JPH0377160B2 - - Google Patents

Info

Publication number
JPH0377160B2
JPH0377160B2 JP14281687A JP14281687A JPH0377160B2 JP H0377160 B2 JPH0377160 B2 JP H0377160B2 JP 14281687 A JP14281687 A JP 14281687A JP 14281687 A JP14281687 A JP 14281687A JP H0377160 B2 JPH0377160 B2 JP H0377160B2
Authority
JP
Japan
Prior art keywords
wafer
wafers
etching
single crystal
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14281687A
Other languages
Japanese (ja)
Other versions
JPS63307200A (en
Inventor
Ken Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP14281687A priority Critical patent/JPS63307200A/en
Publication of JPS63307200A publication Critical patent/JPS63307200A/en
Publication of JPH0377160B2 publication Critical patent/JPH0377160B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単結晶ウエーハの製造方法、特にはガ
ドリニウム・ガリウム・ガーネツト(GGG)、タ
ンタル酸リチウムなどの単結晶の面取り加工法の
改良に関するものであり、これによつてこれら単
結晶のウエーハを経済的に歩留よく製造する方法
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing single crystal wafers, particularly to an improvement in the chamfering method for single crystals such as gadolinium gallium garnet (GGG) and lithium tantalate. The present invention relates to a method of manufacturing these single crystal wafers economically and with a high yield.

(従来の技術) ガドリニウム・ガリウム・ガーネツト
(GGG)、タンタル酸リチウム、ニオブ酸リチウ
ムなどの単結晶がチヨクラルスキー法と呼ばれて
いる単結晶引き上げ法によつて作られることはよ
く知られているところであり、これらの単結晶か
ら切り出されたウエーハが各種センサーや電子機
器用材料として使用されることも公知とされてい
る。
(Prior art) It is well known that single crystals of gadolinium gallium garnet (GGG), lithium tantalate, lithium niobate, etc. can be produced by a single crystal pulling method called the Czyochralski method. It is also known that wafers cut from these single crystals are used as materials for various sensors and electronic devices.

しかして、この種単結晶体のウエーハはチヨク
ラルスキー法で作られ、円筒研削加工により直径
を一定にした単結晶棒の切断によつて得られるウ
エーハの端面を粗研削して形状を整えたのち、ラ
ツピングしエツチングしてからポリツシユする方
法で最終製品とされるのであるが、このラツピン
グ、エツチング工程では高価な単結晶の加工ロス
が大きいので、この加工ロスをできるだけ少なく
するということからラツピング、エツチング量は
できるだけ少なくするという方法が採られている
のであるが、このラツピング、エツチングによる
加工ロスを少なくするとウエーハ端面部分に残存
する加工歪みによる傷が残つて商品価値が低くな
るという不利が生じるので、この対策が検討され
ているが未だにこの対策は確立されていない。
However, this type of single-crystal wafer was made by the Czyochralski method, and the end face of the wafer obtained by cutting a single-crystal bar with a constant diameter using cylindrical grinding was roughly ground to adjust the shape. The final product is then wrapped, etched, and then polished. However, this wrapping and etching process involves a large amount of processing loss for the expensive single crystal, so wrapping and etching are performed to minimize processing loss. The method of reducing the amount of etching as much as possible is adopted, but reducing the processing loss due to wrapping and etching has the disadvantage of leaving scratches due to processing distortion remaining on the wafer edge, lowering the product value. Although countermeasures are being considered, this countermeasure has not yet been established.

(発明の構成) 本発明はこのような不利を解決した単結晶の面
取り加工法を改良したウエーハの製造方法に関す
るものであり、これは単結晶を所定形状に切断し
てウエーハを作成し、その端面を粗研削してから
表面ラツピング処理し、ついでこのウエーハを複
数枚重ね合わせてウエーハ端面のみをエツチング
したのち、個々のウエーハの表面全体をエツチン
グしポリツシユすることを特徴とするものであ
る。
(Structure of the Invention) The present invention relates to a wafer manufacturing method that is an improved single crystal chamfering method that solves these disadvantages. This method is characterized in that the end faces are roughly ground and then subjected to surface lapping, then a plurality of these wafers are stacked and only the end faces of the wafers are etched, and then the entire surface of each wafer is etched and polished.

すなわち、本発明者は単結晶の効率的な面取り
加工法について種々の検討した結果、単結晶から
切り出したウエーハの表面を常法にしたがつて粗
研削、ラツピング処理したのちのエツチングを、
このウエーハの複数枚を重ね合せてその端面のみ
をエツチングしてから、この重ね合せを解除して
なる各1枚宛のウエーハの表面をエツチングする
ようにすればこのエツチング量を最低とすること
ができるし、ウエーハ端面は重ね合せ時のエツチ
ングによつて充分処理されているので端面に傷が
残ることがなくなり、効率よく鏡面されたウエー
ハを容易にかつ確実に得ることを見出して本発明
を完成させた。
That is, as a result of various studies on efficient chamfering methods for single crystals, the inventors of the present invention have found that the surface of a wafer cut from a single crystal is roughly ground and lapped in the usual manner, and then etched.
The amount of etching can be minimized by stacking multiple wafers and etching only their end faces, and then removing the stack and etching the surface of each wafer. The present invention was completed by discovering that it is possible to easily and reliably obtain mirror-finished wafers, since the end faces of the wafers are sufficiently treated by etching during stacking, so that no scratches remain on the end faces. I let it happen.

本発明の方法における単結晶の切り出しは例え
ば内周式のダイヤモンドカツターやワイヤーソー
等を用いて厚さ、650〜600μmに切り出すように
すればよいが、この単結晶がタンタル酸リチウ
ム、ニオブ酸リチウムなどのような強誘導体であ
るときにはこのものは切り出しに先立つて単一分
域化させておくことがよい。このように切り出さ
れたウエーハはついでその表面を粗研削してラツ
ピング処理するのであるが、この粗研削は固定ダ
イヤモンド砥粒による研削あるいは酸化アルミニ
ウムや炭化ケイ素遊離砥粒による研削とすればよ
く、このラツピングも常法にしたがつて酸化アル
ミニウムや炭化ケイ素砥粒を用いて行なえばよ
い。
In the method of the present invention, the single crystal may be cut out to a thickness of 650 to 600 μm using, for example, an internal diamond cutter or a wire saw. When the material is a strong dielectric such as lithium, it is preferable to form it into a single domain before cutting it out. The surface of the wafer cut out in this way is then subjected to rough grinding and lapping processing, but this rough grinding may be done by grinding with fixed diamond abrasive grains or by grinding with aluminum oxide or silicon carbide free abrasive grains. Lapping may also be carried out in a conventional manner using aluminum oxide or silicon carbide abrasive grains.

このラツピング処理されたウエーハはついでそ
の全面をエツチングすることによつて商品化する
のであるが、本発明の方法においてはこのウエー
ハはエツチングに先立つてその複数枚を重ね合わ
せてその端面が一括エツチング処理される。この
重ね合せは例えば第1図に示したように切り出さ
れたのちに粗研削、ラツピング処理をした単結晶
のウエーハ1の複数枚を積み重ね、この上下をテ
フロン製の治具2で押えるようにすればよく、こ
のエツチングはテフロン治具で覆われていないそ
の端面だけを熱リン酸で行なえばよいが、このエ
ツチング巾は約20μm程度とすればよい。
This wrapped wafer is then commercialized by etching its entire surface, but in the method of the present invention, prior to etching, a plurality of wafers are overlapped and the end surfaces are etched at once. be done. For example, as shown in Fig. 1, this stacking is performed by stacking a plurality of single crystal wafers 1 that have been cut out, roughly ground, and wrapped, and then pressing the top and bottom of the wafers with a Teflon jig 2. If desired, this etching may be performed using hot phosphoric acid only on the end face not covered by the Teflon jig, and the etching width may be approximately 20 μm.

このようにその端面だけがエツチングされたウ
エーハはついでこのテフロン治具を取り外して積
み重ねを解除したのち、1枚ずつバラバラにする
か、またはカセツトなどに入れてこの多数枚を同
時にエツチング液中に入れ、その表面を約5μm程
度エツチング処理すればよく、このようにして得
られたウエーハは、つぎにこの表面をコロイダル
シリカ液を用いてポリツシングすれば容易にすぐ
れた物性をもつ鏡面処理をしたウエーハとするこ
とができる。
The wafers with only their end faces etched in this way are then removed from the Teflon jig and unstacked, and then either separated one by one, or placed in a cassette etc. and placed in the etching solution at the same time. The surface of the wafer only needs to be etched by about 5 μm, and the wafer thus obtained can easily be made into a mirror-finished wafer with excellent physical properties by polishing the surface using a colloidal silica solution. can do.

本発明の方法は上記したように常法にしたがつ
て切り出され、端部の粗研削、表面のラツピング
されたウエーハの端面のみをエツチングし、つい
でその表面をエツチングしたのちポリツシングす
るという方法で面取り加工されるのであるが、こ
れによればエツチング加工が端面処理と表面処理
の2段階で行われ、端面部分における傷を残さな
いために端面エツチング処理を強くしてもエツチ
ングによる材質の加工ロスは多くならないので、
この加工を経済的にかつ歩留り高く行なうことが
できるという有利性が与えられる。
The method of the present invention involves etching only the end face of a wafer that has been cut out in accordance with the conventional method, rough-grinding the edges, and wrapping the surface, and then chamfering the surface by etching and polishing the wafer. According to this method, the etching process is performed in two stages: edge treatment and surface treatment, and even if the edge etching process is strengthened to avoid leaving scratches on the edge part, there is no processing loss in the material due to etching. Because there will not be many
The advantage is that this processing can be done economically and with a high yield.

つぎに本発明の実施例をあげるが、例中の部は
重量部を示したものである。
Next, examples of the present invention will be given, and parts in the examples indicate parts by weight.

実施例 直径180mm、高さ180mmのイリジウムるつぼに純
度99.99%のガドリニウム・ガリウム・ガーネツ
ト焼成原料29Kgを入れて高周波誘導加熱装置を用
いて1700℃に加熱して溶融し、これにガドリニウ
ム・ガリウム・ガーネツト単結晶を浸し、径106
mm、長さ300mmのガドリニウム・ガリウム・ガー
ネツト単結晶を引き上げたのち、常法にしたがつ
て円筒研削して径101mmとしたのち、これを内周
式のダイヤモンドカツターを用いて厚さ630μmの
ウエーハにスライス加工したのち、固定ダイヤモ
ンド砥粒を用いたサラインダーを用いて端面部を
粗研削し、ついで酸化アルミニウムまたはSiC砥
粒(平均粒径約15μm)を用いてラツピング処理
をした。
Example: 29 kg of gadolinium, gallium, and garnet firing raw materials with a purity of 99.99% are placed in an iridium crucible with a diameter of 180 mm and a height of 180 mm, and heated to 1700°C using a high-frequency induction heating device to melt the gadolinium, gallium, and garnet. Immersed single crystal, diameter 106
After pulling a gadolinium gallium garnet single crystal with a diameter of 300 mm and a length of 300 mm, it was cylindrically ground to a diameter of 101 mm using a conventional method. After slicing into wafers, the end faces were roughly ground using a salinder using fixed diamond abrasive grains, and then lapping was performed using aluminum oxide or SiC abrasive grains (average grain size approximately 15 μm).

つぎにこのウエーハ100枚を重ね、この上下に
テフロン製の押え具を置いて1Kg/cm2の圧力でし
めつけ、端面のみを熱リン酸によつて約15μmエ
ツチングしたのち、テフロン押え具を外し、ガド
リニウム・ガリウム・ガーネツトウエーハ表面を
約5μmエツチング処理し、ついでこの表面をコロ
イダルシリカを用いてポリツシングしたところ、
径100.2mm、厚さ500μmの鏡面のガドリニウム・
ガリウム・ガーネツト単結晶が得られ、このもの
は端面、表面ともに加工欠陥が全くなく、この場
合の加工歩留は99%であつた。
Next, 100 of these wafers were stacked, Teflon holders were placed on top and bottom of the wafers, and they were tightened with a pressure of 1 kg/cm 2 . Only the end faces were etched by about 15 μm with hot phosphoric acid, and then the Teflon holders were removed. When the surface of the gadolinium/gallium/garnet wafer was etched to approximately 5 μm, and then this surface was polished using colloidal silica,
Mirror-polished gadolinium with a diameter of 100.2 mm and a thickness of 500 μm.
A gallium garnet single crystal was obtained, which had no processing defects on either the end face or the surface, and the processing yield in this case was 99%.

しかし、上記における端面のエツチング処理を
せず、ウエーハ切り出し後、ラツピングをしたウ
エーハをそのままエツチング装置内で約5μmエツ
チングしたところ、得られたウエーハは端面に傷
をもつものであり、その歩留も10%とわるかつ
た。
However, when we etched the wrapped wafer by approximately 5 μm in an etching device after cutting the wafer without performing the above etching process on the end face, the resulting wafer had scratches on the end face, and the yield was low. It was 10%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法におけるエツチング前の
ウエーハのテフロン製押え具による積み重ねの縦
断面図を示したものである。 1……ウエーハ、2……テフロン製押え具、3
……端面。
FIG. 1 shows a longitudinal sectional view of stacking of wafers using a Teflon holding device before etching in the method of the present invention. 1...Wafer, 2...Teflon presser, 3
……End face.

Claims (1)

【特許請求の範囲】 1 単結晶を所定形状に切断してウエーハを作成
し、その端面を粗研削してから表面ラツピング処
理し、ついでこのウエーハを複数枚重ね合せてウ
エーハ端面のみをエツチングしたのち、個々のウ
エーハの表面全体をエツチングしポリツシユする
ことを特徴とする単結晶ウエーハの製造方法。 2 ウエーハの重ね合せ体をテフロン治具で固定
する特許請求の範囲第1項記載の単結晶ウエーハ
の製造方法。
[Claims] 1. A wafer is created by cutting a single crystal into a predetermined shape, the end face of the wafer is roughly ground and surface lapping is performed, then a plurality of these wafers are stacked and only the end face of the wafer is etched. , a method for producing single crystal wafers, characterized in that the entire surface of each wafer is etched and polished. 2. The method for manufacturing a single crystal wafer according to claim 1, wherein the stacked wafers are fixed with a Teflon jig.
JP14281687A 1987-06-08 1987-06-08 Production of single crystal wafer Granted JPS63307200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14281687A JPS63307200A (en) 1987-06-08 1987-06-08 Production of single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14281687A JPS63307200A (en) 1987-06-08 1987-06-08 Production of single crystal wafer

Publications (2)

Publication Number Publication Date
JPS63307200A JPS63307200A (en) 1988-12-14
JPH0377160B2 true JPH0377160B2 (en) 1991-12-09

Family

ID=15324294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14281687A Granted JPS63307200A (en) 1987-06-08 1987-06-08 Production of single crystal wafer

Country Status (1)

Country Link
JP (1) JPS63307200A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719737B2 (en) * 1990-02-28 1995-03-06 信越半導体株式会社 Manufacturing method of S01 substrate
JP2017190279A (en) * 2016-04-15 2017-10-19 住友金属鉱山株式会社 Manufacturing method of non-magnetic garnet substrate

Also Published As

Publication number Publication date
JPS63307200A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
JP6025179B2 (en) Method for producing lithium tantalate single crystal substrate for surface acoustic wave device
JP5892552B2 (en) Method for manufacturing lithium tantalate single crystal substrate for surface acoustic wave device and lithium tantalate single crystal substrate for surface acoustic wave device
JPH0377160B2 (en)
JP2014040339A (en) Method for manufacturing piezoelectric oxide single crystal wafer
JP4791694B2 (en) Manufacturing method of semiconductor epitaxial wafer
JP7019052B2 (en) Substrate for surface acoustic wave element and its manufacturing method
JP7271875B2 (en) Method for manufacturing oxide single crystal substrate
TW200914653A (en) Semiconductor wafer and its manufacturing method
JP2002198762A (en) Single crystal wafer and its manufacturing method
KR100201705B1 (en) The process for producing a normal polished wafer
JP7472546B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JP2002111420A (en) Wafer for elastic surface wave device and its manufacturing method
JP2022068748A (en) Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate
JP2022150692A (en) Method of manufacturing piezoelectric oxide single crystal substrate
JP2017226026A (en) Manufacturing method of piezoelectric monocrystal wafer
JP2787996B2 (en) Method for producing lithium tetraborate single crystal
RU2345443C2 (en) Pre-epitaxial process of polished silicon carbide substrates
JPH10233314A (en) Manufacture of oxidize garnet film
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate
JPH1197241A (en) Manufacture of oxide garnet film
JP2022068747A (en) Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate
JP3260039B2 (en) Manufacturing method of ferroelectric wafer
SU1056805A1 (en) Method of obtaining plates of leucosapphire
JP2002173398A (en) Method of producing langasite-type oxide single crystal wafer