JPH0376322A - Feeder switching circuit - Google Patents

Feeder switching circuit

Info

Publication number
JPH0376322A
JPH0376322A JP21174689A JP21174689A JPH0376322A JP H0376322 A JPH0376322 A JP H0376322A JP 21174689 A JP21174689 A JP 21174689A JP 21174689 A JP21174689 A JP 21174689A JP H0376322 A JPH0376322 A JP H0376322A
Authority
JP
Japan
Prior art keywords
cable
contact
cables
relay
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21174689A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Inoue
義之 井上
Masaaki Takahashi
正明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21174689A priority Critical patent/JPH0376322A/en
Publication of JPH0376322A publication Critical patent/JPH0376322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To repair a faulty part safely by inserting a 2nd relay coil between a relay contact and 1st and 2nd cables and connecting the contact in parallel with a 1st relay contact. CONSTITUTION:When a fault takes place in a submarine cable 11 at an end station A, the direction of the current is inverted by the operation of a switch 25 to energize a relay coil RL 1, whose contact rl1 is closed. As a result, a current flows a path of undersea earth G contact rl1 coil RL2 cable 12 terminal station B power supply 22 to energize a relay coil RL 2, whose contact rl2 is closed. Thus, the cables 12, 13 are energized to attain the communication between terminal stations C and B and the faulty cable 11 is repaired during that time. Similarly, even anywhere of cables is faulty, the faulty location is repaired safely while keeping the operation between cables without any fault.

Description

【発明の詳細な説明】 〔発明の概要〕 海中分岐装置を用いる海底伝送システムの給電路切替回
路に関し、 障害部の修理を安全に行なうことができるようにするこ
とを目的とし、 第1の端局と第2の端局により両端給電される第1.第
2のケーブル中に挿入され、該ケーブルより分岐して第
3の端局へ向かう第3のケーブルの一端を海中アースに
接続して第3の端局に、極性切替可能な片端給電をさせ
、更に該第3のケーブルにダイオードを並列接続したリ
レーコイルを挿入して、該リレーの接点を該第1.第2
のケーブルと海中アースとの間に接続した海中分岐装置
を有する海底伝送システムの給電路切替回路において、
該リレー接点と第15第2のケーブルとの間に第2のリ
レーコイルを挿入し、その接点を第1のリレー接点に並
列に接続した構成とする。
[Detailed Description of the Invention] [Summary of the Invention] An object of the present invention is to provide a power feed line switching circuit for a submarine transmission system using an underwater branching device, and to enable safe repair of a faulty part. The first terminal is powered at both ends by the terminal station and the second terminal station. One end of a third cable that is inserted into the second cable, branches off from the cable, and goes to the third terminal station is connected to the underwater ground, and the third terminal station is supplied with power at one end with switchable polarity. Furthermore, a relay coil having diodes connected in parallel is inserted into the third cable, and the contacts of the relay are connected to the first cable. Second
In the power supply switching circuit of a submarine transmission system having an underwater branching device connected between the cable and the underwater earth,
A second relay coil is inserted between the relay contact and the fifteenth second cable, and the contact is connected in parallel to the first relay contact.

〔産業上の利用分野〕[Industrial application field]

本発明は、海中分岐装置を用いる海底伝送システムの給
電路切替回路に関する。
The present invention relates to a power supply line switching circuit for a submarine transmission system using an underwater branching device.

海底伝送方式では、最近光海底伝送方式が用いられるよ
うになり、3つ以上陸揚局があると、海中分岐装置を用
いてY型等の線路にして海底ケーブルを短かくすること
がある。海底ケーブルの適所には中継器を挿入し、これ
らに陸揚局より海底ケーブルを通して給電する。
Optical submarine transmission systems have recently come into use, and if there are three or more landing stations, submarine cables may be shortened by using underwater branching equipment to create a Y-shaped line or the like. Repeaters are inserted at appropriate locations on the submarine cable, and power is supplied to these from the landing station through the submarine cable.

〔従来の技術〕[Conventional technology]

この種海中分岐給電方式については本発明者等は既に提
案している(特開昭63−196126 )。この概要
を第10図で説明すると、A、B、Cは端局(陸揚局)
、lOは海中分岐装置、11.12゜13は海底ケーブ
ルである。この分岐装置lOにより海底に、端局A−C
を結ぶY型線路が構成され、端局A、B、C間の通信が
可能になる。海底ケーブル11〜13には中間に適当間
隔で多数の中継器Rが挿入されるが、図では1つのみ示
す。
The present inventors have already proposed this kind of underwater branch power supply system (Japanese Patent Laid-Open No. 196126/1983). To explain this overview using Figure 10, A, B, and C are terminal stations (landing stations).
, 1O is an underwater branching device, and 11.12°13 is a submarine cable. This branching device IO connects terminal stations A-C to the seabed.
A Y-shaped line is constructed to connect the terminal stations A, B, and C, and communication between terminal stations A, B, and C is possible. A large number of repeaters R are inserted in the submarine cables 11 to 13 at appropriate intervals, but only one is shown in the figure.

21〜23はこれらの中継器に海底ケーブル11〜13
を通して給電する電源(定電流源)である。
21-23 connect submarine cables 11-13 to these repeaters.
This is a power supply (constant current source) that supplies power through the

(a)は通常時(障害がない状態)の運用を示し、図示
のように海中分岐装置10のスイッチ15が開いている
ので、ケーブル11.12は電源21゜端局A、ケーブ
ル11,12.端局B、電源22の経路で給電され、ま
たケーブル13は海中アースG、ダイオード14.ケー
ブル13.端局C1電源23の経路で給電され、これら
二つの給電経路は分離独立している。電源21〜23の
矢印は給電方向を示す。
(a) shows normal operation (no failure), and as shown in the figure, the switch 15 of the underwater branching device 10 is open, so the cables 11 and 12 are connected to the power supply 21° terminal station A, .. Power is supplied through the path of terminal station B and power supply 22, and cable 13 is connected to underwater ground G and diode 14. Cable 13. Power is supplied through the route of the terminal station C1 power supply 23, and these two power supply routes are separate and independent. Arrows of power supplies 21 to 23 indicate the power supply direction.

この給電方式は多分岐が容易にできる。即ち、ケーブル
11及び又は12に海中分岐装置10を挿入すると、そ
のケーブル13が分岐線となり、櫛歯状の多分岐が可能
である。海中アースGには電蝕問題があるが、これに対
しては材質を選ぶ例えばアースGが十になるならチタン
合金を、−になるならベリリウム銅を用いるとよい。
This power feeding system allows for easy multi-branching. That is, when the underwater branching device 10 is inserted into the cables 11 and/or 12, the cable 13 becomes a branch line, and multi-branching in a comb-like shape is possible. Undersea earth G has the problem of galvanic corrosion, but to deal with this, it is better to choose a material.For example, if the earth G is 10, use a titanium alloy, and if the earth G is negative, use beryllium copper.

ケーブル11と12は直列になっており、これに電源2
1.22が両端給電する。従ってこれらのケーブルに障
害Cur線)があると、給電は断になる。第10図〜)
はケーブル12に障害があった場合で、このま\ではケ
ーブル11.12へノ給電は停止し、端局A、B、C間
の通信が不能になる。本方式ではこの場合端局Cの電源
23の極性をスイッチ25により反転する。このように
すると電源23、端局C1ケーブル13、リレーコイル
RL、海中アースGの経路で電流が流れ、リレーコイル
RLが付勢されてその接点15が閉じる。
Cables 11 and 12 are connected in series to which power supply 2 is connected.
1.22 powers both ends. Therefore, if there is a fault in these cables (Cur line), the power supply will be cut off. Figure 10~)
In this case, there is a failure in the cable 12, and if this continues, the power supply to the cables 11 and 12 will be stopped, and communication between the terminal stations A, B, and C will be disabled. In this system, the polarity of the power supply 23 of the terminal station C is reversed by the switch 25 in this case. In this way, a current flows through the path of the power supply 23, the terminal C1 cable 13, the relay coil RL, and the underwater earth G, energizing the relay coil RL and closing its contact 15.

そこで電源2L端局A、ケーブル11、接点15、海中
アースGの経路で電流が流れ、ケーブル11は給電され
る。勿論ケーブル13も上記経路で給電され、こうして
障害ケーブル12を除いて他の健全なケーブル11.1
3は給電され、端局A、C間の通信は可能になる。なお
ケーブルを流れる電流の方向は反転するが、中継器はこ
れに対応できるようにしである(例えば全波整流器を介
して電流を取込む)。
Therefore, a current flows through the path of the power supply 2L terminal station A, the cable 11, the contact 15, and the underwater earth G, and the cable 11 is supplied with power. Of course, the cable 13 is also powered by the above path, thus excluding the faulty cable 12, the other healthy cables 11.1
3 is supplied with power, and communication between terminal stations A and C becomes possible. Note that the direction of the current flowing through the cable is reversed, but the repeater is designed to accommodate this (for example, by taking the current through a full-wave rectifier).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この海底伝送方式では海底ケーブルの障害時、例えばケ
ーブル12の障害時には上記操作で残りのケーブル11
.13に給電して端局A、  C間の通信を確保できる
。この間に障害ケーブル12を船上に引揚げて修理をし
、通常状態に復帰したいが、これには次のような問題が
ある。
In this submarine transmission system, when a submarine cable failure occurs, for example cable 12, the remaining cable 11 is
.. 13 to ensure communication between terminal stations A and C. During this time, it would be desirable to pull up the faulty cable 12 on board and repair it to restore the normal state, but this poses the following problems.

即ち、もしこの作業中にケーブル13に障害が発生する
と、該ケーブル13に電流は流れなくなるからリレーコ
イルRLは消勢され、接点15は開いてしまう。従って
ケーブル11を流れる電流もなくなるが、電源21は定
電流電源であるから、定電流を保持しようとして電圧を
能カー杯に、ヒげてしまう(常時でもA、 8間電圧は
l0KVなとの高電圧である)。この高電圧はケーブル
12の障害端にまで及ぶ。従って作業に危険があり、こ
の点で修理作業はできないことになる。
That is, if a fault occurs in the cable 13 during this operation, no current will flow through the cable 13, so the relay coil RL will be deenergized and the contact 15 will open. Therefore, the current flowing through the cable 11 also disappears, but since the power supply 21 is a constant current power supply, it tries to maintain a constant current and the voltage goes up to the limit (even if the voltage between A and 8 is 10KV at all times) high voltage). This high voltage extends to the faulty end of cable 12. Therefore, the work is dangerous and repair work cannot be carried out at this point.

本発明はか\る点を改善し、障害部の修理を安全に行な
うことができるようにすることを目的とするものである
The object of the present invention is to improve these points and to enable safe repair of the faulty part.

〔課題を解決するための手段〕[Means to solve the problem]

第1図に示すように本発明ではリレー接点rl。 As shown in FIG. 1, in the present invention, a relay contact RL.

(これは第10図の15に相当)と海底ケーブル11.
12の間に第2のリレーコイルRL2を挿入し、その接
点r1.を第1のリレーコイルRLl (これは第1O
図のR1、に相当)の接点r11と並列に接続する。他
は第10図と同様である。
(This corresponds to 15 in Figure 10) and submarine cable 11.
A second relay coil RL2 is inserted between the contacts r1. The first relay coil RLl (this is the first O
Connect in parallel with contact r11 (corresponding to R1 in the figure). The rest is the same as in FIG. 10.

なお全図を通してそうであるが、他の図と同じ部分には
同し符号が付しである。
As is the case throughout all figures, parts that are the same as in other figures are given the same reference numerals.

〔作用〕[Effect]

この構成によれば、高電圧に触れる恐れなく安全に障害
部の修理作業を行なうことができる。以下これを第2図
〜第4図を参照しながら説明する。
According to this configuration, repair work on the faulty part can be safely performed without fear of coming into contact with high voltage. This will be explained below with reference to FIGS. 2 to 4.

第2図(a)は、端局A側(海底ケーブル1.1側)に
障害が発生した場合である。この場合はスイッチ25を
操作して電流の方向を反転させ、リレーコイルRLIを
付勢してその接点r1.を閉じるやこれで海中アースG
、接点rlI、リレーコイルRL2、ケーブル12、端
局12、電源22の経路で電流が流れ、リレーコイルR
L2が付勢されてその接点rffi2を閉しる。これで
ケーブル12゜13が給電されて端局C,B間の通信が
可能になり、この間に障害ケーブル11の修理を行なう
FIG. 2(a) shows a case where a failure occurs on the terminal station A side (submarine cable 1.1 side). In this case, operate the switch 25 to reverse the direction of the current, energize the relay coil RLI, and connect the contacts r1. Close it and it's Undersea Earth G.
, contact rlI, relay coil RL2, cable 12, terminal station 12, and power supply 22.
L2 is energized closing its contact rffi2. The cables 12 and 13 are now supplied with power and communication between the terminal stations C and B becomes possible, and during this time the faulty cable 11 is repaired.

この状態で第2図(b)に示すように新たなる障害が端
局B側(ケーブル12側)に発生すると、ケーブル12
の電流は断たれ、リレーコイルRL2ば消勢して接点r
1□を開くが、健全なケーブル13があるので接点rE
lはオンのま\であり、障害部から海中分岐装置10例
の海底ケーブル11.12は海中アースGによりグラン
ド電位ルにされるから、障害部の修理作業に危険はない
In this state, if a new fault occurs on the terminal B side (cable 12 side) as shown in FIG. 2(b), the cable 12
The current is cut off, relay coil RL2 is deenergized, and contact r
1□ is opened, but there is a healthy cable 13, so contact rE
l remains on, and the submarine cables 11.12 of the 10 underwater branching devices from the faulty part are brought to ground potential by the underwater earth G, so there is no danger in repairing the faulty part.

また(a)の状態で第2図(C)に示すように新たな障
害が端局C側(ケーブル13側)に発生するとケーブル
13の電流は断たれるからリレーコイルRL1は消勢し
、接点rl+ を開くが、接点r 1.2は閉している
からケーブル11.12の海中分岐装置側はグランド電
位に保たれ、ケーブル11の障害部に高電圧が加わるこ
とはない。なおいずれの場合も、障害部の端局側は、そ
の端局電源(21等)を断にすることにより高電圧q1
加はない。
Furthermore, if a new fault occurs on the terminal C side (cable 13 side) in the state (a) as shown in FIG. 2(C), the current in the cable 13 is cut off, so the relay coil RL1 is deenergized. The contact rl+ is opened, but since the contact r1.2 is closed, the underwater branch device side of the cable 11.12 is kept at ground potential, and no high voltage is applied to the faulty part of the cable 11. In either case, the terminal station side of the faulty section can remove the high voltage q1 by turning off the terminal power supply (21, etc.).
There is no addition.

端局B側ケーブルに障害が発生した場合は第3図の如く
なる。この場合もスイッチ25の操作で電流方向を反転
し、リレーコイルRLIを付勢して接点rff、を閉じ
、電源21、端局A、ケーブル11リレーコイルRL2
、接点r1...海中アースGの経路で電流を流し、リ
レーコイルRL2を付勢して接点rffizを閉じる。
If a fault occurs in the cable on the terminal station B side, the situation will be as shown in Fig. 3. In this case as well, the current direction is reversed by operating the switch 25, energizing the relay coil RLI and closing the contact rff.
, contact r1. .. .. A current is passed through the path of the underwater earth G, energizing the relay coil RL2, and closing the contact rffiz.

これが第3図(a)であり、A、C間通信が可能である
This is shown in FIG. 3(a), and communication between A and C is possible.

この状態で第3図(b)に示すように新たなケーブル障
害が端局A側ケーブルに生じるどリレーコイルRL2は
消勢して接点r12を開くが、接点r11が閉じている
ので、障害部の分岐装置側の海底ケーブル11.12は
グランド電位に保持される。また第3図(a)の状態で
同図(C)に示すように新たな障害が端局C側ケーブル
に発生すると、リレー接点r1.が開くが、接点rlz
は閉じているのでケーブル13の分岐装置側はグランド
電位にされ、ケーブル12の障害部の分岐装置側が高電
圧になることはない。こうして(b) (C:)いずれ
の場合も安全に障害部を修理することができる。端局C
側ケーブルに障害が発生した場合は第4図の如くなる。
In this state, as shown in Fig. 3(b), if a new cable fault occurs on the terminal A side cable, relay coil RL2 is deenergized and contact r12 opens, but since contact r11 is closed, the fault The submarine cables 11, 12 on the branch device side are held at ground potential. Furthermore, if a new fault occurs in the terminal C side cable in the state shown in FIG. 3(a) as shown in FIG. 3(C), relay contact r1. opens, but the contact rlz
Since the cable 13 is closed, the branching device side of the cable 13 is at ground potential, and the branching device side of the faulty part of the cable 12 does not become high voltage. In this way, the faulty part can be safely repaired in either case (b) (C:). Terminal C
If a failure occurs in the side cable, the situation will be as shown in Figure 4.

端局C側ケーブルの障害ではスイッチ25による電流反
転は無意で、従って第4図(a)に示すように接点rj
2..r/!、は開いたま\である。ケーブル11.1
2は電源21.22vこより両端給電され、A、B間通
信が可能である。
In the case of a failure in the terminal C side cable, the current reversal by the switch 25 is unexpected, and therefore, as shown in FIG.
2. .. r/! , is open\. Cable 11.1
2 is supplied with power at both ends from a power source of 21.22 V, and communication between A and B is possible.

この(a)の状態で端局A(!!IIケーブル11に障
害が発生すると(b)の如くになり、端局B側ケーブノ
1川2に障害が発生すると(C)の如くなる。いずれの
場合もケーブル13の障害部の分岐装置側は海中アース
Gでグランドに落とされており、修理は安全に行なえる
。なお(b) (C)ではケーブル11.12の障害部
に高電圧発生の危険はあるが、これは先ずケーブル13
の障害部を修理し、これで第2図(a)、第3図(a)
の状態にして該障害部を修理する。なお第4図(b)(
C)は、2重障害の恐れを示す図で、修理対象は先ず(
a)である。
If a fault occurs in the terminal station A (!! In the case of (b) and (c), the branch device side of the faulty part of cable 13 is grounded with underwater earth G, so repairs can be carried out safely.In addition, in (b) and (c), high voltage is generated at the faulty part of cable 11 and 12. Although there is a danger of
2 (a) and 3 (a).
Repair the faulty part. In addition, Fig. 4(b) (
C) is a diagram showing the possibility of a double failure, and the repair target is first (
a).

こうして本発−明では海底ケーブルの障害部を、どのよ
うな障害例でも安全に修理することができる。
Thus, according to the present invention, it is possible to safely repair any faulty portion of a submarine cable.

〔実施例〕〔Example〕

第5図に本発明の実施例を示す。Rは光海底ケーブル1
1,12.13に適当間隔で多数押入される光海底中継
器である。
FIG. 5 shows an embodiment of the present invention. R is optical submarine cable 1
1, 12, and 13, which are installed in large numbers at appropriate intervals.

)i6中アースはそれが+側か一側かにより電極板材質
を変えるのがよいが、本方式では場合により+、−いず
れともなる。そこで図示のようにダイオード16.17
を設けて該アース電極板G l、 G !へ接続すると
よい。また端局Aにも電流方向を反転するスイッチを設
けておくと、端局B側ケーブル障害時にケーブル13−
11を両端給電でき、海中アースGへの電流を零にする
ことが可能である。
) It is better to change the material of the electrode plate depending on whether the ground in i6 is on the + side or one side, but in this system, it can be either + or - depending on the situation. Therefore, as shown in the diagram, connect diodes 16 and 17.
The ground electrode plates G l, G ! It is recommended to connect to Also, if terminal A is also provided with a switch that reverses the current direction, cable 13-
11 can be supplied with power at both ends, and it is possible to reduce the current to the underwater earth G to zero.

海中分岐装置IOは、光ケーブルの切替機構、中継(増
幅)機能などを持ったりもするが、図では給電系のみ示
す。
Although the underwater branching device IO may have an optical cable switching mechanism, a relay (amplification) function, etc., only the power supply system is shown in the figure.

給電は端局から行ない、例えばAから2■アンペアを正
極給電し、B、CでIアンペアずつ負極給電するという
方法もあるが、これでは海底ケーブルに流れる電流が均
一でなく、また障害時に変るので、中継器への給電が厄
介である。この点本発明の方式では端局はいずれもIア
ンペアを正極給電又は負極給電するのでケーブルに流れ
る電流は均一となり、中継器への給電が容易である。
There is a method of supplying power from the terminal station, for example, supplying 2 amperes from A to the positive terminal, and supplying 1 ampere each from B and C to the negative terminal, but with this, the current flowing through the submarine cable is not uniform, and it changes in the event of a fault. Therefore, supplying power to the repeater is difficult. In this regard, in the system of the present invention, since each terminal station is supplied with I ampere as positive or negative terminal, the current flowing through the cable is uniform, and it is easy to supply power to the repeater.

このシステムの通営時の立」二げ手順は第6図に示す如
くで、(a)に示すようにケーブル11.12には端局
A、Bで両端給電し、そして(b)に示すようにケーブ
ル13は端局Cで片端給電する。
The startup and disconnection procedures during operation of this system are as shown in Figure 6. As shown in (a), cables 11 and 12 are powered at both ends at terminal stations A and B, and as shown in (b). The cable 13 is powered at one end at the terminal station C.

端局A側ケーブル障害時は第7図の如くする。If there is a cable failure on the terminal A side, the procedure is as shown in Figure 7.

即ち(a)に示すようにスイッチ25を操作して端局C
の電流方向を反転し、海中分岐装置lOのリレーRLI
を付勢してその接点rl、を閉じる。
That is, as shown in (a), operate the switch 25 to connect the terminal C.
Reversing the current direction of relay RLI of underwater branching device IO
is energized to close its contact rl.

この状態で端局B給電とすればG−I3間にも電?Aが
流れ、端局B−C間通信が可能になる。またG−B間電
流でリレーRL2が付勢され、接点rj2zが閉しる。
If you supply power to terminal B in this state, will there be power between G and I3 as well? A flows, and communication between terminal stations B and C becomes possible. In addition, relay RL2 is energized by the current between G and B, and contact rj2z is closed.

端局B側ケーブル障害時は第8図の如くする。If there is a cable failure on the terminal station B side, do as shown in Figure 8.

(a)に示すように、やはりスイッチ25を操作して電
流方向を逆にし、リレーRLIを励磁して接点r1.を
閉じる。この状態で端局Aより給電するとA−G間に電
流が流れ、A−C間通信が可能になる。またリレーRL
2が付勢されて接点r12が閉じる。
As shown in (a), switch 25 is also operated to reverse the current direction, energize relay RLI, and contact r1. Close. When power is supplied from terminal A in this state, a current flows between A and G, and communication between A and C becomes possible. Also relay RL
2 is energized and contact r12 closes.

端局C側ケーブル障害時は第9図の如くなる。When there is a cable failure on the terminal station C side, the situation will be as shown in Fig. 9.

即ちケーブル11.12は端局A、Bから両端給電され
、ケーブル13は給電停止、通信はA、 B間で可能、
になる。
In other words, cables 11 and 12 are powered at both ends from terminal stations A and B, power supply to cable 13 is stopped, and communication is possible between A and B.
become.

第6図〜第9図は各場合についての第5図の動作説明図
、 第1O図は従来例の説明図である。
6 to 9 are explanatory diagrams of the operation of FIG. 5 in each case, and FIG. 1O is an explanatory diagram of the conventional example.

第1図で10は海中分岐装置、11〜13はケーブル、
21〜23は電源、25は切替スイッチ、Gは海中アー
ス、A−Cは端局である。
In Figure 1, 10 is an underwater branching device, 11 to 13 are cables,
21 to 23 are power supplies, 25 is a changeover switch, G is an underwater ground, and A to C are terminal stations.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、海中分岐装置を用
いる海底伝送システムのケーブルのどの部分に障害が発
生しても、障害のないケーブル区間では運用を続けなが
ら障害点修理が可能であり、障害点の修理作業者は高電
圧に晒らされる危険なく安全に修理することができる。
As explained above, according to the present invention, even if a fault occurs in any part of the cable of a submarine transmission system using an underwater branching device, the fault point can be repaired while continuing operation in the cable section where there is no fault. Persons repairing the point of failure can safely perform the repair without risking exposure to high voltages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図〜第4図は各場合についての第1図の動作説明図
Figure 1 is a diagram explaining the principle of the present invention, Figures 2 to 4 are diagrams explaining the operation of Figure 1 in each case,

Claims (1)

【特許請求の範囲】[Claims] 1、第1の端局(A)と第2の端局(B)により両端給
電される第1、第2のケーブル(11、12)中に挿入
され、該ケーブルより分岐して第3の端局(C)へ向か
う第3のケーブル(13)の一端を海中アース(G)に
接続して第3の端局に、極性切替可能な片端給電をさせ
、更に該第3のケーブルにダイオードを並列接続したリ
レーコイル(RL1)を挿入して、該リレーの接点(r
l_1)を該第1、第2のケーブルと海中アースとの間
に接続した海中分岐装置(10)を有する海底伝送シス
テムの給電路切替回路において、該リレー接点(rl_
1)と第1、第2のケーブル(11、12)との間に第
2のリレーコイル(RL2)を挿入し、その接点(rl
_2)を第1のリレー接点(rl_1)に並列に接続し
たことを特徴とする給電路切替回路。
1. It is inserted into the first and second cables (11, 12) which are supplied with power at both ends by the first terminal station (A) and the second terminal station (B), and the third cable is branched from the cables. One end of the third cable (13) going to the terminal station (C) is connected to the underwater ground (G) to provide one end power supply with switchable polarity to the third terminal station, and a diode is connected to the third cable. Insert the relay coil (RL1) connected in parallel, and connect the relay's contact (r
In a feed line switching circuit of a submarine transmission system having an underwater branching device (10) in which the relay contact (rl_1) is connected between the first and second cables and the underwater ground, the relay contact (rl_
1) and the first and second cables (11, 12), and insert the second relay coil (RL2) between the contacts (rl
_2) is connected in parallel to a first relay contact (rl_1).
JP21174689A 1989-08-17 1989-08-17 Feeder switching circuit Pending JPH0376322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21174689A JPH0376322A (en) 1989-08-17 1989-08-17 Feeder switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21174689A JPH0376322A (en) 1989-08-17 1989-08-17 Feeder switching circuit

Publications (1)

Publication Number Publication Date
JPH0376322A true JPH0376322A (en) 1991-04-02

Family

ID=16610900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21174689A Pending JPH0376322A (en) 1989-08-17 1989-08-17 Feeder switching circuit

Country Status (1)

Country Link
JP (1) JPH0376322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004533A (en) * 2009-06-19 2011-01-06 Fujitsu Telecom Networks Ltd Power supply apparatus
CN107005269A (en) * 2014-12-10 2017-08-01 日本电气株式会社 Feed line branch unit and feed line branching method
WO2019065385A1 (en) 2017-09-29 2019-04-04 日本電気株式会社 Submarine branching unit and submarine branching method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004533A (en) * 2009-06-19 2011-01-06 Fujitsu Telecom Networks Ltd Power supply apparatus
CN107005269A (en) * 2014-12-10 2017-08-01 日本电气株式会社 Feed line branch unit and feed line branching method
EP3232578A4 (en) * 2014-12-10 2018-05-30 Nec Corporation Feedline branching apparatus and feedline branching method
US10355744B2 (en) 2014-12-10 2019-07-16 Nec Corporation Feed line branching apparatus and feed line branching method
CN107005269B (en) * 2014-12-10 2020-11-03 日本电气株式会社 Feeder branching device and feeder branching method
WO2019065385A1 (en) 2017-09-29 2019-04-04 日本電気株式会社 Submarine branching unit and submarine branching method
US11556096B2 (en) 2017-09-29 2023-01-17 Nec Corporation Submarine branching unit and submarine branching method

Similar Documents

Publication Publication Date Title
JP3679140B2 (en) Branch device for underwater communication system
US5214312A (en) Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
JPH0897692A (en) Diverging device for sea bottom communication system
EP3384613B1 (en) Submarine optical cable shore landing apparatus
JPH04217123A (en) Feeding system for optical transmission system
JPH0376322A (en) Feeder switching circuit
CN108011360A (en) Double loop round and round quickly unlinks method
JP2008271739A (en) Distribution system switching device
US4462058A (en) Switching apparatus for devices for alternating current parallel remote feed
US11556096B2 (en) Submarine branching unit and submarine branching method
JPH0470127A (en) Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system
US6414405B1 (en) Method and apparatus for operating cabled-fiber undersea network, and fault-tolerant branching unit for use therein
US4459491A (en) Circuit arrangement for automatically closing a remote feed loop of a remote feed device
JP2624499B2 (en) Power supply branch switching method and switching device for submarine cable transmission line
JP3967382B2 (en) Branch device for optical fiber transmission system
EP1294113B1 (en) Branching unit for an optical transmission system
JP2665544B2 (en) Power supply switching circuit for submarine cable transmission line
JPH05327561A (en) Feeding path switching circuit
JPH01243734A (en) Switching method and switching circuit for feeder line of transmission path
JPH04256225A (en) Feeding method and feed line switching circuit for sea-bottom cable communication system
JPH02113735A (en) Power feeding method for optical submarine transmission system
JPH01221032A (en) Branching device for submarine optical cable feed
JPH0470129A (en) Power feeding path switching circuit for underwater branching device and feeding method for submarine cable communication system
JPH01289323A (en) Feeding switching system for submarine relay transmission line
JP2718699B2 (en) 4-way power supply line switching circuit