US5439082A (en) Hydraulic inertial vibration isolator
US5464079A (en) Two-tube shock absorber
KR101822764B1 (en) Hydraulic shock absorber
JP6370405B2 (en) Valve for hydraulic damper
US8814135B2 (en) Device for controlling the flow of a liquid or gaseous medium
JPS6165928A (en) Pneumatic type or hydropneumatic type tension spring
JPH02248734A (en) Hydraulic shock absorber
JPH02168039A (en) Moving progress-damping
JPH04290627A (en) Cylinder
JPS6179036A (en) Adjustable hydraulic shock absorber
JPH01188733A (en) Fluid-pneumatic pressure impact-vibration damper
JPH01316535A (en) Damping valve for hydraulic type vibration damper
JPH06185562A (en) Hydraulic buffer
JPH0396730A (en) Valve for hydraulic fluid and shock absorber including the same
JPH1172133A (en) Adjustable vibration damper for power vehicle
JPH0626545A (en) Terminal position damper
JPS58178035A (en) Cylinder device
US3110485A (en) Hydro-pneumatic suspension device
JPS60157535A (en) Shock absorber
JPH0214587B2 (en)
JP2019183921A (en) Liquid pressure device
JPH10184761A (en) Damping force adjusting type hydraulic shock absorber
JPS6067209A (en) Suspension device for vehicle