JPH037755B2 - - Google Patents

Info

Publication number
JPH037755B2
JPH037755B2 JP20972183A JP20972183A JPH037755B2 JP H037755 B2 JPH037755 B2 JP H037755B2 JP 20972183 A JP20972183 A JP 20972183A JP 20972183 A JP20972183 A JP 20972183A JP H037755 B2 JPH037755 B2 JP H037755B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
weight
parts
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20972183A
Other languages
Japanese (ja)
Other versions
JPS60100680A (en
Inventor
Hidetoshi Yamauchi
Takao Yokoyama
Shoji Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP20972183A priority Critical patent/JPS60100680A/en
Publication of JPS60100680A publication Critical patent/JPS60100680A/en
Publication of JPH037755B2 publication Critical patent/JPH037755B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化ケイ素質焼結体の金属化組成物お
よび炭化ケイ素質焼結体表面の金属化方法に係
り、特に本発明は炭化ケイ素質焼結体表面に密着
性、耐熱性、耐熱衝撃性および接合性が極めて優
れた金属化層を形成することのできる炭化ケイ素
質焼結体の金属化方法および金属化組成物に関す
る。 近年、工業技術の発展に伴い従来知られた金属
材料や有機質材料に比較して高温強度、耐熱性、
耐薬品性あるいは電気的特性等が優れた種々のセ
ラミツクスが注目されており、例えば高温構造用
材料、化学工業用材料、電子工業用材料等に適用
することのできる高機能材料としての開発が進め
られている。 しかしながら、上記高機能材料において要求さ
れる種々の性能を一種類のセラミツクスで満足さ
せることは実質上極めて困難であり、上記高機能
材料において要求される種々の性能を満足させる
ことのできる材料としては、一般的に異種のそれ
ぞれ異なつた特性を有するセラミツクスよりなる
物体を互いにあるいはセラミツクスよりなる物体
と金属よりなる物体とを接合して複合化すること
により、前述の如き高機能材料において要求され
る種々の性能を相互に補完した複合材料を適用す
ることが考えられる。 例えば、本発明者らは先に集積回路用基板ある
いはICパツケージ用材料としての特性に優れた
電子回路用基板について研究し、炭化珪素質薄板
と異種のセラミツクス薄板とを接合することによ
り、集積回路用基板あるいはICパツケージ用材
料としての特性に極めて優れた特性を発揮させる
ことに想到し、特願昭58−16078号により「106Ω
cm以上の体積固有抵抗率を有するセラミツクス薄
板が少なくとも1種の金属を主成分とする接合層
よつて炭化珪素質薄板の表面に接合されてなる電
子回路用炭化珪素質基板。」およびその製造方法
に係る発明を提案し、さらに特願昭58−97901号
により「Pb,Sn,Bi,Zn,Ga,Alのなかから
選ばれるいずれか少なくとも1種50〜99.7重量%
残部実質的にCu,Si,Ge,Fe,Co,Ni,Cr,
Mn,Moのなかから選ばれるいずれか少なくと
も1種よりなるセラミツクス用接合剤およびその
製造方法」に係る発明を提案している。 ところで、前記発明における炭化珪素質焼結体
薄板と異種のセラミツクス薄板とは1種あるいは
2種以上の金属を主成分とする接合層としての金
属化層を形成することによつて接合されるが、大
きな密着力が必要とされたり熱衝撃により炭化珪
素質焼結体薄板とセラミツクス薄板との間におい
て熱膨張率の差に基づく応力が強く作用すると、
炭化珪素質焼結体薄板表面の金属化層から剥離す
る場合があり、充分に強固な結合力を維持するこ
とが困難であつた。 上述の如き観点に基づき、本発明者らは炭化珪
素質焼結体の表面をロウ付けなどが容易となる金
属化表面を形成するに適した金属化用組成物を開
発すべく種々研究した結果、SiCの分解を防止し
かつこの金属化用組成物を被覆形成し非酸化性雰
囲気中で高温加熱してメタライズ層を形成する炭
化物と、SiCとの間に強固な結合を形成する金属
を用いることにより、極めて強固な密着力を有
し、しかも耐熱性、耐熱衝撃性およびロウ付けが
容易となる接合性が優れた特性を有することを新
規に知見し、本発明を完成するに至つた。 本発明は炭化ケイ素質焼結体の表面に前述のよ
うな優れた特性を有する金属化層を形成すること
のできる炭化ケイ素質焼結体表面の金属化組成物
およびその金属化方法に係わり、特に炭化ケイ素
質焼結体表面に密着性、耐熱性、耐熱衝撃性およ
び接合性が極めて優れた金属化層を形成すること
のできる炭化ケイ素質焼結体表面の金属化方法お
よびその金属化用組成物を提供することを目的と
するものである。 本発明によれば、Co,Ni,Fe,Al,Pd,Pt,
Bのなかから選ばれるいずれか少なくとも1種の
元素の炭化物を10〜90重量部と、Ti,W,Mo,
Zr,Hf,Ta,Nb,U,Cr,Vのなかから選ば
れる元素あるいはそれらの化合物のいずれか少な
くとも1種を10〜90重量部とから実質的に成り、
これらの合計量が100重量部である炭化ケイ素質
焼結体表面の金属化用組成物およびこの組成物を
用いる金属化方法によつて前記目的を達成するこ
とができる。 次に本発明を詳細に説明する。 本発明において、前記金属化組成物はCo,Ni,
Fe,Al,Pd,Pt,Bのなかから選ばれるいずれ
か少なくとも1種の元素の炭化物10〜90重量部と
Ti,W,Mo,Zr,Hf,Ta,Nb,U,Cr,Vの
なかから選ばれる元素10〜90重量部からなること
が必要である。その理由は前記Co,Ni,Fe,
Al,Pd,Pt,Bのなかから選ばれる元素の炭化
物は分解反応により原子状の極めて活性なCを生
成し、この活性なCは前記Ti,W,Mo,Zr,
Hf,Ta,Nb,U,Cr,Vのなかから選ばれる
元素と反応して炭化物を生成し、SiCと強固な結
合を形成する。しかも前記炭化物の分解反応によ
り生成したCは炭化ケイ素質焼結体の分解反応を
防止し、その劣化を防いで炭化ケイ素質焼結体本
来の特性を保持することができる。また、前記炭
化物の分解反応にて生成したCo,Ni,Fe,Al,
Pd,Pt,Bのなかから選ばれる元素はCと反応
して生成したTi,W,Mo,Zr,Hf,Ta,Nb,
U,Cr,Vのなかから選ばれる元素の炭化物層
内部と炭化ケイ素質焼結体表面に存在することに
より炭化ケイ素質焼結体表面にメタライズ層とし
ての金属化層を形成することができる。したがつ
て、炭化ケイ素質焼結体表面に極めて固強な密着
力を有し、しかも耐熱性、耐熱衝撃性およびロウ
付けが容易で確実となる接合性に優れた諸性質を
有するメタライジング層としての金属化層を形成
することができる。 本発明において、前記Co,Ni,Fe,Al,Pd,
Pt,Bのなかから選ばれるいずれか少なくとも
1種の元素の炭化物は10〜90重量部であることが
必要である。前記炭化物が10重量部より少ないと
分解反応にて生成するCが不足して炭化ケイ素質
焼結体が分解して劣化を生じ、同時に前記炭化物
の分解反応にて生成する金属の量が少ないことか
ら均一で接合力が優れた金属化層が得られない。
他方、前記炭化物が90重量部より多いと未分解の
炭化物が残留し接合力が優れた金属化層が得られ
ない。 本発明において、前記Ti,W,Mo,Zr,Hf,
Ta,Nb,U,Cr,Vのなかから選ばれる少なく
とも1種の元素あるいは化合物は10〜90重量部で
あることが必要である。前記元素あるいは化合物
が10重量部より少ないと前記Cと反応して生成す
る炭化物が不足して炭化ケイ素質焼結体と強固な
結合が得られず、炭化ケイ素質焼結体表面の金属
化層の密着力は低くなる。また、前記元素あるい
は化合物が90重量部より多いと炭化ケイ素質焼結
体の分解と劣化を生じ、かつ金属化層の表面にロ
ウ付けが容易となる接合性が優れた金属化層が得
られない。 本発明において、前記組成物はCo,Niのなか
から選ばれるいずれか少なくとも1種の元素の炭
化物とTi,W,Moのなかから選ばれる元素ある
いは化合物のいずれか少なくとも1種を含有する
ことが必要である。その理由は、前記Coおよび
Niの炭化物は分解反応により原子状の極めて活
性なCを容易に生成し、この活性なCは前記Ti,
W,Moのなかから選ばれる元素あるいは化合物
と容易に反応して安定な炭化物を形成し、SiCと
強固な結合を形成しやすい。そして前記炭化物の
分解反応にて生成したCoまたはNi元素はCと反
応して生成したTi,W,Moのなかから選ばれる
炭化物層の内部と炭化ケイ素焼結体表面に密着し
て存在することにより炭化ケイ素質焼結体表面に
優れた密着力を有する金属化層を形成できるから
である。 次に本発明の金属化組成物を使用する炭化ケイ
素質焼結体の金属化方法について説明する。 本発明によれば、Co,Ni,Fe,Al,Pd,Pt,
Bのなかから選ばれるいずれか少なくとも1種の
元素の炭化物を10〜90重量部とTi,W,Mo,
Zr,Hf,Ta,Nb,U,Cr,Vのなかから選ば
れる元素あるいは、それらの化合物のいずれか少
なくとも1種を10〜90重量部と、必要により添加
される有機質バインダーとを充分混合した金属化
組成物を炭化ケイ素質焼結体表面に塗布した後、
非酸化性雰囲気中で少なくとも1分間1200〜2000
℃の温度範囲内で加熱することにより炭化ケイ素
質焼結体表面に密着性、耐熱性、耐熱衝撃および
接合性に極めて優れた金属化層を形成することが
できる。 本発明によれば、Co,Ni,Fe,Al,Pd,Pt,
Bのなかから選ばれるいずれか少なくとも1種の
元素の炭化物およびTi,W,Mo,Zr,Hf,Ta,
Nb,U,Cr,Vのなかから選ばれる元素あるい
はそれらの化合物は粒径が0.1mm以下の粉末が適
しており、粒径が0.05mm以下の粉末であることが
より好ましい。その理由は、粒径が0.1mmより大
きいと金属化する際の加熱処理に長時間を要し、
該反応が完全に進行しにくいことから、未反応の
炭化物および元素などが残留して均一な金属化層
が得られてにくいからである。 本発明によれば、炭化ケイ素質焼結体の表面に
前記炭化物および前記元素あるいはそれらの化合
物を被覆する。被覆の方法としては、スクリーン
印刷による方法のほかハケ塗り、スプレー塗り、
ロール塗り、浸漬塗布方法などの各種の被覆方法
を採用することができる。そして、金属化用組成
物の被覆に当り、前記炭化物および元素あるいは
それらの化合物の金属化用組成物に有機質バイン
ダーとして、グチルカルビトールアセテート、テ
ルピノール、ポリエチレングリコール、メチルセ
ルロース、エチルセルロース、ポリビニールアル
コール、ポリアクリル酸、ポリアクリル酸エステ
ル、ポリメタクリル酸、ポリメタクリル酸エステ
ルのなかから選ばれるいずれか少なくとも1種を
添加することが有利である。これらの有機質バイ
ンダーは炭化ケイ素質焼結体表面と金属化用組成
物との密着性を向上させることができるものであ
る。 本発明によれば、金属化用組成物が表面に被覆
された炭化ケイ素質焼結体は、非酸化性雰囲気中
で少なくとも1分間、1200〜2000℃の温度範囲内
で加熱する。その理由は、酸化性雰囲気中で前記
金属酸化物を加熱すると、金属化用組成物が酸化
して酸化物膜が生成し、目的とする金属化層が得
られず、またSiCとの強固な結合が得られないか
らである。一方、加熱温度が1200℃より低いと前
記Co,Ni,Fe,Al,Pd,Pt,Bのなかから選
ばれる元素の炭化物の分解反応が充分に進行しな
いことから活性なCを生成せず、さらに、前記
Ti,W,Mo,Zr,Hf,Ta,Nb,U,Cr,Vの
なかから選ばれる元素あるいはそれらの化合物と
前記活性なCとの反応が充分に進まないことなど
の理由から炭化物が生成せずSiCとの強固な結合
を形成することができず、したがつてこのような
条件では密着力の強い金属化層が得られない。他
方、加熱温度が2000℃より高いと実用上温度制御
や加熱炉などのコスト高となるので有利でなく、
さらに炭化ケイ素質焼結体の分解が生じるので好
ましくない。 次に本発明の実施例について説明する。 実施例 1 Co2CおよびTi粉末(粒度325メツシユ以下)を
第1表に示す組成にて配合し、この配合物100重
量部に対してブチルカルビトールアセテートを70
重量部と、エチルセルローズ10重量部とを添加し
ボールミルで混合してペーストを作成した。得ら
れたペーストを密度が3.11g/cm3で、寸法が30×
3.0×20mmの炭化ケイ素焼結体1の表面に第1図
に示すように金属化用組成組被膜をスクリーン印
刷により被覆し、1600℃のアルゴン雰囲気中で60
分間焼成し、金属化を行なつた。このようにして
得られた金属化表面2を有する炭化珪素焼結体を
約3×3×20mmの角棒状に切断し、これらの金属
化表面にNiメツキを施したのち、第2図に示す
如く2本の角棒の金属化表面同志をロウ付け3に
より接合した。このようにしてロウ付け接合した
炭化ケイ素焼結体をスパン20mm、クロスヘツド
0.5cm/分の条件にて3点曲げ強度の測定をした。
第1表より明らかな如くCo2Cを10〜90重量と、
Ti10〜90重量部との組成である金属化用組成物
では良好な金属化表面が得られた。そして特に
Co2C30〜60重量部とTi40〜70重量部との組成で
ある金属化用組成物を用いた場合がより優れた強
度が得られた。 実施例 2 Co2C粉末(粒度325メツシユ以下)50重量部と
Ti粉末(粒度325メツシユ以下)50重量部を配合
し、実施例1と同様の方法でペーストを作成し
た。得られたペーストを密度が3.13g/cm3で寸法
が30×30×20mmの炭化ケイ素焼結体の表面にスク
リーン印刷で被覆し、1100℃〜1800℃の温度範囲
にてアルゴン雰囲気中で60分間焼成し、金属化を
行なつた。その結果を第2表に示す。この表から
明らかなように焼成温度は1400〜1800℃の範囲で
良好な金属化が得られる。1600℃の場合に最も高
い強度が得られることが判る。 実施例 3 Ni3C,NiC,Fe2C,Co2C,Ti,WおよびZrの
各粉末(粒度は全て325メツシユ以下)を第3表
に示す通の組成にて配合し、実施例1と同様の方
法でペーストを作成して密度が3・13g/cm2で寸
法が30×30×20の炭化ケイ素焼結体の表面にハケ
塗りで被覆し、第3表に示すような各焼成温度で
アルゴン雰囲気中で60分間焼成し金属化を行なつ
た。その結果を第3表に示す。
The present invention relates to a metallization composition for a silicon carbide sintered body and a method for metallizing the surface of a silicon carbide sintered body. The present invention also relates to a metallization method and metallization composition for a silicon carbide sintered body that can form a metallized layer with extremely excellent bondability. In recent years, with the development of industrial technology, high-temperature strength, heat resistance, and
Various ceramics with excellent chemical resistance or electrical properties are attracting attention, and development is progressing as high-performance materials that can be applied to, for example, materials for high-temperature structures, materials for the chemical industry, materials for the electronic industry, etc. It is being However, it is practically extremely difficult to satisfy the various performances required of the above-mentioned high-performance materials with a single type of ceramic, and there are no materials that can satisfy the various performances required of the above-mentioned high-performance materials. In general, by bonding different types of ceramic objects with different properties to each other or a ceramic object and a metal object to form a composite material, various types of high-performance materials required in the above-mentioned materials can be achieved. It is conceivable to apply composite materials whose performances complement each other. For example, the present inventors have previously researched electronic circuit substrates that have excellent characteristics as integrated circuit substrates or IC package materials, and have developed integrated circuit boards by bonding silicon carbide thin plates and different types of ceramic thin plates. With the idea of achieving extremely excellent characteristics as a material for use in substrates or IC packages, we published the patent application No. 16078-1983 to develop a 10 6 Ω material.
A silicon carbide substrate for an electronic circuit, comprising a ceramic thin plate having a specific volume resistivity of cm or more bonded to the surface of a silicon carbide thin plate through a bonding layer containing at least one metal as a main component. ” and a method for producing the same, and further proposed the invention in Japanese Patent Application No. 58-97901, “50 to 99.7% by weight of at least one selected from Pb, Sn, Bi, Zn, Ga, Al.
The remainder is essentially Cu, Si, Ge, Fe, Co, Ni, Cr,
The present invention proposes an invention relating to a ceramic bonding agent comprising at least one selected from Mn and Mo, and a method for producing the same. By the way, the silicon carbide sintered thin plate and the different types of ceramic thin plates in the invention are joined by forming a metallized layer as a bonding layer containing one or more metals as a main component. , when a large adhesion force is required or when stress due to the difference in coefficient of thermal expansion acts strongly between the silicon carbide sintered thin plate and the ceramic thin plate due to thermal shock,
The metalized layer on the surface of the silicon carbide sintered thin plate may peel off, making it difficult to maintain a sufficiently strong bond. Based on the above-mentioned viewpoints, the present inventors conducted various studies to develop a metallizing composition suitable for forming a metallized surface that facilitates brazing etc. on the surface of a silicon carbide sintered body. , using a metal that prevents the decomposition of SiC and forms a strong bond between carbide and SiC, which is coated with this metallizing composition and heated at high temperature in a non-oxidizing atmosphere to form a metallized layer. As a result, the present inventors have newly found that they have extremely strong adhesion, and have excellent properties such as heat resistance, thermal shock resistance, and bondability that facilitates brazing, leading to the completion of the present invention. The present invention relates to a composition for metallizing the surface of a sintered silicon carbide body that can form a metalized layer having the excellent properties as described above on the surface of the sintered body, and a method for metallizing the same. In particular, a method for metallizing the surface of a silicon carbide sintered body that can form a metalized layer with extremely excellent adhesion, heat resistance, thermal shock resistance, and bonding properties on the surface of the silicon carbide sintered body, and its use for metallization. The object is to provide a composition. According to the present invention, Co, Ni, Fe, Al, Pd, Pt,
10 to 90 parts by weight of carbide of at least one element selected from B, Ti, W, Mo,
consisting essentially of 10 to 90 parts by weight of at least one element selected from Zr, Hf, Ta, Nb, U, Cr, and V or a compound thereof;
The above object can be achieved by a composition for metallizing the surface of a silicon carbide sintered body in which the total amount is 100 parts by weight, and a metallization method using this composition. Next, the present invention will be explained in detail. In the present invention, the metallization composition includes Co, Ni,
10 to 90 parts by weight of a carbide of at least one element selected from Fe, Al, Pd, Pt, and B;
It is necessary to contain 10 to 90 parts by weight of an element selected from Ti, W, Mo, Zr, Hf, Ta, Nb, U, Cr, and V. The reason is that Co, Ni, Fe,
A carbide of an element selected from among Al, Pd, Pt, and B produces atomic extremely active C through a decomposition reaction.
It reacts with an element selected from Hf, Ta, Nb, U, Cr, and V to form carbide and form a strong bond with SiC. In addition, C generated by the decomposition reaction of the carbide prevents the decomposition reaction of the silicon carbide sintered body, prevents its deterioration, and maintains the original characteristics of the silicon carbide sintered body. In addition, Co, Ni, Fe, Al, produced by the decomposition reaction of the carbide,
Elements selected from Pd, Pt, and B are Ti, W, Mo, Zr, Hf, Ta, and Nb produced by reacting with C.
By the presence of an element selected from U, Cr, and V inside the carbide layer and on the surface of the silicon carbide sintered body, a metallized layer as a metallized layer can be formed on the surface of the silicon carbide sintered body. Therefore, the metallizing layer has extremely strong adhesion to the surface of the silicon carbide sintered body, and has excellent properties such as heat resistance, thermal shock resistance, and bondability that makes brazing easy and reliable. A metallized layer can be formed as a metallization layer. In the present invention, the Co, Ni, Fe, Al, Pd,
The carbide of at least one element selected from Pt and B must be present in an amount of 10 to 90 parts by weight. If the amount of the carbide is less than 10 parts by weight, there will be insufficient C generated in the decomposition reaction, causing the silicon carbide sintered body to decompose and deteriorate, and at the same time, the amount of metal generated in the decomposition reaction of the carbide will be small. Therefore, a uniform metallized layer with excellent bonding strength cannot be obtained.
On the other hand, if the carbide content is more than 90 parts by weight, undecomposed carbides remain and a metallized layer with excellent bonding strength cannot be obtained. In the present invention, the Ti, W, Mo, Zr, Hf,
At least one element or compound selected from Ta, Nb, U, Cr, and V must be present in an amount of 10 to 90 parts by weight. If the amount of the element or compound is less than 10 parts by weight, there will be insufficient carbide to react with the C and a strong bond with the silicon carbide sintered body will not be obtained, resulting in a metallized layer on the surface of the silicon carbide sintered body. The adhesion strength will be lower. Furthermore, if the amount of the element or compound exceeds 90 parts by weight, the silicon carbide sintered body will decompose and deteriorate, and a metallized layer with excellent bonding properties that can be easily brazed on the surface of the metallized layer will not be obtained. do not have. In the present invention, the composition may contain a carbide of at least one element selected from Co and Ni, and at least one element or compound selected from Ti, W, and Mo. is necessary. The reason is that the Co and
Carbide of Ni easily generates atomic extremely active C through a decomposition reaction, and this active C is
It easily reacts with elements or compounds selected from W and Mo to form stable carbides, and easily forms strong bonds with SiC. The Co or Ni element produced by the decomposition reaction of the carbide is present in close contact with the inside of the carbide layer selected from Ti, W, and Mo produced by the reaction with C and on the surface of the silicon carbide sintered body. This is because a metallized layer having excellent adhesion can be formed on the surface of the silicon carbide sintered body. Next, a method for metallizing a silicon carbide sintered body using the metallizing composition of the present invention will be described. According to the present invention, Co, Ni, Fe, Al, Pd, Pt,
10 to 90 parts by weight of carbide of at least one element selected from B and Ti, W, Mo,
10 to 90 parts by weight of at least one element selected from Zr, Hf, Ta, Nb, U, Cr, and V or a compound thereof, and an organic binder added as necessary are thoroughly mixed. After applying the metallization composition to the surface of the silicon carbide sintered body,
1200-2000 for at least 1 minute in a non-oxidizing atmosphere
By heating within the temperature range of .degree. C., it is possible to form a metallized layer on the surface of the silicon carbide sintered body, which has excellent adhesion, heat resistance, thermal shock resistance, and bondability. According to the present invention, Co, Ni, Fe, Al, Pd, Pt,
Carbide of at least one element selected from B and Ti, W, Mo, Zr, Hf, Ta,
For the element selected from Nb, U, Cr, and V or a compound thereof, a powder with a particle size of 0.1 mm or less is suitable, and a powder with a particle size of 0.05 mm or less is more preferable. The reason is that if the particle size is larger than 0.1mm, it takes a long time to heat the metallization process.
This is because it is difficult for the reaction to proceed completely, and unreacted carbides and elements remain, making it difficult to obtain a uniform metallized layer. According to the present invention, the surface of the silicon carbide sintered body is coated with the carbide, the element, or a compound thereof. Coating methods include screen printing, brush painting, spray painting,
Various coating methods such as roll coating and dip coating methods can be employed. In coating with the metallizing composition, the metallizing composition of the carbide, element, or their compound is coated with organic binders such as butyl carbitol acetate, terpinol, polyethylene glycol, methyl cellulose, ethyl cellulose, polyvinyl alcohol, polyvinyl alcohol, and the like. It is advantageous to add at least one selected from acrylic acid, polyacrylic ester, polymethacrylic acid, and polymethacrylic ester. These organic binders can improve the adhesion between the surface of the silicon carbide sintered body and the metallizing composition. According to the present invention, the silicon carbide sintered body whose surface is coated with the metallizing composition is heated within a temperature range of 1200 to 2000°C for at least 1 minute in a non-oxidizing atmosphere. The reason for this is that when the metal oxide is heated in an oxidizing atmosphere, the metallization composition is oxidized and an oxide film is formed, making it impossible to obtain the desired metallization layer, and also creating a strong bond with SiC. This is because no bond can be obtained. On the other hand, if the heating temperature is lower than 1200°C, the decomposition reaction of the carbide of the element selected from Co, Ni, Fe, Al, Pd, Pt, and B will not proceed sufficiently, and active C will not be generated. Furthermore, the above
Carbide is formed due to reasons such as the reaction between an element selected from Ti, W, Mo, Zr, Hf, Ta, Nb, U, Cr, V or a compound thereof and the active C not proceeding sufficiently. Therefore, under such conditions, a metallized layer with strong adhesion cannot be obtained. On the other hand, if the heating temperature is higher than 2000℃, it is not advantageous in practice as it increases the cost of temperature control and heating furnaces.
Furthermore, the silicon carbide sintered body decomposes, which is not preferable. Next, examples of the present invention will be described. Example 1 Co 2 C and Ti powder (particle size 325 mesh or less) were blended in the composition shown in Table 1, and 70 parts of butyl carbitol acetate was added to 100 parts by weight of this blend.
parts by weight and 10 parts by weight of ethyl cellulose were added and mixed in a ball mill to prepare a paste. The resulting paste has a density of 3.11g/ cm3 and dimensions of 30×
The surface of a 3.0 x 20 mm silicon carbide sintered body 1 was coated with a metallization composition film by screen printing as shown in Figure 1, and then heated for 60 minutes in an argon atmosphere at 1600°C.
The metallization was performed by firing for a minute. The silicon carbide sintered body having the metallized surface 2 thus obtained was cut into square bars of approximately 3 x 3 x 20 mm, and these metallized surfaces were plated with Ni, as shown in Fig. 2. The metallized surfaces of the two square bars were joined together by brazing 3. The silicon carbide sintered body joined by brazing in this way was assembled with a span of 20 mm and a cross head.
Three-point bending strength was measured under the condition of 0.5 cm/min.
As is clear from Table 1, Co 2 C is 10-90% by weight,
A good metallized surface was obtained with a metallizing composition containing 10 to 90 parts by weight of Ti. and especially
Better strength was obtained when a metallizing composition having a composition of 30 to 60 parts by weight of Co 2 C and 40 to 70 parts by weight of Ti was used. Example 2 50 parts by weight of Co 2 C powder (particle size 325 mesh or less) and
A paste was prepared in the same manner as in Example 1 by blending 50 parts by weight of Ti powder (particle size: 325 mesh or less). The resulting paste was coated by screen printing on the surface of a silicon carbide sintered body with a density of 3.13 g/cm 3 and dimensions of 30 x 30 x 20 mm, and heated in an argon atmosphere at a temperature range of 1100 °C to 1800 °C for 60 minutes. The metallization was performed by firing for a minute. The results are shown in Table 2. As is clear from this table, good metallization can be obtained when the firing temperature is in the range of 1400 to 1800°C. It can be seen that the highest strength is obtained at 1600℃. Example 3 Each powder of Ni 3 C, NiC, Fe 2 C, Co 2 C, Ti, W, and Zr (all particle sizes are 325 mesh or less) was blended in the composition shown in Table 3, and Example 1 was prepared. A paste was prepared in the same manner as above, and it was coated with a brush on the surface of a silicon carbide sintered body with a density of 3.13 g/cm 2 and dimensions of 30 x 30 x 20, and then baked as shown in Table 3. Metallization was performed by firing at a temperature of 60 minutes in an argon atmosphere. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】 以上の結果からも明らかなように、本発明によ
れば炭化ケイ素質焼結体表面に、その表面の化学
分解による劣化を起こすことなく、密着性、耐熱
性、耐熱衝撃性およびロウ付けなどが容易となる
接合性などが極めて優れた金属化層を有利に形成
することができる。
[Table] As is clear from the above results, according to the present invention, the surface of a silicon carbide sintered body can be improved in adhesion, heat resistance, thermal shock resistance, and waxiness without causing deterioration due to chemical decomposition of the surface. It is possible to advantageously form a metallized layer that is easy to attach and has excellent bonding properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明により得られた金属化表面を
有する炭化ケイ素質焼結体の斜視図であり、第2
図は本発明により得られた金属化表面同志をロウ
付けにより接合した状態の炭化ケイ素焼結体の斜
視図である。 上記図面において、1は炭化ケイ素質焼結体、
2は金属化表面層、3はロウ付けによる接合部分
である。
FIG. 1 is a perspective view of a silicon carbide sintered body having a metallized surface obtained by the present invention;
The figure is a perspective view of a silicon carbide sintered body in which metallized surfaces obtained according to the present invention are joined together by brazing. In the above drawings, 1 is a silicon carbide sintered body;
2 is a metallized surface layer, and 3 is a joint portion by brazing.

Claims (1)

【特許請求の範囲】 1 Co,Ni,Fe,Al,Pd,Pt,Bのなかから
選ばれるいずれか少なくとも1種の元素の炭化物
を10〜90重量部とTi,W,Mo,Zr,Hf,Ta,
Nb,U,Cr,Vなかから選ばれる元素あるいは
それらの化合物のいずれか少なくとも1種を10〜
90重量部とを充分混合した金属化組成物を炭化ケ
イ素質焼結体表面に塗布した後、非酸化性雰囲気
中で少なくとも1分間1200〜2000℃の温度範囲内
で加熱することを特徴とする炭化ケイ素質焼結体
表面の金属化方法。 2 Co,Ni,Fe,Al,Pd,Pt,Bのなかから
選ばれるいずれか少なくとも1種の元素の炭化物
10〜90重量部とTi,W,Mo,Zr,Hf,Ta,
Nb,U,Cr,Vのなかから選ばれる元素あるい
はそれらの化合物のいずれか少なくとも1種10〜
90重量部とから実質的になり、これらの合計が
100重量部である炭化ケイ素質焼結体表面の金属
化組成物。 3 前記組成物は、Co,Niのなかから選ばれる
いずれか少なくとも1種の元素の炭化物とTi,
W,Moのなかから選ばれる元素あるいはそれら
の化合物のいずれか少なくとも1種とから実質的
になる特許請求の範囲第2項記載の組成物。
[Claims] 1. 10 to 90 parts by weight of a carbide of at least one element selected from Co, Ni, Fe, Al, Pd, Pt, and B, and Ti, W, Mo, Zr, and Hf. ,Ta,
At least one element selected from Nb, U, Cr, and V or a compound thereof from 10 to
90 parts by weight of the metallized composition is applied to the surface of the silicon carbide sintered body, and then heated within a temperature range of 1200 to 2000°C for at least 1 minute in a non-oxidizing atmosphere. A method for metallizing the surface of a silicon carbide sintered body. 2 Carbide of at least one element selected from Co, Ni, Fe, Al, Pd, Pt, and B
10 to 90 parts by weight and Ti, W, Mo, Zr, Hf, Ta,
At least one element selected from Nb, U, Cr, V or a compound thereof10~
90 parts by weight, and the total of these is
100 parts by weight of a metallized composition on the surface of a silicon carbide sintered body. 3. The composition comprises a carbide of at least one element selected from Co, Ni and Ti,
The composition according to claim 2, which essentially consists of at least one element selected from W and Mo or a compound thereof.
JP20972183A 1983-11-07 1983-11-07 Metallizing method for surface of silicon carbide sintered body and composition for metallization Granted JPS60100680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20972183A JPS60100680A (en) 1983-11-07 1983-11-07 Metallizing method for surface of silicon carbide sintered body and composition for metallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20972183A JPS60100680A (en) 1983-11-07 1983-11-07 Metallizing method for surface of silicon carbide sintered body and composition for metallization

Publications (2)

Publication Number Publication Date
JPS60100680A JPS60100680A (en) 1985-06-04
JPH037755B2 true JPH037755B2 (en) 1991-02-04

Family

ID=16577542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20972183A Granted JPS60100680A (en) 1983-11-07 1983-11-07 Metallizing method for surface of silicon carbide sintered body and composition for metallization

Country Status (1)

Country Link
JP (1) JPS60100680A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669914B2 (en) * 1985-09-26 1994-09-07 京セラ株式会社 Metallizing composition

Also Published As

Publication number Publication date
JPS60100680A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
JP3682552B2 (en) Method for producing metal-ceramic composite substrate
CA2216683A1 (en) Metal powder and process for preparing the same
JPS58223678A (en) Sic sintered body with metallized layer and manufacture
JPS5811390B2 (en) Method of manufacturing thermally conductive substrate
JPS6227037B2 (en)
JPS59137373A (en) Ceramic bonding method
JPH037755B2 (en)
JP2822518B2 (en) Method for forming metallized layer on aluminum nitride sintered body
JP2967929B2 (en) Conductor paste for aluminum nitride substrate
JP3896432B2 (en) Method for producing metal-ceramic composite substrate and brazing material used therefor
JPH04270094A (en) Brazing material
JP3914648B2 (en) Metal-ceramic bonding substrate
EP0200950B1 (en) Paste containing a eutectic composition, method of forming such a paste and its application
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH02172868A (en) Aluminum nitride sintered body and electronic parts with this utilized therefor
JPS62197372A (en) Manufacture of aluminum nitride sintered body with electroconductive metallized layer
JP2704158B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JP2826840B2 (en) Method of joining ceramic body and metal member
JP2898851B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JPS59203783A (en) Metallization of non-oxide ceramic sintered body
JPS62197374A (en) Aluminum nitride sintered body
JPS6270284A (en) Metallized silicon carbide ceramics body and its production
JPH0699200B2 (en) Insulation board for high frequency transistors
JPS62197376A (en) Aluminum nitride substrate
JPH0324431B2 (en)