JPH05327561A - Feeding path switching circuit - Google Patents

Feeding path switching circuit

Info

Publication number
JPH05327561A
JPH05327561A JP4126574A JP12657492A JPH05327561A JP H05327561 A JPH05327561 A JP H05327561A JP 4126574 A JP4126574 A JP 4126574A JP 12657492 A JP12657492 A JP 12657492A JP H05327561 A JPH05327561 A JP H05327561A
Authority
JP
Japan
Prior art keywords
terminal station
cable
terminal
power supply
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4126574A
Other languages
Japanese (ja)
Inventor
Kenji Ota
研二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4126574A priority Critical patent/JPH05327561A/en
Publication of JPH05327561A publication Critical patent/JPH05327561A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To easily confirm whether or not a newly laid and branch-connected cable is normally laid to restore a communication among the residual cables even when a fault occurs on any cable connected with a underwater diverging device, and to constitute a feeding path without any problem even when the plural diverging devices are used, in an optical underwater communication system equipped with the underwater diverging device. CONSTITUTION:A relay 1 RL1 which is operated by fed currents is provided between a cable 11 at a terminal station A side, and a cable 12 at a terminal station B side of an underwater diverging device 10, and a relay contact r11 of the relay 1 is provided between a cable 13 at a terminal station C side and a submarine ground so that the contact is closed when a feed is operated from the terminal station A to the terminal station B, and when the feed is interrupted, and so that the contact is opened when the feed is operated from the terminal station B to the terminal station A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光海底ケーブル通信方
式、特に海中分岐装置を用いて、海中で光海底ケーブル
を分岐し、複数局の陸揚局間での通信を行う通信方式の
海中分岐装置の給電路切替回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical submarine cable communication system, and more particularly to a submarine communication system for branching an optical submarine cable in the sea using a submarine branching device to carry out communication between a plurality of landing stations. The present invention relates to a power supply path switching circuit of a branch device.

【0002】近年、国際間のみならず、国内において
も、通信の需要の増大で、海底ケーブルを用いて行う通
信システムが増加して来ている。それも、単に2地点間
だけでなく、伝送路を分岐し、3地点以上を越える地点
間の通信が増加して来ている。
In recent years, communication systems using submarine cables have been increasing due to increasing communication demand not only internationally but also domestically. Also, not only between two points, but also communication between points exceeding three points by branching a transmission line is increasing.

【0003】ところが、海底ケーブルは敷設・修理に於
いて、陸上の設備と比較して桁違いに高額の費用を要す
ることと、修理に長期間を要すると言う宿命がある。そ
のため、一段と高い信頼性が要求されている一方、ケー
ブル障害発生時には、障害が発生していない区間で最大
限に通信できるよう要求されている。
However, the submarine cable has an order of magnitude higher in laying / repairing than land-based equipment, and has a fate that the repairing requires a long time. Therefore, while higher reliability is required, when a cable failure occurs, there is a demand for maximum communication in a section where no failure has occurred.

【0004】[0004]

【従来の技術】図4〜図7により、従来の海中分岐装置
の給電路切替回路と給電路切替方法の例について説明す
る。
2. Description of the Related Art An example of a conventional feed line switching circuit and a feed line switching method for an undersea branching device will be described with reference to FIGS.

【0005】図4は海中分岐装置の給電路の接続と、海
中分岐装置内での光ファイバーケーブル伝送路の概念を
示す図で、図5は従来の海中分岐装置の給電路切替回路
の例を示す図である。また、図6は従来の複数の海中分
岐装置を有する通信システムにおける給電開始時の接続
状態についての説明図で、図7は従来の複数の海中分岐
装置を有する通信システムにおける給電切替前の接続状
態についての説明図である。
FIG. 4 is a diagram showing the concept of the connection of the power feeding lines of the undersea branching device and the concept of the optical fiber cable transmission line in the underwater branching device, and FIG. 5 shows an example of the power feeding line switching circuit of the conventional underwater branching device. It is a figure. Further, FIG. 6 is an explanatory diagram of a connection state at the time of starting power feeding in a communication system having a plurality of conventional undersea branching devices, and FIG. 7 is a connection state before switching power feeding in a communication system having a plurality of conventional undersea branching devices. FIG.

【0006】端局Aと端局B間で運用していた通信シス
テムを分岐して端局Cと接続するのに海中分岐装置10
を挿入して分岐を行うが、図4(1)に示すように、海
中分岐装置10を挿入し、端局Cと海中分岐装置10と
の間のケーブル接続が終了した給電切替前の時点には、
端局C側の給電路は在来の給電路に図示しないリレー等
を介して接続されている。
[0006] The underwater branching device 10 is used to branch the communication system operating between the terminal stations A and B and connect it to the terminal station C.
4 to perform branching. However, as shown in FIG. 4 (1), when the undersea branching device 10 is inserted and the cable connection between the terminal station C and the underwater branching device 10 is completed, before power supply switching. Is
The power feeding path on the terminal C side is connected to the conventional power feeding path via a relay or the like not shown.

【0007】端局C側の給電をかけるときは、図4
(2)に示すように、端局C側の給電路は図示しないリ
レー等を開放して在来の給電路と切り離し、海中アース
と接続する。そして、この状態において、端局Cから片
端給電を行う。
When power is supplied from the terminal C side, as shown in FIG.
As shown in (2), the power supply path on the terminal C side is disconnected from the conventional power supply path by opening a relay or the like (not shown) and connected to the undersea ground. Then, in this state, the terminal C feeds one end.

【0008】また、海中分岐装置10内における光ファ
イバーケーブルは図4(3)に示す例のように、端局C
から端局Aと端局Bへと送られている。図5に示す海中
分岐装置の給電路切替回路例では、先ず、端局Aと端局
B間において、端局Aから+電圧で、また端局Bから−
電圧で給電し、給電電流が流れると、リレー1RL1が
動作して端局C側の給電路を海中アースに接地する。
The optical fiber cable in the submarine branching device 10 has a terminal C as shown in the example of FIG.
From the terminal station A to the terminal station B. In the example of the power supply path switching circuit of the undersea branching device shown in FIG. 5, first, between the terminal stations A and B, a positive voltage is applied from the terminal station A and a negative voltage is applied from the terminal station B to −.
When the power is supplied with a voltage and a power supply current flows, the relay 1RL1 operates to ground the power supply path on the terminal C side to the undersea ground.

【0009】なお、予め海中分岐装置10内のリレー接
点rl1における電位がほぼ0Vとなるように各端局
A,Bから給電される電圧レベルをケーブル長に応じて
調整され、それにより、リレー接点rl1が海中アース
に接続されるときにサージ電流が流れるのを防止するよ
うにしている。
The voltage level supplied from each of the terminal stations A and B is adjusted in advance in accordance with the cable length so that the potential at the relay contact rl1 in the submarine branching device 10 will be approximately 0 V, whereby the relay contact rl1 is adjusted. A surge current is prevented from flowing when rl1 is connected to the undersea ground.

【0010】次にリレー接点rl1が海中アースに接続
されたことにより、端局Cからの片端給電が可能とな
り、給電極性を−にして片端給電を行う。この状態にお
いて、端局B側において、船の錨、底曳き網等によるケ
ーブル障害等で給電路が切断された場合、端局A,端局
B間の給電電流が断となり、リレー1RL1が復旧し、
端局C側の給電路の海中接地が開放され、端局C側の給
電路と端局A間がリレー2RL2を介して接続されるこ
とになる。しかしながら、端局Aでは、給電異常を検出
して給電を遮断しているので、端局C側の給電ルートが
なくなり、中継器への正常な給電ができなくなる。
Next, since the relay contact rl1 is connected to the undersea ground, one-sided power supply from the terminal station C becomes possible, and the one-sided power supply is performed with the power supply polarity set to-. In this state, if the power supply line is disconnected on the terminal station B side due to a cable failure due to the ship's anchor, bottom net, etc., the power supply current between terminal station A and terminal station B will be cut off, and relay 1RL1 will be restored. Then
The underwater grounding of the power supply path on the terminal station C side is released, and the power supply path on the terminal station C side and the terminal station A are connected via the relay 2RL2. However, since the terminal station A detects the power supply abnormality and cuts off the power supply, the power supply route on the side of the terminal station C disappears, and normal power supply to the repeater cannot be performed.

【0011】この場合、障害が発生した端局Bと海中分
岐装置10間の光海底ケーブル12は使用できないの
で、一旦すべての端局A,B,Cは給電を停止する。し
かる後、端局Aから給電極性を+に、端局Cからは給電
極性を−にして、給電をかけると、リレー2RL2が動
作し、リレー2のリレー接点rl2は端局Bと海中分岐
装置10間の給電路を開放すると共に、端局B側を海中
アースに接続する。
In this case, since the optical submarine cable 12 between the faulty terminal station B and the submarine branching device 10 cannot be used, all the terminal stations A, B and C temporarily stop power supply. Then, when the power supply polarity is set to + from the terminal station A and the power supply polarity is set to − from the terminal station C, the relay 2RL2 operates when the power is supplied, and the relay contact rl2 of the relay 2 is connected to the terminal station B and the undersea branching device. The power supply path between 10 is opened and the terminal station B side is connected to the undersea ground.

【0012】或いは、更にリレー3RL3をリレー1の
リレー接点rl1と海中アース間に設けて、端局Cから
の給電時に、端局C側の給電路を自己保持させるように
し、端局B側給電路の切断によるリレー1のリレー接点
rl1の復旧で、端局Cからの片端給電が停止するのを
回避し、リレー接点rl1の磨耗を防止する方法もあ
る。
Alternatively, a relay 3RL3 is further provided between the relay contact rl1 of the relay 1 and the undersea ground so that the power feeding path on the terminal C side can be held by itself when the power is fed from the terminal C, and the power feeding on the terminal B side is performed. There is also a method of avoiding the abrasion of the relay contact rl1 by avoiding the stop of the one-end power supply from the terminal station C due to the restoration of the relay contact rl1 of the relay 1 due to the disconnection of the path.

【0013】現在、光海底ケーブル通信方式において、
海中分岐装置10を介して、複数の端局間での通信を行
う場合の給電路は、幹線となる端局A、及び、端局Bか
らの制御により、海中分岐装置10,20,30の給電
切替回路を順次、切替えて給電路を設定し、給電を行っ
ている。
At present, in the optical submarine cable communication system,
In the case of performing communication between a plurality of terminal stations via the submarine branching device 10, the power feeding path of the submarine branching devices 10, 20, 30 is controlled by the terminal stations A and B serving as main lines. The power supply switching circuit is sequentially switched to set a power supply path to supply power.

【0014】また、現在実用化されている給電切替回路
は、例えば、図6に示す海中分岐装置の例のように、端
局C,端局D,端局Eと各海中分岐装置10,20,3
0間の海底ケーブル敷設後の初期段階で給電をかける前
の時点では、端局C、端局D、端局E側の各給電路はそ
れぞれの海中分岐装置10,20,30内で海中アース
とは、絶縁状態になっている。
Further, the power supply switching circuit which is currently put into practical use is, for example, as in the example of the undersea branching device shown in FIG. 6, the terminal stations C, D, E and the underwater branching devices 10, 20. , 3
At the initial stage after the installation of the submarine cable between 0 and before feeding power, the power feeding paths on the terminal C, terminal D, and terminal E side are connected to the undersea ground in the respective submarine branching devices 10, 20, 30. And are in an insulated state.

【0015】無給電時に端局C側のケーブル13が海中
アースと絶縁状態にあるのは、ケーブル13が正常に敷
設されているか否か、ケーブルの地落障害があるか否か
等の確認を端局A,B間の給電を停止し、端局Cから給
電電圧を印加して行なうためである。
The cable 13 on the side of the terminal C is insulated from the undersea ground when there is no power supply. It is necessary to check whether the cable 13 is properly laid, whether there is a cable landslide, or the like. This is because the power supply between the terminal stations A and B is stopped and the power supply voltage is applied from the terminal station C.

【0016】ケーブル13の敷設が正常であることを確
認すると、図6に示す3分岐の例のように、(1),
(2),(3)の順で、海中分岐装置10から給電路を
設定する。
When it is confirmed that the cable 13 is laid correctly, as shown in the example of three branches shown in FIG. 6, (1),
In the order of (2) and (3), the power feeding path is set from the undersea branching device 10.

【0017】(1)ここで、海中分岐装置10の給電路
切替回路のリレー1RL1は、例えば100mAの給電
電流で動作するように設定されており、海中分岐装置1
0にかかる電圧が海中アースと同じ0Vとなるように端
局Aと端局Bの給電電圧を調整した上で、端局Aと端局
B間に100mAの給電電流を流してリレー1RL1を
動作させ、端局C側を片端給電を行う。
(1) Here, the relay 1RL1 of the power feeding path switching circuit of the undersea branching device 10 is set to operate with a feeding current of, for example, 100 mA.
Adjust the power supply voltage of terminal stations A and B so that the voltage applied to 0 becomes 0V, which is the same as the undersea ground, and then supply a 100 mA power supply current between terminal stations A and B to operate relay 1RL1. Then, the terminal C side is fed with one end.

【0018】(2)次に、海中分岐装置20の給電路の
設定では、海中分岐装置20のリレー1RL1は、例え
ば200mAの給電電流で動作するように設定されてお
り、海中分岐装置20にかかる電圧が海中アースと同じ
0Vとなるように両端局の給電電圧を調整した上で、両
端局間に100mAの給電電流を流してリレー1RL1
を動作させ、端局D側を片端給電を行う。
(2) Next, in the setting of the power feeding path of the undersea branching device 20, the relay 1RL1 of the undersea branching device 20 is set to operate with a feeding current of, for example, 200 mA. After adjusting the power supply voltage of both end stations so that the voltage becomes 0 V, which is the same as the undersea earth, supply a 100 mA power supply current between both end stations and relay 1RL1
Is operated to feed one end of the terminal D side.

【0019】(3)次に、海中分岐装置30の給電路の
設定では、海中分岐装置30のリレー1RL1は、例え
ば300mAの給電電流で動作するように設定されてお
り、同様に海中分岐装置30にかかる電圧が海中アース
と同じ0Vとなるように両端局の給電電圧を調整した上
で、両端局間に300mAの給電電流を流してリレー1
RL1を動作させ、端局E側を片端給電を行う。
(3) Next, in setting the power feeding path of the undersea branching device 30, the relay 1RL1 of the undersea branching device 30 is set to operate with a feeding current of, for example, 300 mA, and similarly, the underwater branching device 30 is operated. After adjusting the power supply voltage of both end stations so that the voltage applied to the same will be 0 V, which is the same as the undersea earth, feed a 300 mA power supply current between both end stations and relay 1
The RL1 is operated, and the terminal E side is supplied with one end.

【0020】なお、給電路設定しようとする海中分岐装
置の給電電圧を海中アースと同じ0Vにするのは、各端
局B,C,D側の給電路を海中アースに接続するリレー
接点rl1の接点間の電圧を0にして接点の磨耗を保護
する、所謂、ホットスイッチングを防止するためであ
る。
It is to be noted that the power supply voltage of the undersea branching device for which the power supply path is to be set is set to 0 V, which is the same as the undersea ground, because the relay contact rl1 connecting the power supply path on each of the terminal stations B, C and D to the undersea ground is used. This is to prevent so-called hot switching, in which the voltage between the contacts is set to 0 to protect the contacts from wear.

【0021】このようにして、順次各端局B,C,Dの
片端給電を行うようにしている。
In this way, one-end power feeding of each terminal station B, C, D is sequentially performed.

【0022】[0022]

【発明が解決しようとする課題】しかしながら、図5に
示す回路においては、分岐のためのケーブルを敷設して
システムとして完成したとき、敷設したケーブルが正常
か否かの確認を行うことのに、端局A,B間の給電を停
止し、端局Cから給電路に電圧をかけ、異常電流が流れ
るかどうか、電圧の異常低下があるかどうかを測定して
良否の判定を行なっていた。
However, in the circuit shown in FIG. 5, when a cable for branching is laid and completed as a system, it is necessary to confirm whether the laid cable is normal or not. The power supply between the terminal stations A and B is stopped, a voltage is applied from the terminal station C to the power supply path, and whether or not an abnormal current flows and whether or not there is an abnormal voltage drop are measured to determine the quality.

【0023】また、従来は、通信システム内に何台もの
海中分岐装置を分岐接続するケーブル敷設して給電する
初期状態において、それぞれのケーブルが海中アースか
ら絶縁状態された状態から給電路を切替える場合、切替
デバイスの保護、及びサージ電圧を防止するため、両端
局の電位を調整し、給電路を設定する海中分岐装置の電
位を0電位にして順に切替える必要があった。
Further, conventionally, in the initial state of laying a cable for branching and connecting a number of submarine branching devices in a communication system to feed power, when switching the feed line from the state where each cable is insulated from the submarine ground. In order to protect the switching device and prevent the surge voltage, it was necessary to adjust the potentials of both end stations and set the potential of the submarine branching device that sets the power feeding path to 0 potential and switch in order.

【0024】そのため、給電路切替方法が複雑となり、
かつ、リレーの感動動作電流の点から、海中分岐装置の
数が3局位に制限されてしまうと言う問題があった。更
に、図5の従来例の場合、端局B側のケーブル12の障
害発生に対しては、端局B側のケーブルを切離し、端局
A,C間で給電路で形成して通信を行うことができるこ
とを述べたが、端局A側のケーブル11に障害が発生し
た場合は、端局C,B間で給電路を形成することはでき
ないと言う問題もあった。
Therefore, the method of switching the power feeding path becomes complicated,
In addition, there is a problem in that the number of submarine branching devices is limited to about 3 from the viewpoint of the moving current of the relay. Further, in the case of the conventional example of FIG. 5, when a failure occurs in the cable 12 on the terminal station B side, the cable on the terminal station B side is disconnected, and communication is performed by forming a power feeding path between the terminal stations A and C. Although it has been described that there is a problem, if there is a failure in the cable 11 on the terminal station A side, there is also a problem that a power feeding path cannot be formed between the terminal stations C and B.

【0025】このような問題を解決するための方法とし
て、海中分岐装置10内で給電路を海中アースに接続し
て行う方法が考えられているが、万一、別のケーブルで
障害が発生すると2ケ所の海中分岐装置において給電路
を海中アースと接続しなければならなくなり、中継器へ
の給電が不可能となる。
As a method for solving such a problem, a method has been considered in which the power feeding path is connected to the underwater ground in the undersea branching device 10, but in the unlikely event that a failure occurs in another cable. In the two submarine branching devices, the power feed line must be connected to the underwater ground, making it impossible to feed power to the repeater.

【0026】また、図7に示すように、海中分岐装置が
通信システム内に2台以上入る場合、給電路設定前に、
通信システムのケーブルに地落障害が発生すると、その
個所が0電位に固定されてしまうため、また、海中分岐
装置の給電切替の順番が、動作電流がそれぞれa,b,
cと決まっているため、海中分岐装置10に高電圧がか
かったまま、給電路を設定しなけれはならなくなり、通
信システム内に給電路切替可能な海中分岐装置を複数入
れることは困難であると言う問題があった。
Further, as shown in FIG. 7, when two or more submarine branching devices are included in the communication system, before the power feeding path is set,
When a landfall fault occurs in a cable of a communication system, the location of the fault is fixed to 0 potential. Also, the power supply switching order of the undersea branching device is that the operating currents are a, b, and
Since it is determined to be c, it is necessary to set the power feeding path while the high voltage is applied to the undersea branching device 10, and it is difficult to insert a plurality of underwater branching devices capable of switching the power feeding path in the communication system. There was a problem to say.

【0027】本発明は係る問題を解決するもので、新し
く敷設し分岐接続されたケーブルが正常に敷設された否
かを容易に確認することができ、かつ、海中分岐装置に
接続されるいずれのケーブルに障害が発生しても残りの
ケーブル間で通信を復旧でき、また、通信システム内に
複数の分岐装置が使用されていても問題なく給電路を構
成することができる海中分岐装置の給電路切替回路を提
供することを目的とする。
The present invention solves the above problems, and it is possible to easily confirm whether or not a newly laid and branch-connected cable is normally laid, and any cable connected to an undersea branching device is connected. Even if a cable failure occurs, communication can be restored between the remaining cables, and even if multiple branching devices are used in the communication system, the power feeding line can be configured without problems. An object is to provide a switching circuit.

【0028】[0028]

【課題を解決するための手段】図1は、本発明の原理構
成図を示すもので、図中、図5と同じ符号は同じものを
示す。
FIG. 1 shows a principle configuration of the present invention. In the figure, the same reference numerals as those in FIG. 5 indicate the same elements.

【0029】本発明は、端局Aと端局Bの両端局から給
電される第1,第2のケーブル11,12と、端局Cへ
向かう第3のケーブル13の一端を海中アースに接続し
て、該端局Cに極性切替え可能な片端給電を可能にした
海中分岐装置用給電路切替回路において、該第1のケー
ブル11と、該第2のケーブル12との間に、給電電流
により動作するリレー1RL1を設ける。
According to the present invention, the first and second cables 11 and 12 fed from both end stations of the terminal station A and the terminal station B, and one end of the third cable 13 toward the terminal station C are connected to the undersea ground. Then, in the submarine branching device power feeding path switching circuit that enables one-side power feeding whose polarity can be switched to the terminal station C, between the first cable 11 and the second cable 12 A relay 1RL1 that operates is provided.

【0030】また、前記端局Aから前記端局Bの方向に
給電するとき、及び給電断のとき、リレー接点rl1に
より、該第3のケーブル13と海中アースとの間を接続
し、該端局Bから該端局Aの方向に給電するとき、該リ
レー接点rl1により、該第3のケーブル13と海中ア
ースとの間を開放するように構成することにより目的を
達成できる。
Further, when power is supplied from the terminal station A to the terminal station B and when the power supply is cut off, the relay cable rl1 connects between the third cable 13 and the undersea ground, and the terminal is connected. When power is supplied from the station B to the terminal station A, the relay contact rl1 opens the connection between the third cable 13 and the undersea ground to achieve the object.

【0031】更に、海中分岐装置内で、前記端局Cから
端局A、及び、端局Bへ光信号を伝送する光ファイバー
ケーブルいずれかの1つに、該端局Cからの給電路切替
制御信号を抽出する光分波器15と、該給電路切替制御
信号を受信し、スイッチSW1〜SW5を駆動する切替
制御回路16と、該切替制御回路16からの制御で、前
記端局Aと前記端局Bとの間の給電路を開放し、前記リ
レー1の前記リレー接点rl1の海中分アースを開放
し、前記端局Cと該端局A、或いは該端局Bとの間の給
電路を形成するための5つのスイッチSW1〜SW5を
設けるようにしてもよい。
Further, in the submarine branching device, one of the optical fiber cables for transmitting an optical signal from the terminal station C to the terminal station A and the terminal station B is controlled to switch the power feeding path from the terminal station C. An optical demultiplexer 15 that extracts a signal, a switching control circuit 16 that receives the power feeding path switching control signal and drives the switches SW1 to SW5, and the terminal station A and the terminal station A are controlled by the switching control circuit 16. The power supply path between the terminal station B and the terminal station B is opened, the underwater ground of the relay contact rl1 of the relay 1 is opened, and the power supply path between the terminal station C and the terminal station A or the terminal station B is opened. You may make it provide the five switches SW1-SW5 for forming.

【0032】[0032]

【作用】本発明は、海中分岐装置10の給電路切替回路
において、該第1のケーブル11と、第2のケーブル1
2との間に、給電電流により動作するリレー1RL1を
設け、また、リレー1のリレー接点rl1を第3のケー
ブル13と海中アースとの間に設けて、端局Aを+極性
の電圧とし、端局Bを−極性の電圧として端局Aから端
局Bの方向に給電するとき、及び給電断のとき、リレー
接点rl1が閉塞し、端局Bから端局Aの方向に給電す
るとき、リレー接点rl1が開放するようにする。この
ようにすることにより、端局Cから片端給電をかける前
に、端局Cからのケーブル13を海中アースから開放し
た絶縁状態において、ケーブル13の敷設が正常か否か
の確認のためのケーブル13の容量測定を容易に行うこ
とができる。
According to the present invention, in the power feeding path switching circuit of the undersea branching device 10, the first cable 11 and the second cable 1 are provided.
2, a relay 1RL1 that operates by a power supply current is provided, and a relay contact rl1 of the relay 1 is provided between the third cable 13 and the undersea ground to set the terminal station A to a positive polarity voltage, When power is supplied from the terminal A to the terminal B as a negative polarity voltage to the terminal B and when the power supply is cut off, the relay contact rl1 is closed and power is supplied from the terminal B to the terminal A. Make the relay contact rl1 open. By doing so, a cable for confirming whether the laying of the cable 13 is normal in an insulated state in which the cable 13 from the terminal C is opened from the undersea ground before the terminal C feeds one end. The capacity of 13 can be easily measured.

【0033】更に、端局Cから光信号を送出する光海底
ケーブルのうちの光ファイバーケーブル14の少なくと
もいずれかの1つに、設けた光分波器15より、端局C
からの給電路切替制御信号を重畳した光信号を取り出
し、切替制御回路16において給電路切替制御信号を抽
出し、スイッチSW1〜SW5を駆動することにより、
正常運用のときは、端局A,B間の給電路を閉塞し、端
局C側の給電路を端局A,B間の給電路と分離して、海
中アースと接続することができる。
Further, the optical demultiplexer 15 provided on at least one of the optical fiber cables 14 of the optical submarine cables for transmitting the optical signal from the terminal station C causes the terminal station C to operate.
By extracting the optical signal on which the power supply path switching control signal from is superimposed, extracting the power supply path switching control signal in the switching control circuit 16, and driving the switches SW1 to SW5,
During normal operation, the power supply path between the terminal stations A and B can be closed, and the power supply path on the side of the terminal station C can be separated from the power supply path between the terminal stations A and B and connected to the undersea ground.

【0034】また、端局A側、又は、端局B側のケーブ
ル障害発生のときには、障害が発生した側のケーブル1
1,12をスイッチSW1,SW2の動作により、給電
路から切離して、海中アースに接続する。そして、端局
C側の給電路と障害が発生していない側の給電路とをス
イッチSW3,SW4の動作により接続した後、スイッ
チSW5を動作させて端局C側の給電路を海中分アース
から開放する。このようにして、端局Cの給電路と端局
B間、或いは端局A間の給電路を接続することができ
る。
When a cable failure occurs on the terminal A side or the terminal B side, the cable 1 on the side where the failure has occurred
1 and 12 are separated from the power feeding path by the operation of the switches SW1 and SW2, and are connected to the undersea ground. Then, after connecting the power supply line on the terminal station C side and the power supply line on the side where no failure has occurred by operating the switches SW3 and SW4, the switch SW5 is operated to connect the power supply line on the terminal station C side to the subsea ground. Release from. In this way, the power feeding path of the terminal station C and the terminal station B or the power feeding path of the terminal station A can be connected.

【0035】[0035]

【実施例】次に、実施例について、図1〜図3を用いて
説明する。図1は本発明に係わる第1の実施例を示す図
で、図2は本発明に係わる第2の実施例を示す図で、図
3は図2の実施例において端局A側でケーブル障害が発
生した場合の動作について示すものである。
EXAMPLES Next, examples will be described with reference to FIGS. FIG. 1 is a diagram showing a first embodiment according to the present invention, FIG. 2 is a diagram showing a second embodiment according to the present invention, and FIG. 3 is a cable fault at the terminal station A side in the embodiment of FIG. This is to show the operation in the case of occurrence of.

【0036】図中、図5と同じ符号は同じものを示し、
1,2,3は端局、10は海中分岐装置、11,12,
13は第1,第2,第3のケーブル(給電路)、14は
光ファイバーケーブル、15は光分波器、16は切替制
御回路を示す。またRL1,2は給電電流により動作す
るリレー、rl1,2はリレー接点、SW1〜5は切替
制御回路16により動作するスイッチを示す。
In the figure, the same reference numerals as those in FIG.
1, 2, 3 are terminal stations, 10 are underwater branching devices, 11, 12,
Reference numeral 13 is a first, second, and third cable (power supply path), 14 is an optical fiber cable, 15 is an optical demultiplexer, and 16 is a switching control circuit. Further, RL1 and RL are relays operated by a power supply current, rl1 and RL are relay contacts, and SW1 to SW5 are switches operated by the switching control circuit 16.

【0037】図1は本発明に係わる給電路切替回路の第
1の実施例である。図において、海中分岐装置10の端
局A側のケーブル11と、端局B側のケーブル12との
間にリレー1RL1を挿入し、リレー接点rl1を端局
C側のケーブル13と海中アース間に接続する。リレー
接点rl1は、端局A,B間を給電しないときと、端局
Aを+電圧、端局Bを−電圧として端局Aから端局Bの
方向へ給電するとき閉じて、端局Bから端局Aの方向に
給電するとき開くように接続する。
FIG. 1 shows a first embodiment of a power supply path switching circuit according to the present invention. In the figure, a relay 1RL1 is inserted between the cable 11 on the terminal station A side and the cable 12 on the terminal station B side of the undersea branching device 10, and a relay contact rl1 is placed between the cable 13 on the terminal station C side and the undersea ground. Connecting. The relay contact rl1 is closed when power is not supplied between the terminal stations A and B, and is closed when power is supplied from the terminal station A to the terminal station B when the terminal station A is set to + voltage and the terminal station B is set to −voltage, and the terminal station B is closed. Connect so as to open when power is supplied from the terminal station to the terminal station A.

【0038】そして、端局C側のケーブル13が敷設さ
れ、海中分岐装置10に接続されたとき、ケーブル13
の敷設が正常が否かの確認は、端局Bから端局Aに給電
して、リレー1RL1を動作させ、リレー接点rl1に
より端局C側のケーブル13を海中アースから切離しす
ることにより、端局Cから容量測定を行ない、ケーブル
敷設が正常が否かの判断を行う。
When the cable 13 on the terminal C side is laid and connected to the undersea branching device 10, the cable 13
Whether or not the installation is normal is confirmed by supplying power from the terminal station B to the terminal station A, operating the relay 1RL1, and disconnecting the cable 13 on the terminal station C side from the undersea ground by the relay contact rl1. The capacity is measured from the station C and it is judged whether or not the cable laying is normal.

【0039】また、図2の第2の実施例の場合は、給電
路切替回路の制御を光信号を用いて行うもので、端局C
から端局A、或いは端局Bへ送信する光ファイバーケー
ブル14に挿入した光分波器15より光信号を取り出し
て、新規に端局C側のケーブル13の給電電流を電源に
して動作するように設けた切替制御回路16に入力し、
切替制御回路16で光信号を電気信号に変換し、給電路
切替制御信号を抽出する。この給電路切替制御信号によ
り、スイッチSW1〜SW5を切替制御する。図2にお
ける各スイッチSW1〜SW5の図示する位置は、端局
A側+電圧、端局B側−電圧での給電と、端局C側の片
端給電の状態にあることを示す。
Further, in the case of the second embodiment of FIG. 2, the control of the power feeding path switching circuit is performed by using an optical signal, and the terminal station C
The optical signal from the optical demultiplexer 15 inserted in the optical fiber cable 14 that is transmitted from the terminal station A to the terminal station A or B, and newly operates by using the power supply current of the cable 13 on the terminal station C side as a power source. Input to the switching control circuit 16 provided,
The switching control circuit 16 converts the optical signal into an electrical signal and extracts the power supply path switching control signal. The switches SW1 to SW5 are switched and controlled by the power feeding path switching control signal. The positions of the switches SW1 to SW5 shown in FIG. 2 indicate that the power is supplied at the terminal station A side + voltage, the terminal station B side−voltage, and the one terminal power supply at the terminal station C side.

【0040】光信号による切替制御では、端局C側給電
路に給電する前のケーブル13の敷設状態の確認時に
は、光信号による切替制御でなく、図1の第1の実施例
の場合と同じ方法で、端局Bから端局Aへの給電によ
り、リレー接点rl1を動作させ、ケーブル13を海中
アースから絶縁状態にして容量測定を行ない、ケーブル
敷設が正常が否かの判断を行う。
In the switching control by the optical signal, when confirming the laying state of the cable 13 before feeding to the power feeding path on the terminal C side, the switching control by the optical signal is the same as in the case of the first embodiment of FIG. By the method, the relay contact rl1 is operated by feeding power from the terminal station B to the terminal station A, the cable 13 is insulated from the undersea ground, the capacity is measured, and it is judged whether the cable laying is normal or not.

【0041】その後、端局Aから,端局B間の方向に給
電すると共に、端局Cからも片端給電を行う。次に、こ
の給電状態において、端局A側のケーブル11に地落障
害が発生した場合の例について、図3で説明する。 (1)先ず、端局A,B間の給電が遮断する。なお、端
局Cからの片端給電には影響がなく、給電は継続され
る。
After that, power is supplied from the terminal station A to the direction between the terminal stations B, and one terminal is also supplied from the terminal station C. Next, an example of a case where a ground failure occurs in the cable 11 on the terminal A side in this power feeding state will be described with reference to FIG. (1) First, the power supply between the terminal stations A and B is cut off. It should be noted that one-end power feeding from the terminal station C is not affected and the power feeding is continued.

【0042】また、図7のようにこの通信システムに他
の海中分岐装置20,30があったとしても、これらの
海中分岐装置20,30の片端給電にも影響がない。 (2)端局Cから光信号に給電路切替制御信号を重畳し
て光ファイバーケーブル14に送出し、光分波器15を
介して切替制御回路16で給電路切替制御信号を抽出
し、スイッチSW1を動作させてケーブル11を海中分
岐装置10から切離して、海中アースに接続する。 (3)スイッチSW4を動作させて、端局B側のケーブ
ル12と端局C側のケーブル13とを接続し、端局B,
C間の給電路を形成する。
Further, even if there are other subsea branching devices 20 and 30 in this communication system as shown in FIG. 7, there is no effect on one-side power feeding of these submarine branching devices 20 and 30. (2) The power supply path switching control signal is superposed on the optical signal from the terminal station C and sent to the optical fiber cable 14, and the power supply path switching control signal is extracted by the switching control circuit 16 via the optical demultiplexer 15 and the switch SW1 Is operated to disconnect the cable 11 from the undersea branching device 10 and connect it to the undersea ground. (3) The switch SW4 is operated to connect the cable 12 on the terminal station B side and the cable 13 on the terminal station C side,
A power supply path between C is formed.

【0043】ここで、次の(5)の時点で、端局Cから
の片端給電が断になってもこの状態を保持するのには、
スイッチSW3,SW4に、動作保持型スイッチを使用
する必要がある。 (4)スイッチSW5を動作させて、端局C側の給電路
を海中アースから切離しを行う。
Here, at the time of the following (5), in order to maintain this state even if the one-end power supply from the terminal station C is cut off,
It is necessary to use operation holding type switches for the switches SW3 and SW4. (4) The switch SW5 is operated to disconnect the power feeding path on the terminal C side from the undersea ground.

【0044】ここで、端局C側の給電路は自ら供給する
電源で動く切替制御回路16とスイッチSW5により海
中アースとの接続を断にされて、即給電電流断となるた
め、スイッチSW5には、遅延動作型スイッチを使用す
る必要である。 (5)端局Cからの片端給電が断となる。 (6)端局B,C間で、端局Cを+電圧、端局Bを−電
圧にして給電を行う。
Here, the power supply path on the side of the terminal C is disconnected from the subsea ground by the switch control circuit 16 and the switch SW5 which are powered by the power supplied by itself, and the power supply current is immediately cut off. Requires the use of delayed action switches. (5) One-sided power feeding from the terminal station C is cut off. (6) Power is supplied between the terminal stations B and C by setting the terminal station C to a positive voltage and the terminal station B to a negative voltage.

【0045】以上の一連の動作で、端局A側を切離し、
かつ、海中分岐装置10での海中アースとも切離した状
態で端局B,C間の給電が可能となる。更に、特開昭6
3−6926にて公開されている「光ファイバー切替回
路」(富士通株式会社)で出願しているように、海中分
岐装置10内の端局A,C間、及び、端局A,B間の光
ファイバーケーブルに光スイッチを設け、切替制御回路
16に光スイッチ駆動機能を付加すれば、端局Cから光
信号に通信路切替制御信号を重畳して送出することによ
り、光伝送路の有効活用にも利用可能となる。
By the above series of operations, the terminal station A side is disconnected,
In addition, it is possible to supply power between the terminal stations B and C in a state where the undersea earth of the undersea branching device 10 is also disconnected. Furthermore, JP-A-6
As filed in “Optical Fiber Switching Circuit” (Fujitsu Limited) published in 3-6926, an optical fiber between the terminal stations A and C and between the terminal stations A and B in the undersea branching device 10. If an optical switch is provided on the cable and an optical switch driving function is added to the switching control circuit 16, the terminal C superimposes the communication path switching control signal on the optical signal and sends it out, thereby effectively utilizing the optical transmission path. It will be available.

【0046】なお、端局B側のケーブル12に地落障害
が発生した場合の例については、上記の説明で容易に類
推できるので、説明を省略する。また、図7の3分岐さ
れた通信システムの例において、例えば、最初端局Aと
Bu1(海中分岐装置)10間と、端局BとBu3(海
中分岐装置)30間との2ケ所にケーブル障害が発生し
ても、端局Cを+電圧、端局Eを−電圧として給電路を
形成することができる。
Note that an example of a case where a ground failure occurs in the cable 12 on the side of the terminal station B can be easily inferred from the above description, so the description thereof will be omitted. Further, in the example of the three-branched communication system in FIG. 7, for example, a cable is first provided between the terminal station A and the Bu1 (submarine branching device) 10 and between the terminal station B and the Bu3 (submarine branching device) 30. Even if a failure occurs, the power supply path can be formed with the terminal C as a + voltage and the terminal E as a − voltage.

【0047】[0047]

【発明の効果】以上説明したように、従来のように複数
の海中分岐装置を有する通信システムの場合、各海中分
岐装置のリレーの動作電流を順番に大きくするなどの必
要があり、多数の海中分岐装置を接続することができな
かったが、本発明によれば、同じ動作電流のリレーを使
用できるので、多数の海中分岐装置を接続することが可
能となる。
As described above, in the case of the conventional communication system having a plurality of subsea branching devices, it is necessary to increase the operating current of the relays of each subsea branching device in order, which results in a large number of subsea devices. Although it was not possible to connect the branching device, according to the present invention, since a relay having the same operating current can be used, it is possible to connect a large number of submarine branching devices.

【0048】また、分岐接続するケーブルの敷設接続後
の確認においても、一時的に通信回線の停止が伴うもの
の、端局AB間の給電停止と給電極性の変更により、容
易に分岐接続するケーブルの確認が可能となる。
Also, in the confirmation after laying and connecting the cable for branch connection, although the communication line is temporarily stopped, the cable for branch connection can be easily connected by stopping the power supply between the terminal stations AB and changing the power supply polarity. Confirmation is possible.

【0049】また、海中分岐装置の給電路切替に光信号
を用いることにより、給電電流を流さないで給電路の切
替が可能となり、リレー接点をホットスイッチングする
ことがなくなり、接点の磨耗を防止することが可能とな
り、海中分岐装置の長寿命化に大きく貢献できる。
Further, by using an optical signal for switching the power feeding path of the submarine branching device, it is possible to switch the power feeding path without flowing the power feeding current, hot switching of the relay contact is prevented, and wear of the contact is prevented. This makes it possible to greatly contribute to extending the service life of the undersea branching device.

【0050】更に、ケーブル障害が発生した後の海中分
岐装置での給電路切替設定において、給電路を海中アー
スに接続しないので、万一、別のケーブル障害が発生し
ても残りの正常なケーブル区間で通信を可能にする事が
てきると言う多いな効果がある。
Further, in the power feeding path switching setting in the undersea branching device after the cable failure occurs, the power feeding path is not connected to the underwater ground, so that even if another cable failure occurs, the remaining normal cable remains. There are many effects that it is possible to enable communication in the section.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる給電路切替回路の第1の実施例
を示す図である。
FIG. 1 is a diagram showing a first embodiment of a power supply path switching circuit according to the present invention.

【図2】本発明に係わる給電路切替回路の第2の実施例
を示す図である。
FIG. 2 is a diagram showing a second embodiment of the power supply path switching circuit according to the present invention.

【図3】図2の第2の実施例において端局A側でケーブ
ル障害時の給電路切替回路の動作を示す図である。
FIG. 3 is a diagram showing an operation of a power feeding path switching circuit at the time of a cable failure on the terminal station A side in the second embodiment of FIG.

【図4】海中分岐装置の給電路と光ファイバー伝送路の
概念図である。
FIG. 4 is a conceptual diagram of a power feed line and an optical fiber transmission line of an undersea branching device.

【図5】従来の海中分岐装置の給電路切替回路例を示す
図である。
FIG. 5 is a diagram showing an example of a power feeding path switching circuit of a conventional undersea branching device.

【図6】従来の複数の海中分岐装置を有する光海底通信
システムにおける給電開始時の接続状態についての説明
図である。
FIG. 6 is an explanatory diagram of a connection state at the time of starting power supply in an optical submarine communication system having a plurality of conventional undersea branching devices.

【図7】従来の複数の海中分岐装置を有する光海底通信
システムにおける給電切替前の接続状態についての説明
図である。
FIG. 7 is an explanatory diagram of a connection state before switching power supply in an optical submarine communication system having a plurality of conventional undersea branching devices.

【符号の説明】 1,2,3,4,5 端局 10,20,30 海中分岐装置 11,12,13 ケーブル(給電路) 14 光ファイバーケーブル 15 光分波器 16 切替制御回路 RL1,2,3 リレー rl1,12,13 リレー接点 SW1〜5 スイッチ[Explanation of reference numerals] 1, 2, 3, 4, 5 Terminal station 10, 20, 30 Submarine branching device 11, 12, 13 Cable (feeding path) 14 Optical fiber cable 15 Optical demultiplexer 16 Switching control circuit RL1, 2, 3 relays rl1, 12, 13 relay contacts SW1-5 switches

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 端局Aと端局Bの両端局から給電される
第1,第2のケーブル(11,12)と、端局Cへ向か
う第3のケーブル(13)の一端を海中アースに接続し
て、該端局Cに極性切替え可能な片端給電を可能にした
海中分岐装置用給電路切替回路において、 該第1のケーブル(11)と、該第2のケーブル(1
2)との間に、給電電流により動作するリレー1(RL
1)を設けると共に、 前記端局Aから前記端局Bの方向に給電するとき、及び
給電断のとき、リレー接点(rl1)で該第3のケーブ
ル(13)と海中アースとの間を接続し、 該端局Bから該端局Aの方向に給電するとき、該リレー
1(RL1)の該リレー接点(rl1)で該第3のケー
ブル(13)と海中アースとの間を開放する構成にした
ことを特徴とする給電路切替回路。
1. An undersea earth is provided at one end of a first cable, a second cable (11, 12) fed from both end stations of the terminal station A and the terminal station B, and a third cable (13) going to the terminal station C. And a second cable (1) in a power line switching circuit for a submarine branching device, which is connected to
2) and the relay 1 (RL
1) is provided, and when power is fed from the terminal station A to the terminal station B and when power is cut off, a relay contact (rl1) is used to connect the third cable (13) and the undersea ground. Then, when power is supplied from the terminal station B to the terminal station A, the relay contact (rl1) of the relay 1 (RL1) opens the third cable (13) and the undersea ground. A power supply line switching circuit characterized in that
【請求項2】 請求項1において、前記海中分岐装置に
は、前記端局Cと前記端局A,B間とを接続し、送出用
及び受信用それぞれの光ファイバーケーブルが設けられ
ているが、該端局Cからの送信用光ファイバーケーブル
のいずれかの1つに、該端局Cからの給電路切替制御信
号を抽出する光分波器(15)と、 該給電路切替制御信号を受信し、スイッチ(SW1〜S
W5)を駆動する切替制御回路(16)と、 該切替制御回路(16)からの制御で、前記端局Aと前
記端局Bとの間の給電路を開放し、前記リレー1(RL
1)の前記リレー接点(rl1)の海中アースを開放
し、前記端局Cと該端局A、或いは該端局Bとの間の給
電路を形成するための5つのスイッチ(SW1〜SW
5)を備えたことを特徴とする給電路切替回路。
2. The submarine branching device according to claim 1, wherein the terminal station C and the terminal stations A and B are connected to each other, and optical fiber cables for transmission and reception are provided. An optical demultiplexer (15) for extracting the power feeding path switching control signal from the terminal station C and the power feeding path switching control signal are received by any one of the transmission optical fiber cables from the terminal station C. , Switches (SW1 to S
The switching control circuit (16) for driving W5) and the control from the switching control circuit (16) open the power feeding path between the terminal station A and the terminal station B, and the relay 1 (RL).
Five switches (SW1 to SW) for opening the undersea earth of the relay contact (rl1) of 1) to form a power feeding path between the terminal station C and the terminal station A or the terminal station B.
5) A power supply path switching circuit comprising:
JP4126574A 1992-05-20 1992-05-20 Feeding path switching circuit Withdrawn JPH05327561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4126574A JPH05327561A (en) 1992-05-20 1992-05-20 Feeding path switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4126574A JPH05327561A (en) 1992-05-20 1992-05-20 Feeding path switching circuit

Publications (1)

Publication Number Publication Date
JPH05327561A true JPH05327561A (en) 1993-12-10

Family

ID=14938539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4126574A Withdrawn JPH05327561A (en) 1992-05-20 1992-05-20 Feeding path switching circuit

Country Status (1)

Country Link
JP (1) JPH05327561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002391A1 (en) * 2011-06-30 2013-01-03 日本電気株式会社 Feeder circuit switching apparatus, optical underwater branching apparatus, underwater cable system, and feeder circuit switching method
CN103701493A (en) * 2013-10-16 2014-04-02 中国电子科技集团公司第二十三研究所 Realizing method for single-ended power supply of submarine cable transmission system with repeater through monopolar cable
JP2014093539A (en) * 2012-10-31 2014-05-19 Fujitsu Ltd Feed line switching unit and power supply system
WO2022131013A1 (en) * 2020-12-18 2022-06-23 日本電気株式会社 Grounding device, grounding method, and program recording medium
CN116742627A (en) * 2023-08-16 2023-09-12 华海通信技术有限公司 Electric switching device and system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002391A1 (en) * 2011-06-30 2013-01-03 日本電気株式会社 Feeder circuit switching apparatus, optical underwater branching apparatus, underwater cable system, and feeder circuit switching method
JPWO2013002391A1 (en) * 2011-06-30 2015-02-23 日本電気株式会社 Feed path switching device, optical submarine branching device, submarine cable system, and feed path switching method
JP5682847B2 (en) * 2011-06-30 2015-03-11 日本電気株式会社 Feed path switching device, optical submarine branching device, submarine cable system, and feed path switching method
US9660457B2 (en) 2011-06-30 2017-05-23 Nec Corporation Feed line switching apparatus, optical submarine branching apparatus, submarine cable system, and feed line switching method
JP2014093539A (en) * 2012-10-31 2014-05-19 Fujitsu Ltd Feed line switching unit and power supply system
CN103701493A (en) * 2013-10-16 2014-04-02 中国电子科技集团公司第二十三研究所 Realizing method for single-ended power supply of submarine cable transmission system with repeater through monopolar cable
CN103701493B (en) * 2013-10-16 2016-04-06 中国电子科技集团公司第二十三研究所 There is the implementation method of relaying sea cable transmission system one pole cable single-ended power in seabed
WO2022131013A1 (en) * 2020-12-18 2022-06-23 日本電気株式会社 Grounding device, grounding method, and program recording medium
CN116742627A (en) * 2023-08-16 2023-09-12 华海通信技术有限公司 Electric switching device and system
CN116742627B (en) * 2023-08-16 2023-11-14 华海通信技术有限公司 Electric switching device and system

Similar Documents

Publication Publication Date Title
US5214312A (en) Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
EP3419185B1 (en) Grounding circuit and grounding method
EP0843917B1 (en) Improvements in or relating to power switching of optical fibre cable branching units
US10721001B2 (en) Submarine optical cable shore landing apparatus
US4798969A (en) Power feed system in transmission line between terminals of three-terminal station
US5196984A (en) Submarine telecommunications systems
CA2059493C (en) Feeding system and feeding method for a submarine cable communication system
JPH05327561A (en) Feeding path switching circuit
JP2786524B2 (en) Feeding line switching circuit for undersea branching device and method for feeding power in undersea cable communication system
US20200257251A1 (en) Submarine branching unit and submarine branching method
JP6044274B2 (en) Feed path switching device and feed system
EP1294113B1 (en) Branching unit for an optical transmission system
JP7283543B2 (en) Branching device, submarine cable system, and control method for branching device
JP2691218B2 (en) Submarine power feed path configuration method and submarine power feed switching circuit
JP3171862B2 (en) Power supply system and method for communication cable
US20230308186A1 (en) Submarine optical cable system
JP2805147B2 (en) Submarine branch cable power supply system
JPH01223830A (en) Feeding branch switching method for submarine cable and its feeding switch circuit
JPH0490231A (en) Tree-shaped information network
JPH01200832A (en) Power suppling line switching circuit for underwater branching device
JPS6088912A (en) Undersea branching method of optical submarine cable
JPH04222123A (en) Feeding path switching circuit
JPS63262923A (en) Feed switching device for underwater branching device
JPH04341018A (en) Feeder line switching circuit for submarine branching device and feeding method for submarine communication system
JPH07162840A (en) Catv system with fault restoration function

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803