JP3896432B2 - Method for producing metal-ceramic composite substrate and brazing material used therefor - Google Patents

Method for producing metal-ceramic composite substrate and brazing material used therefor Download PDF

Info

Publication number
JP3896432B2
JP3896432B2 JP30385496A JP30385496A JP3896432B2 JP 3896432 B2 JP3896432 B2 JP 3896432B2 JP 30385496 A JP30385496 A JP 30385496A JP 30385496 A JP30385496 A JP 30385496A JP 3896432 B2 JP3896432 B2 JP 3896432B2
Authority
JP
Japan
Prior art keywords
weight
brazing material
powder
metal
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30385496A
Other languages
Japanese (ja)
Other versions
JPH09188582A (en
Inventor
正美 桜庭
正美 木村
潤二 中村
隆司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP30385496A priority Critical patent/JP3896432B2/en
Priority to US08/850,183 priority patent/US5955686A/en
Priority to EP97107391A priority patent/EP0839598B1/en
Priority to DE69710021T priority patent/DE69710021T2/en
Publication of JPH09188582A publication Critical patent/JPH09188582A/en
Application granted granted Critical
Publication of JP3896432B2 publication Critical patent/JP3896432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属とセラミックスとを接合して複合基板と成す製造方法と、その接合に用いる接合特性に優れたろう材に関する。
【0002】
【従来の技術】
従来より、金属としての銅板とセラミックス基板として窒化アルミニウム(AlN)基板とを接合する方法として、特開昭60−166165号公報記載の「窒化物系セラミックスと金属との接合方法」に開示する活性金属ろう接法や、銅板と窒化アルミニウム基板表面を改質させて直接接合するDBC法(例えば特開昭56−163093号公報)等が知られている。
【0003】
このうち活性金属ろう接法は、DBC法に比較して接合強度が高く、得られた接合体はヒートサイクルに対して耐久性が高い等の特性を有することから、酸化物系セラミックス基板以外の例えば窒化物セラミックス基板と銅板との接合に多用されるようになった。
【0004】
上記活性金属ろう接法に使用されるろう材としては、Ag−Cu−活性金属(Ti、Zr、Hfのいずれか1種)からなるろう材(特開昭60−166165号公報)や、Ag−Cu−水素化チタンからなる活性金属ペースト材(特開平3−101153号公報)が実用化されている。
【0005】
【発明が解決しようとする課題】
上記ろう材を用いて窒化アルミニウム基板の上下面に銅板を接合して回路基板を形成することは実用化されているが、近年の回路用基板には、大電力化に対応できるよう、放熱性、電気絶縁性に加え、より高強度でかつ熱衝撃性に優れた基板が望まれていた。
【0006】
したがって本発明の目的は従来のろう材よりもパワーモジュール基板としての諸特性値を向上させ得るろう材を提供するとともに、このろう材を用いて行う金属−セラミックス複合基板の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究した結果、従来公知の活性金属ろう材の組成に特定の酸化物を添加すると、耐ヒートサイクル特性が向上することを見いだし本発明に到達した。
【0008】
すなわち、本発明は第1に、金属板とセラミックス基板とをろう材で接合して複合基板を製造する方法において、固体分が重量%でCu:5〜30%,Ti:0.5〜4.5%,酸化チタン:0.25〜0.9%,残部Agからなるろう材をセラミックス基板上に塗布する第1工程、次いで該ろう材上に金属板を重ね、加熱接合して金属板−セラミックス基板接合体を得る第2工程、および得られた接合体の金属板上にエッチングレジストにより回路パターンを形成した後、エッチング処理により金属回路を形成する第3工程からなることを特徴とする金属−セラミックス複合基板の製造方法:第2に、金属板とセラミックス基板とをろう材で接合して複合基板を製造する方法において、固体分が重量%でCu粉:5〜30%,Ti粉:0.5〜4.5%,酸化チタン粉:0.25〜0.9%,残部Ag粉からなる粉体100重量部に対し、10〜14重量部のビヒクルを添加混練してペースト状のろう材をセラミックス基板上に塗布する第1工程、次いで該ろう材上に金属板を重ね、加熱接合して金属板−セラミックス基板接合体を得る第2工程、および得られた接合体の金属板上にエッチングレジストにより回路パターンを形成した後、エッチング処理により金属回路を形成する第3工程からなることを特徴とする金属−セラミックス複合基板の製造方法:第3に、金属板とセラミックス基板とを接合させるろう材であって、その組成が、重量%でCu:5〜30%,Ti:0.5〜4.5%,酸化チタン:0.25〜0.9%,残部Agからなることを特徴とするろう材:第4に、金属板とセラミックス基板とを接合させるろう材であって、その組成が、重量%でCu粉:5〜30%,Ti粉:0.5〜4.5%,酸化チタン粉:0.25〜0.9%,残部Ag粉からなる粉体100重量部に対し、10〜14重量部のビヒクルを添加混練してペースト状としたことを特徴とするろう材を提供するものである。
【0009】
【発明の実施の形態】
本発明において使用するろう材の組成は、接着力を確保するために、Cu、Ti、酸化チタンの残部をAgで構成する。またCu分は5〜30重量%の範囲であるが、これは5重量%未満および30重量%を超えると耐熱衝撃力が低下するため好ましくないからである。
【0010】
本発明において使用し得る活性金属添加形態としては金属体であるTiを用いる。添加量としては0.5〜4.5重量%の範囲が好ましい。これは0.5重量%未満では生成される窒化物層が少なくなり接着強度がなく、一方、4.5重量%を超えると逆に接着強度は高くなるものの、接合後にクラックが発生しやすいという欠点があるからである。
【0011】
酸化チタンの形態としてはTiOやTiO2 を用いて0.25〜0.9重量%の範囲で添加される。また、これらは非晶質であっても結晶質のものであっても構わない。
【0012】
これらの範囲の酸化チタンを上記組成のろう材に添加することによって耐ヒートサイクル性、抗折強度、たわみ量、通炉耐量等の特性向上に寄与することを本発明者の実験によって確認することができた。この理由として、TiO2 はろう材中に均一に分散されることにより応力の集中が緩和されるためと考えられる。
【0013】
ろう材組成として上記範囲の合金をそのまま、あるいは有機溶剤と混合してペースト状にして用いるが、この場合、金属部材とセラミックス部材を単に接合する場合には合金材を板状や箔状にして使用できる他、セラミックス基板上に電子回路を形成する場合には、ペーストろう材を用いた方が好ましい。
【0014】
上記ペースト状ろう材は、テレピネオール、トルエン、メチルセロソルブ、エチルセロソルブ等の有機溶剤55〜75容量部と、PMMA、メチルセルローズ、エチルセルローズ等の有機結合剤25〜45容量部とを混合して得たビヒクルを、上記混合粉末100重量部当り10〜14重量部の割合に添加して混練したものを用いた。
【0015】
この場合10〜14重量部の割合としたのは、10%以下だとペーストの粘度が高いため印刷時にかすれやすく、逆に14%を越えるとペーストの粘度が低いため印刷に印刷形状が流れやすいことによる。
【0016】
以下、実施例をもって詳しく説明するが本発明の範囲はこれらに限定されるものではない。
【0017】
【実施例1】
セラミックス基板として53×29mmのAlN基板に、固形分がAg粉 70.0重量%、Cu粉 27.0重量%、Ti粉 2.5重量%、TiO2 粉 0.5重量%からなる粉体100重量部に対して、12.4重量部となるビヒクルを添加混練してろう材ペーストを全面塗布した後、金属板としての厚みが0.3mmと0.25mmの銅板を重ねて接合炉中において830℃で焼成し、接合体を得た。
【0018】
得られた接合体の特性を調べるため、ヒートサイクル特性、抗折強度、たわみ量および通炉耐量について試験を行い、その結果を表1に示した。
【0019】
【比較例1】
実施例1と同様なAlN基板に、従来公知の固形分がAg 70重量%、Cu27.5重量%、Ti 2.5重量%の金属活性ペーストろう材を用いた他は実施例1と同一条件で接合体(基板)を得、同様にヒートサイクル特性などの試験を行い結果を表1に示した。
【0020】
【表1】

Figure 0003896432
【0021】
表1の結果から本発明によるろう材を用いて接合した接合基板のヒートサイクル性は従来のろう材を用いた基板の2倍以上の耐性を示し、抗折強度やたわみ量についてもヒートサイクル50回以降の数値が従来のものに比し極めて高くなっていることが確認された。
【0022】
【実施例2】
実施例1に示す金属板としての銅板の厚みを0.3mmと0.15mmの2枚に代えた他は実施例1と全く同一の条件で接合基板を得、実施例1と同様の特性を試験しその結果を表2に示した。
【0023】
【比較例2】
実施例2に示したAlN基板に、比較例1に示した従来公知のAg−Cu−Tiの合金ろう材を用いた他は実施例2と同じ条件で接合体(基板)を得、同様にヒートサイクル特性などの試験を行い結果を表2に示した。
【0024】
【表2】
Figure 0003896432
【0025】
表2の結果から、本発明に基づくろう材を用いた場合の特性はいずれも公知のAg−Cu−Ti合金ろう材を用いた場合よりも向上していることが判明した。
【0026】
【実施例3】
実施例1に示した条件と同じ条件で接合して得た接合基板の銅板表面に所定の電子回路パターンをエッチングレジストにより形成させた後、塩化第二鉄を主成分とするエッチング液で銅の不要部分を除去し、次いでエッチングレジスト膜を除去することによって銅回路を有する窒化アルミニウム基板を形成した。
【0027】
【実施例4】
ろう材へのTiO2の添加量によるピール強度を調べるため、ろう材組成をAg 70重量部、Cu 27.5重量部、Ti 2.5重量部と一定としたろう材にTiO2の添加量を0、0.25、0.5、0.75、0.9、1.0重量部に変えて金属−セラミックス接合基板を得て、得られたピール強度の値を図1に、ヒートサイクル50回後の抗折強度の値を図2に示した。この場合、TiO 2 の添加量を重量%に換算すると、0重量部、0 . 25重量部、0 . 5重量部、0 . 75重量部、0 . 9重量部および1 . 0重量部は、それぞれ0重量%、0 . 25重量%、0 . 50重量%、0 . 74重量%、0 . 89重量%および0 . 99重量%である。
【0028】
ピール強度が10kg/cm 以上である0.9重量%以下の範囲が好ましいことがわかった。
【0029】
また、同様に図2の結果からTiO2 量 0.25重量%ではヒートサイクル50回後の抗折強度が、銅厚0.3/0.15(mm)の(実線で示す)場合は27kgf/mm2 であり、銅厚0.3/0.25(mm)の(一点鎖線で示す)場合は22kgf/mm2 であり、実用的には、0.25重量%以上であれば好ましいことがわかった。これら図1および図2の結果から、酸化チタンの量は0.25〜0.9重量%が適正であることが判明した。
【0030】
《参考例》
ろう材へのTiの添加量によるピール強度を調べるため、ろう材組成をAg粉70重量部、Cu粉 27.5重量部と一定とした銀銅ろう材に、活性金属としてTi粉を0.5、1.0、1.5、2.0、2.5、3.0、4.0重量部に変えて金属−セラミックス接合基板を得て、得られたピール強度の値を図3に示した。この結果からTi粉の適正添加量は、0.5〜4.0重量%が好ましいことが判明した。
【0031】
【実施例6】
Ag 70.0重量部、Cu 27.5重量部からなる合金ろう材を粉砕した後、Ti粉 2.5重量部、TiO2粉 0.5重量部とを混合したものを加熱溶解して4成分の合金ろう材箔を得た。このろう材の組成を重量%に換算すると、Ag 69 . 65重量%、Cu 27 . 36重量%、Ti粉 2 . 49重量%、TiO 2 粉 0 . 50重量%である。これを53×29mmのAlN基板の両面に接触させた後、金属板としての厚みが0.3mmと0.25mmの銅板を重ねて接合炉中において焼成し、接合体を得た。
【0032】
得られた接合体の特性を調べるため、ヒートサイクル特性、抗折強度、たわみ量および通炉耐量について試験を行い、その結果を表3に示した。
【0033】
【実施例7】
Ag粉 70.0重量部、Cu粉 27.5重量部、Ti粉 2.5重量部、TiO2粉 0.5重量部からなる粉体を混合した後、加熱溶解して4成分系合金ろう材箔を得た。このろう材の組成を重量%に換算すると、Ag 69 . 65重量%、Cu 27 . 36重量%、Ti粉 2 . 49重量%、TiO 2 粉 0 . 50重量%である。この合金ろう材箔を用いた他は、実施例6に示す手段と同一な方法でヒートサイクル特性や抗折強度等を調べ、その結果を表3に併せて示した。
【0034】
表3の結果から、実施例1〜実施例に示す本発明ペーストろう材に比べると抗折強度やたわみ量が若干劣るものの、従来のろう材よりは諸特性がはるかに優れていることが判明した。
【0035】
【表3】
Figure 0003896432
【0036】
【発明の効果】
以上説明したように、本発明のろう材は従来公知のAg−Cu−Ti系ろう材に酸化物(酸化チタン)を適量添加することによってAg−Cu−Ti−TiO2 系ろう材として得られるので、これを用いて金属−セラミックス複合基板を製造することにより、ヒートサイクル性など大電力化に対応可能な特性が向上した複合基板とすることができる。
【図面の簡単な説明】
【図1】Ag−Cu−Ti系ろう材におけるTiO2 の添加量と金属−セラミックス複合基板のピール強度との関係を調べたグラフである。
【図2】Ag−Cu−Ti系ろう材におけるTiO2 の添加量と金属−セラミックス複合基板のヒートサイクル50回後の抗折強度との関係を調べたグラフである。
【図3】Ag−Cu−Ti系ろう材におけるTi量を変化させた場合のヒートサイクル特性を調べたグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method in which a metal and ceramics are bonded to form a composite substrate, and a brazing material excellent in bonding characteristics used for the bonding.
[0002]
[Prior art]
Conventionally, as a method of joining a copper plate as a metal and an aluminum nitride (AlN) substrate as a ceramic substrate, the activity disclosed in “Joint Method of Nitride Ceramics and Metal” described in JP-A-60-166165 A metal brazing method, a DBC method in which a copper plate and an aluminum nitride substrate surface are modified and joined directly (for example, Japanese Patent Laid-Open No. 56-163093) are known.
[0003]
Among these, the active metal brazing method has higher bonding strength than the DBC method, and the obtained bonded body has characteristics such as high durability against heat cycle. For example, it has been frequently used for joining a nitride ceramic substrate and a copper plate.
[0004]
Examples of the brazing material used in the active metal brazing method include a brazing material (Japanese Patent Laid-Open No. 60-166165) made of Ag—Cu—active metal (any one of Ti, Zr, and Hf), and Ag. An active metal paste material made of -Cu-titanium hydride (Japanese Patent Laid-Open No. 3-101153) has been put into practical use.
[0005]
[Problems to be solved by the invention]
Although it has been put to practical use to form a circuit board by bonding copper plates to the upper and lower surfaces of an aluminum nitride substrate using the above brazing material, the circuit board in recent years has a heat dissipation property to cope with the increase in power. In addition to electrical insulation, a substrate having higher strength and superior thermal shock has been desired.
[0006]
Accordingly, an object of the present invention is to provide a brazing material capable of improving various characteristic values as a power module substrate as compared with a conventional brazing material, and to provide a method for producing a metal-ceramic composite substrate using the brazing material. It is in.
[0007]
[Means for Solving the Problems]
As a result of intensive research aimed at achieving the above object, the present inventors have found that heat cycle resistance is improved when a specific oxide is added to the composition of a conventionally known active metal brazing material, and the present invention has been achieved.
[0008]
That is, according to the present invention, first, in a method of manufacturing a composite substrate by joining a metal plate and a ceramic substrate with a brazing material, the solid content is wt% , Cu: 5 to 30%, Ti : 0.5 to 0.5 4.5%, titanium oxide: 0.25 to 0.9% , the first step of applying a brazing material consisting of the balance Ag on the ceramic substrate, then a metal plate is stacked on the brazing material, and heated to join the metal A second step of obtaining a plate-ceramic substrate assembly, and a third step of forming a metal circuit by etching after forming a circuit pattern with an etching resist on a metal plate of the obtained joined body, Manufacturing method of metal-ceramic composite substrate: Second, in a method of manufacturing a composite substrate by joining a metal plate and a ceramic substrate with a brazing material, the solid content is wt% , Cu powder: 5-30%, Ti powder: 0 0.5 to 4.5%, titanium oxide powder: 0.25 to 0.9% , and 10 to 14 parts by weight of vehicle added to 100 parts by weight of powder consisting of the remaining Ag powder, and paste-like wax A first step of applying a material on a ceramic substrate, then a second step of superimposing a metal plate on the brazing material and heat-joining to obtain a metal plate-ceramic substrate assembly, and on the metal plate of the obtained joined body A metal-ceramic composite substrate manufacturing method comprising: a third step of forming a metal circuit by etching after forming a circuit pattern with an etching resist; and third, bonding a metal plate and a ceramic substrate It is a brazing filler metal whose composition is, by weight% , Cu: 5 to 30%, Ti : 0.5 to 4.5%, titanium oxide: 0.25 to 0.9% , and the balance Ag. Brazing material characterized by: Fourth , A brazing material for bonding the metal plate and the ceramics substrate, the composition is, in wt% Cu powder: 5 to 30% Ti powder: 0.5 to 4.5%, titanium oxide powder: 0. The present invention provides a brazing material characterized in that 10 to 14 parts by weight of a vehicle is added and kneaded to 100 parts by weight of a powder composed of 25 to 0.9% and the balance Ag powder .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the composition of the brazing material used in the present invention, the remainder of Cu, Ti, and titanium oxide is composed of Ag in order to ensure adhesion . Further, the Cu content is in the range of 5 to 30% by weight, but this is not preferable because the thermal shock resistance is reduced if it is less than 5% by weight or exceeds 30% by weight.
[0010]
As an addition form of the active metal that can be used in the present invention, Ti which is a metal body is used . The addition amount is preferably in the range of 0.5 to 4.5% by weight. If the amount is less than 0.5% by weight, the produced nitride layer is less and there is no adhesive strength. On the other hand, if it exceeds 4.5% by weight, the adhesive strength is increased, but cracks are likely to occur after joining. This is because there are drawbacks.
[0011]
As a form of titanium oxide, TiO or TiO 2 is added in a range of 0.25 to 0.9% by weight. These may be amorphous or crystalline.
[0012]
Confirm by experiments of the present inventor that the addition of titanium oxide in these ranges to the brazing material having the above composition contributes to improvement in properties such as heat cycle resistance, bending strength, deflection, and furnace resistance. I was able to. This is probably because TiO 2 is uniformly dispersed in the brazing material, thereby reducing the stress concentration.
[0013]
As the brazing material composition, the alloy in the above range is used as it is or mixed with an organic solvent to form a paste. In this case, when simply joining a metal member and a ceramic member, the alloy material is made into a plate or foil. In addition to being usable, when an electronic circuit is formed on a ceramic substrate, it is preferable to use a paste brazing material.
[0014]
The paste-like brazing material is obtained by mixing 55 to 75 parts by volume of an organic solvent such as terpineol, toluene, methyl cellosolve, ethyl cellosolve and 25 to 45 parts by volume of an organic binder such as PMMA, methyl cellulose, ethyl cellulose or the like. A vehicle was added and kneaded at a ratio of 10 to 14 parts by weight per 100 parts by weight of the mixed powder.
[0015]
In this case, the ratio of 10 to 14 parts by weight is that the viscosity of the paste is high when it is 10% or less, and it tends to fade during printing. Conversely, if it exceeds 14%, the viscosity of the paste is low and the printed shape tends to flow in printing. It depends.
[0016]
Hereinafter, although it demonstrates in detail with an Example, the scope of the present invention is not limited to these.
[0017]
[Example 1]
Powder consisting of an AlN substrate of 53 × 29 mm as a ceramic substrate, solid content of Ag powder 70.0% by weight, Cu powder 27.0% by weight, Ti powder 2.5% by weight, TiO 2 powder 0.5% by weight After adding 12.4 parts by weight of the vehicle to 100 parts by weight and kneading and coating the entire surface of the brazing material paste, the copper plates having thicknesses of 0.3 mm and 0.25 mm as metal plates are stacked in the joining furnace. And baked at 830 ° C. to obtain a joined body.
[0018]
In order to investigate the characteristics of the obtained joined body, tests were conducted with respect to heat cycle characteristics, bending strength, deflection amount and furnace resistance, and the results are shown in Table 1.
[0019]
[Comparative Example 1]
The same conditions as in Example 1 except that a conventionally known solid content of 70% by weight of Ag, 27.5% by weight of Cu, and 2.5% by weight of Ti was used for the AlN substrate similar to that in Example 1. Then, a joined body (substrate) was obtained. Similarly, tests such as heat cycle characteristics were conducted, and the results are shown in Table 1.
[0020]
[Table 1]
Figure 0003896432
[0021]
From the results of Table 1, the heat cycle property of the bonded substrate bonded using the brazing material according to the present invention is more than twice that of the conventional substrate using the brazing material, and the bending strength and the amount of deflection are also heat cycle 50. It was confirmed that the numerical value after the operation was extremely higher than the conventional one.
[0022]
[Example 2]
A bonded substrate was obtained under exactly the same conditions as in Example 1 except that the thickness of the copper plate as the metal plate shown in Example 1 was changed to two of 0.3 mm and 0.15 mm, and the same characteristics as in Example 1 were obtained. The results are shown in Table 2.
[0023]
[Comparative Example 2]
A bonded body (substrate) was obtained under the same conditions as in Example 2 except that a conventionally known Ag—Cu—Ti alloy brazing material shown in Comparative Example 1 was used for the AlN substrate shown in Example 2. Tests such as heat cycle characteristics were conducted and the results are shown in Table 2.
[0024]
[Table 2]
Figure 0003896432
[0025]
From the results of Table 2, it was found that the characteristics when using the brazing material according to the present invention were improved as compared with the case where the known Ag—Cu—Ti alloy brazing material was used.
[0026]
[Example 3]
After a predetermined electronic circuit pattern is formed by etching resist on the copper plate surface of the bonded substrate obtained by bonding under the same conditions as shown in Example 1, the copper solution is etched with an etching solution mainly containing ferric chloride. An unnecessary portion was removed, and then the etching resist film was removed to form an aluminum nitride substrate having a copper circuit.
[0027]
[Example 4]
To investigate the peel strength due to the addition amount of TiO 2 to the brazing material, 70 parts by weight of Ag brazing material composition, Cu 27.5 parts by weight, the addition amount of TiO 2 in the wax was fixed with Ti 2.5 weight member Is changed to 0, 0.25, 0.5, 0.75, 0.9, and 1.0 parts by weight to obtain a metal / ceramic bonding substrate, and the peel strength values obtained are shown in FIG. The value of the bending strength after 50 times is shown in FIG. In this case, when converting the amount of TiO 2 in weight%, 0 part by weight, 0.25 parts by weight, 0.5 parts by weight, 0.75 parts by weight, 0.9 parts by weight and 1, respectively. 0 part by weight, each 0 wt%, 0. 25% by weight, 0. 50 wt.%, 0.74 wt%, 0. 89 wt% and 0. 99 wt%.
[0028]
It has been found that a range of 0.9% by weight or less where the peel strength is 10 kg / cm 3 or more is preferable.
[0029]
Similarly, from the results shown in FIG. 2, when the TiO 2 content is 0.25% by weight, the bending strength after 50 heat cycles is 27 kgf when the copper thickness is 0.3 / 0.15 (mm) (indicated by the solid line). / mm 2, when the copper thickness 0.3 / 0.25 (mm) (shown by a dashed line) is 22 kgf / mm 2, is practically preferred that if 0.25 wt% or more I understood. From the results shown in FIGS. 1 and 2, it was found that the appropriate amount of titanium oxide was 0.25 to 0.9% by weight.
[0030]
《Reference example》
In order to investigate the peel strength depending on the amount of Ti added to the brazing filler metal, the brazing filler metal composition was made constant at 70 parts by weight of Ag powder and 27.5 parts by weight of Cu powder, and Ti powder as an active metal was reduced to 0.5%. 5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 parts by weight were obtained to obtain a metal-ceramic bonding substrate, and the obtained peel strength values are shown in FIG. Indicated. From this result, it was found that the appropriate addition amount of Ti powder is preferably 0.5 to 4.0% by weight.
[0031]
[Example 6]
After pulverizing an alloy brazing material composed of 70.0 parts by weight of Ag and 27.5 parts by weight of Cu, a mixture of 2.5 parts by weight of Ti powder and 0.5 parts by weight of TiO 2 powder was dissolved by heating. A component alloy brazing foil was obtained. In terms of the composition of the brazing material by weight%, Ag 69. 65 wt%, Cu 27. 36 wt%, Ti powder 2.49 wt%, a TiO 2 powder 0.50 wt%. This was brought into contact with both surfaces of a 53 × 29 mm AlN substrate, and copper plates having a thickness of 0.3 mm and 0.25 mm as metal plates were stacked and fired in a joining furnace to obtain a joined body.
[0032]
In order to investigate the characteristics of the obtained joined body, tests were conducted with respect to heat cycle characteristics, bending strength, deflection amount and furnace resistance, and the results are shown in Table 3.
[0033]
[Example 7]
A powder composed of 70.0 parts by weight of Ag powder, 27.5 parts by weight of Cu powder, 2.5 parts by weight of Ti powder, and 0.5 parts by weight of TiO 2 powder is mixed and then melted by heating to dissolve the quaternary alloy braze. A material foil was obtained. In terms of the composition of the brazing material by weight%, Ag 69. 65 wt%, Cu 27. 36 wt%, Ti powder 2.49 wt%, a TiO 2 powder 0.50 wt%. Except for using this brazing alloy foil, the heat cycle characteristics, the bending strength, and the like were examined by the same method as that shown in Example 6, and the results are also shown in Table 3.
[0034]
From the results shown in Table 3, although the bending strength and the amount of deflection are slightly inferior to those of the paste solder of the present invention shown in Examples 1 to 4 , the properties are far superior to those of conventional brazing materials. found.
[0035]
[Table 3]
Figure 0003896432
[0036]
【The invention's effect】
As described above, the brazing material of the present invention can be obtained as an Ag-Cu-Ti-TiO 2 brazing material by adding an appropriate amount of oxide (titanium oxide) to a conventionally known Ag-Cu-Ti brazing material. Therefore, by manufacturing a metal-ceramic composite substrate using this, it is possible to obtain a composite substrate with improved characteristics such as heat cycle characteristics that can cope with high power.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of TiO 2 added to a Ag—Cu—Ti brazing filler metal and the peel strength of a metal / ceramic composite substrate.
FIG. 2 is a graph showing the relationship between the amount of TiO 2 added to an Ag—Cu—Ti brazing material and the bending strength after 50 heat cycles of a metal / ceramic composite substrate.
FIG. 3 is a graph showing the heat cycle characteristics when the amount of Ti in the Ag—Cu—Ti brazing material is changed.

Claims (4)

金属板とセラミックス基板とをろう材で接合して複合基板を製造する方法において、固体分が重量%で
Cu:5〜30%,
Ti:0.5〜4.5%,
酸化チタン:0.25〜0.9%
残部Ag
からなるろう材をセラミックス基板上に塗布する第1工程、次いで該ろう材上に金属板を重ね、加熱接合して金属板−セラミックス基板接合体を得る第2工程、および得られた接合体の金属板上にエッチングレジストにより回路パターンを形成した後、エッチング処理により金属回路を形成する第3工程からなることを特徴とする金属−セラミックス複合基板の製造方法。
In a method of manufacturing a composite substrate by joining a metal plate and a ceramic substrate with a brazing material, the solid content is wt% ,
Cu: 5 to 30%,
Ti : 0.5 to 4.5%,
Titanium oxide: 0.25 to 0.9% ,
Remaining Ag
A first step of applying a brazing material comprising a ceramic substrate onto the ceramic substrate, then a second step of superimposing a metal plate on the brazing material and heat-joining to obtain a metal plate-ceramic substrate assembly, and A method for producing a metal-ceramic composite substrate, comprising a third step of forming a circuit pattern by etching resist on a metal plate and then forming a metal circuit by etching treatment.
金属板とセラミックス基板とをろう材で接合して複合基板を製造する方法において、固体分が重量%で
Cu粉:5〜30%,
Ti粉:0.5〜4.5%,
酸化チタン粉:0.25〜0.9%
残部Ag粉
からなる粉体100重量部に対し、10〜14重量部のビヒクルを添加混練して得たペースト状のろう材をセラミックス基板上に塗布する第1工程、次いで該ろう材上に金属板を重ね、加熱接合して金属板−セラミックス基板接合体を得る第2工程、および得られた接合体の金属板上にエッチングレジストにより回路パターンを形成した後、エッチング処理により金属回路を形成する第3工程からなることを特徴とする金属−セラミックス複合基板の製造方法。
In a method of manufacturing a composite substrate by joining a metal plate and a ceramic substrate with a brazing material, the solid content is wt% ,
Cu powder: 5-30%,
Ti powder: 0.5 to 4.5%,
Titanium oxide powder: 0.25 to 0.9 percent,
A first step of applying a brazing filler material obtained by adding and kneading 10 to 14 parts by weight of a vehicle to 100 parts by weight of the powder made of the remaining Ag powder , and then the brazing A metal plate is stacked on the material and heated to join to obtain a metal plate-ceramic substrate assembly, and a circuit pattern is formed on the metal plate of the obtained assembly using an etching resist, followed by etching treatment to form a metal. A method for producing a metal-ceramic composite substrate, comprising a third step of forming a circuit.
金属板とセラミックス基板とを接合させるろう材であって、その組成が、重量%で、
Cu:5〜30%,
Ti:0.5〜4.5%,
酸化チタン:0.25〜0.9%
残部Ag
からなることを特徴とするろう材。
A brazing material for joining a metal plate and a ceramic substrate, the composition of which is by weight%,
Cu: 5 to 30%,
Ti : 0.5 to 4.5%,
Titanium oxide: 0.25 to 0.9% ,
Remaining Ag
A brazing material characterized by comprising:
金属板とセラミックス基板とを接合させるろう材であって、その組成が、重量%で、
Cu粉:5〜30%,
Ti粉:0.5〜4.5%,
酸化チタン粉:0.25〜0.9%
残部Ag粉
からなる粉体100重量部に対し、10〜14重量部のビヒクルを添加混練してペースト状としたことを特徴とするろう材。
A brazing material for joining a metal plate and a ceramic substrate, the composition of which is by weight%,
Cu powder: 5-30%,
Ti powder: 0.5 to 4.5%,
Titanium oxide powder: 0.25 to 0.9 percent,
A brazing material characterized in that 10 to 14 parts by weight of a vehicle is added and kneaded to 100 parts by weight of the powder made of the remaining Ag powder .
JP30385496A 1995-11-08 1996-10-30 Method for producing metal-ceramic composite substrate and brazing material used therefor Expired - Lifetime JP3896432B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30385496A JP3896432B2 (en) 1995-11-08 1996-10-30 Method for producing metal-ceramic composite substrate and brazing material used therefor
US08/850,183 US5955686A (en) 1996-10-30 1997-05-02 Brazing materials for producing metal-ceramics composite substrates
EP97107391A EP0839598B1 (en) 1996-10-30 1997-05-05 Processes for producing metal-ceramics composite substrates and brazing materials for use in such processes
DE69710021T DE69710021T2 (en) 1996-10-30 1997-05-05 Method of manufacturing a ceramic-metal composite substrate and brazing material for use in this method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-314691 1995-11-08
JP31469195 1995-11-08
JP30385496A JP3896432B2 (en) 1995-11-08 1996-10-30 Method for producing metal-ceramic composite substrate and brazing material used therefor

Publications (2)

Publication Number Publication Date
JPH09188582A JPH09188582A (en) 1997-07-22
JP3896432B2 true JP3896432B2 (en) 2007-03-22

Family

ID=26563662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30385496A Expired - Lifetime JP3896432B2 (en) 1995-11-08 1996-10-30 Method for producing metal-ceramic composite substrate and brazing material used therefor

Country Status (1)

Country Link
JP (1) JP3896432B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682552B2 (en) * 1997-03-12 2005-08-10 同和鉱業株式会社 Method for producing metal-ceramic composite substrate
CA2630526A1 (en) 2004-11-30 2006-08-31 The Regents Of The University Of California Joining of dissimilar materials
RU2403136C2 (en) * 2004-11-30 2010-11-10 Члены Правления Университета Калифорнии Soldered system with matched thermal expansion factors (tef)
KR101431174B1 (en) * 2012-05-25 2014-08-18 주식회사 케이씨씨 Solder Paste And metal bonded Ceramic Substrates
JP2021159926A (en) * 2020-03-31 2021-10-11 Dowaメタルテック株式会社 Brazing filler metal and method of manufacturing the same, and metal-ceramic bonding substrate

Also Published As

Publication number Publication date
JPH09188582A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP3682552B2 (en) Method for producing metal-ceramic composite substrate
EP0839598B1 (en) Processes for producing metal-ceramics composite substrates and brazing materials for use in such processes
JP3896432B2 (en) Method for producing metal-ceramic composite substrate and brazing material used therefor
JP3997293B2 (en) Method for manufacturing metal-ceramic composite substrate having point bonding or line bonding
JP2001267174A (en) Ceramic electronic component with lead terminal
JPS59137373A (en) Ceramic bonding method
JP3933287B2 (en) Circuit board with heat sink
JP3914648B2 (en) Metal-ceramic bonding substrate
JPH0714015B2 (en) Manufacturing method of aluminum nitride substrate having copper circuit
JP4668476B2 (en) Manufacturing method of joined body
JP3729637B2 (en) Electronic components
JPH11343179A (en) Brazing filler metal for ceramics-metal bonding
JP4169301B2 (en) Aluminum-ceramic bonding substrate
JP3529085B2 (en) Circuit board with heat sink
JP3577109B2 (en) Metallized substrate
JPH05246769A (en) Ceramic-metal joining composition and ceramic-metal joined body using the same
JP2531716B2 (en) Beryllia Ceramic Metallizing Paste
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPH0353405A (en) Conductive paste for aluminium nitride sintered body
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP2001339155A (en) Ceramic circuit board
JP2704158B2 (en) Aluminum nitride sintered body having conductive metallized layer and method of manufacturing the same
JPS6360186A (en) Metallizing composition and metallization for aluminum nitride base ceramic surface
JPH04349184A (en) Method for metallizing ceramics and method for joining ceramics and metal
RU98104507A (en) METALLO-CERAMIC MULTI-LAYERED SUBSTANCE (OPTIONS), METHOD OF ITS MANUFACTURE (OPTIONS) AND MATERIAL OF SOLID SOLID (OPTIONS) FOR USE IN THIS METHOD

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term