JPH04256225A - Feeding method and feed line switching circuit for sea-bottom cable communication system - Google Patents

Feeding method and feed line switching circuit for sea-bottom cable communication system

Info

Publication number
JPH04256225A
JPH04256225A JP3817391A JP3817391A JPH04256225A JP H04256225 A JPH04256225 A JP H04256225A JP 3817391 A JP3817391 A JP 3817391A JP 3817391 A JP3817391 A JP 3817391A JP H04256225 A JPH04256225 A JP H04256225A
Authority
JP
Japan
Prior art keywords
power supply
current
underwater
power
switching circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3817391A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Inoue
義之 井上
Masaaki Takahashi
正明 高橋
Kenji Ota
太田 研司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3817391A priority Critical patent/JPH04256225A/en
Priority to CA 2059493 priority patent/CA2059493C/en
Priority to EP19920100737 priority patent/EP0495509B1/en
Publication of JPH04256225A publication Critical patent/JPH04256225A/en
Priority to US08/092,563 priority patent/US5334879A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To prevent hot switching and to switch a feed line at the time of reconstructing the feed line when a fault occurs. CONSTITUTION:Respective sea-bottom branching devices BU1, BU2... are provided with feed line switching circuits in which the size of an operation current differs by changing the direction of the current. The feed line switching circuits of respective sea-bottom branching devices BU1, BU2... are constituted so that respective operation current values alpha, beta... differ as against the same feed current direction in both end feed line which is to be set. In a station on the side of a non-fault line on the side of a fault-side sea-bottom branching device to which the both end feed line is to be set and a station on the side of a non-fault-side sea-bottom branching device, feeding is executed in the feed current direction where the feed line switching circuit in the fault-side sea-bottom branching device operates with the small operation current and the feed line is switched so that the fault line is separated. Then, the large feed current is fed in the same feed current direction, the feed line switching circuit in the non-fault-side sea-bottom branching device is switched and the feed line is set at the time of raising a system when the fault occurs.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光海底ケーブルなどの海
底ケーブルを海中分岐装置を用いて海中で分岐して陸揚
局間で多地点通信を行う海底ケーブル通信システムにお
ける給電方法とそれに用いる給電路切替え回路に関する
[Industrial Application Field] The present invention relates to a power feeding method used in a submarine cable communication system in which a submarine cable such as an optical submarine cable is branched underwater using an underwater branching device to perform multipoint communication between landing stations, and a power feeding method used therein. The present invention relates to a path switching circuit.

【0002】光海底ケーブル通信システムなどでは、海
底ケーブルの地絡などにより障害回線が発生した時には
、この障害回線をシステムから切り離すよう給電路の切
替えを行うが、かかる障害時の給電路の切替えにあたっ
てはホットスイッチング等により海中分岐装置が破損さ
れないよう切替えを行うことが必要とされている。
[0002] In optical submarine cable communication systems, when a faulty line occurs due to a ground fault in a submarine cable, the power supply line is switched to disconnect the faulty line from the system. It is necessary to perform switching to prevent damage to the underwater branching equipment due to hot switching or the like.

【0003】0003

【従来の技術】一つの海底ケーブル通信システム中に複
数の海中分岐装置が用いられて多地点間通信を行う方式
では、海中分岐装置に給電路切替え機能を持たせ、ある
ブランチ(分岐回線)で障害が発生した場合には、その
障害回線を切り離すよう給電路を切り替えて残りのケー
ブルの通信を確保できるようにしている。一つのシステ
ム中にある複数の海中分岐装置を各々特定して給電路を
切り替えるためには、各海中分岐装置にそれぞれ異なる
動作電流を持った給電路切替え回路(スイッチ)を設け
、これを陸揚局から給電電流の大きさを制御して別々に
動作させることで切り替えるようにしているが、この切
替えのための給電にあたっては、いわゆるホットスイッ
チングが生じないよう給電電圧を調整する必要がある。
[Prior Art] In a system in which multiple underwater branching devices are used in one submarine cable communication system to perform multipoint communication, the underwater branching devices are provided with a power supply line switching function, and a certain branch (branch line) In the event of a failure, the power supply path is switched to disconnect the faulty line, ensuring communication on the remaining cables. In order to identify each of multiple underwater branch devices in one system and switch the power supply route, each underwater branch device is equipped with a power supply route switching circuit (switch) with a different operating current, and this is connected to the shore. Switching is performed by controlling the magnitude of the power supply current from the station and operating it separately, but when supplying power for this switching, it is necessary to adjust the power supply voltage to avoid so-called hot switching.

【0004】従来のかかる給電路切替え方法を図15を
参照して以下に説明する。図14において、A、B、C
、Dはそれぞれ異なる地点の陸揚局、BU1、BU2は
海中分岐装置であり、海中分岐装置BU1、BU2で分
岐した海底ケーブルで4つの陸揚局A、B、C、Dを結
んでいる。ここで海中分岐装置BU1の給電路切替え回
路は動作電流αで動作し、海中分岐装置BU2の給電路
切替え回路は動作電流βで動作するよう設定されている
。この動作電流はα<βとする。これら海中分岐装置B
U1、BU2の給電路切替え回路は、無給電時に装置内
において各分岐給電路を海底アースから絶縁した状態で
相互接続し、それぞれ動作電流α、βを通電することで
分岐給電路のうちの一つを海底アースし、かつ残りの分
岐給電路同士を相互接続するようになっている。
[0004] Such a conventional power supply path switching method will be explained below with reference to FIG. 15. In FIG. 14, A, B, C
, D are landing stations at different locations, BU1 and BU2 are underwater branching devices, and four landing stations A, B, C, and D are connected by submarine cables branched by the underwater branching devices BU1 and BU2. Here, the power supply switching circuit of the underwater branching device BU1 is set to operate with an operating current α, and the power supply switching circuit of the underwater branching device BU2 is set to operate with an operating current β. This operating current is assumed to be α<β. These underwater branching devices B
The power supply path switching circuits of U1 and BU2 connect each branch power supply path within the device while insulating it from the seabed ground when no power is being supplied, and switch one of the branch power supply paths by passing operating currents α and β, respectively. One branch is grounded to the seabed, and the remaining branch power supply lines are interconnected.

【0005】このシステムでの通常の立上げ時の動作を
説明する。いま、陸揚局AとD間で両端給電し、陸揚局
B、Cはそれぞれ片端給電するよう給電路を設定するも
のとする。海中分岐装置の給電路切替えは、その給電路
切替え回路に動作電流を供給することにより行うが、そ
の際の給電路切替え回路の対地電位はゼロとなるよう両
端き陸揚局から給電電圧を調整する必要がある。これは
、給電路切替え回路が大きな対地電位を持ってしまうと
、切替えに際しリレー接点等にアーク放電が発生してこ
れに起因するサージで機器を損傷するいわゆるホットス
イッチングが生じる恐れがあるからである。
[0005] The normal startup operation of this system will be explained. Now, assume that a power supply path is set so that power is supplied at both ends between landing stations A and D, and power is supplied at one end between landing stations B and C. Switching of the power supply line of the underwater branching device is performed by supplying operating current to the power supply line switching circuit, but at that time, the power supply voltage from the landing station at both ends is adjusted so that the ground potential of the power supply line switching circuit is zero. There is a need to. This is because if the power supply switching circuit has a large ground potential, there is a risk of arc discharge occurring at relay contacts, etc. during switching, and the resulting surge may damage equipment, resulting in so-called hot switching. .

【0006】そこで、まず陸揚局AとDはその給電電流
と給電電圧をコントロールして、給電電流をα、海中分
岐装置BU1の対地電位をゼロにして給電を行う〔図1
5の(1)参照〕。これにより海中分岐装置BU1にお
いて陸揚局Bへの分岐給電路が海中アースされ、陸揚局
Bによる片端給電が可能になる。
Therefore, first, landing stations A and D control their power supply current and power supply voltage, and supply power by setting the power supply current to α and the ground potential of the underwater branch unit BU1 to zero [FIG.
See 5 (1)]. As a result, in the underwater branching device BU1, the branch power supply path to the landing station B is grounded under the sea, and one-end power supply by the landing station B becomes possible.

【0007】次に、給電電流をβ、海中分岐装置BU2
の対地電位をゼロにして給電を行う〔図15の(2)参
照〕。これにより海中分岐装置BU2において陸揚局C
への分岐給電路が海中アースされ、陸揚局Cによる片端
給電が可能になる。また陸揚局BとCが切り離されたこ
とで陸揚局AとD間では両端給電が行われる。
Next, the power supply current is set to β, and the underwater branching device BU2
Power is supplied by setting the potential to the ground to zero [see (2) in FIG. 15]. As a result, the landing station C is installed in the underwater branching device BU2.
A branch power supply path to the base is grounded under the sea, allowing one-end power supply by landing station C. Furthermore, since landing stations B and C are separated, power is supplied from both ends between landing stations A and D.

【0008】このシステムでは、海中分岐装置BU2で
の切替えを初めに行うようにしてしまうと、その給電路
切替え回路の動作電流βが海中分岐装置BU1側の動作
電流αよりも大きいため、海中分岐装置BU1の給電路
切替え回路も同時に動作してしまうが、この海中分岐装
置BU1は対地電位がゼロとなっていないためその動作
時に上述のホットスイッチングを生じる恐れがある。こ
のため、給電路切替えは海中分岐装置BU1、BU2の
順番で行うことが必要である。
[0008] In this system, if switching is performed at the underwater branch unit BU2 first, the operating current β of the power supply switching circuit is larger than the operating current α of the underwater branch unit BU1 side. The power supply path switching circuit of the device BU1 also operates at the same time, but since the ground potential of this underwater branch device BU1 is not zero, there is a risk that the above-mentioned hot switching may occur during its operation. Therefore, it is necessary to switch the power supply path in the order of the underwater branching devices BU1 and BU2.

【0009】[0009]

【発明が解決しようとする課題】上述のシステムにおい
て、図16に示されるように、海中分岐装置BU2と陸
揚局D間のケーブルに地絡障害が発生したものとする。 この場合、障害回線(陸揚局Dへの分岐路)を切り離し
て残りのケーブルで給電路を再構築することが必要とな
る。このため、システムをいったん無給電状態に戻して
、陸揚局AとC間で両端給電、陸揚局Bで片端給電、陸
揚局Dを切り離すよう再立上げを行うものとする。この
ときも、動作電流がα<βの関係にあることから海中分
岐装置BU1、BU2の順で給電路切替え回路を動作さ
せたいが、海中分岐装置BU2側の地絡障害点で電位が
ゼロに固定されてしまっているので、陸揚局AとD間で
給電電圧をコントロールして海中分岐装置BU1の対地
電位をゼロにすることができなくなり、海中分岐装置B
U1は対地電位をもった状態で切り替わってしまう。 また、対地電位が大きい海中分岐装置BU2側の方でま
ず初めに障害回線を切り離そうとした場合には、海中分
岐装置BU2の動作電流がβであるため海中分岐装置B
U1側も切替えが行われてしまうことは前述の通りであ
る。
In the above-described system, it is assumed that a ground fault occurs in the cable between the underwater branch unit BU2 and the landing station D, as shown in FIG. In this case, it is necessary to disconnect the faulty line (branch line to landing station D) and reconstruct the power supply line using the remaining cable. For this reason, the system is temporarily returned to a non-power-supplied state, and restarted by supplying power at both ends between landing stations A and C, supplying power at one end at landing station B, and disconnecting landing station D. At this time as well, since the operating current is in the relationship α<β, it is desired to operate the power supply line switching circuit in the order of underwater branching units BU1 and BU2, but the potential becomes zero at the ground fault point on the underwater branching unit BU2 side. Since it is fixed, it is no longer possible to control the power supply voltage between landing stations A and D to bring the ground potential of underwater branch unit BU1 to zero, and
U1 is switched with the potential to ground. In addition, if the underwater branch unit BU2 side, which has a large ground potential, tries to disconnect the faulty line first, the operating current of the underwater branch unit BU2 is β, so the underwater branch unit B
As mentioned above, switching is also performed on the U1 side.

【0010】本発明はかかる問題点に鑑みてなされたも
のであり、その目的とするところは、障害発生時におけ
る給電路の再構築時に、ホットスイッチングを防止しつ
つ給電路切替えを行えるようにすることにある。
[0010] The present invention has been made in view of the above problems, and its purpose is to prevent hot switching while switching the power supply route when the power supply route is rebuilt in the event of a failure. There is a particular thing.

【0011】[0011]

【課題を解決するための手段】図1には本発明に係る原
理説明図が示される。上述の課題を解決するために、本
発明に係る海底ケーブル通信システムの給電方法は、海
底ケーブルを複数の海中分岐装置BU1、BU2・・・
で分岐して複数の局A、B、C、D・・・間を接続する
海底ケーブル通信システムの給電方法であって、電流方
向を変えることで動作電流の大きさが異なる給電路切替
え回路を各海中分岐装置BU1、BU2・・・が備え、
各海中分岐装置BU1、BU2・・・の給電路切替え回
路は設定せんとする両端給電路における同一給電電流方
向に対して各々動作電流値α、β・・・が異なるよう構
成され、障害発生時におけるシステムの立ち上げに際し
、両端給電路を設定せんとする障害側海中分岐装置側の
非障害回線側局と非障害側海中分岐装置側の局間で、ま
ず障害側海中分岐装置における給電路切替え回路が小な
る動作電流で動作する給電電流方向で給電して障害回線
を分離するよう給電路切替えを行い、しかる後に同一給
電電流方向に大なる給電電流を給電して非障害側海中分
岐装置における給電路切替え回路を切り替えて給電路設
定を行うようにしたものである。
[Means for Solving the Problems] FIG. 1 shows a diagram illustrating the principle of the present invention. In order to solve the above problems, a power feeding method for a submarine cable communication system according to the present invention connects a submarine cable to a plurality of underwater branching devices BU1, BU2...
This is a power supply method for a submarine cable communication system that connects multiple stations A, B, C, D, etc. by branching off at Each underwater branching device BU1, BU2... is equipped with
The power supply line switching circuits of each underwater branch unit BU1, BU2... are configured so that the operating current values α, β... are different for the same power supply current direction in the two-end power supply line to be set, so that when a fault occurs, When starting up the system, first switch the power supply line at the faulty underwater branching device between the non-faulty line side station on the faulty underwater branching device side and the station on the non-faulty underwater branching device side, where you want to set up a double-end power feeding path. The power supply path is switched to isolate the faulty line by feeding power in the direction of the feed current where the circuit operates with a small operating current, and then a large power supply current is fed in the same direction of the feed current to connect the non-faulty underwater branch equipment. The power supply route is set by switching the power supply route switching circuit.

【0012】また本発明に係る海底ケーブル通信システ
ムの給電方法は、他の形態として、海底ケーブルを複数
の海中分岐装置BU1、BU2・・・で分岐して多地点
A、B、C、D・・・間を結ぶ海底ケーブル通信システ
ムにおいて複数の海中分岐装置の給電路切替え回路にそ
れぞれ異なる動作電流α、β・・・を割り当て、小さい
動作電流の海中分岐装置側の給電路切替え回路側から順
次に動作させて給電路を切り替える給電方法であって、
複数の海中分岐装置BU1、BU2・・・を給電路内に
直列に配置し、その両端の地点から給電して給電電流を
一方向に流した時とその反対方向に流した時とで、複数
の海中分岐装置BU1、BU2・・・の給電路切替え回
路の動作順序が逆となるようにしたものである。
[0012] In another embodiment of the power feeding method for a submarine cable communication system according to the present invention, a submarine cable is branched by a plurality of underwater branching devices BU1, BU2, and so on, and is connected to multiple points A, B, C, D, etc. ... In a submarine cable communication system that connects multiple underwater branching devices, different operating currents α, β, etc. are assigned to the power switching circuits of the underwater branching devices, and the switching circuits are sequentially assigned starting from the power switching circuit of the underwater branching device with the lowest operating current. A power supply method that switches the power supply path by operating the
A plurality of underwater branching devices BU1, BU2... are arranged in series in a power supply line, and power is supplied from both ends of the line, and when the power supply current flows in one direction and when it flows in the opposite direction, multiple The order of operation of the power supply line switching circuits of the underwater branching devices BU1, BU2, etc. is reversed.

【0013】また本発明に係る海底ケーブル通信システ
ムの給電方法は、上述の各給電方法において、海中分岐
装置の一部または全ての分岐給電路に給電路切替え機能
を持たない海中分岐装置が設置されているものである。
[0013] Furthermore, in the power feeding method for a submarine cable communication system according to the present invention, in each of the above-mentioned power feeding methods, an underwater branching device that does not have a power feeding path switching function is installed in some or all of the branching power paths of the underwater branching device. It is something that

【0014】また本発明に係る給電路切替え回路は、給
電路切替え回路を駆動するための動作電流を通電する駆
動回路に並列接続されて一方向にのみ第1の大きさの電
流を通電する第1の電流分流回路と、駆動回路に並列接
続されて該第1の電流分流回路と逆方向にのみ該第1の
大きさと異なる第2の大きさの電流を通電する第2の電
流分流回路とを備えたものである。
Further, the feed path switching circuit according to the present invention has a first circuit that is connected in parallel to a drive circuit that passes an operating current for driving the feed path switching circuit, and that passes a current of a first magnitude only in one direction. a second current shunt circuit that is connected in parallel to the drive circuit and passes a current having a second magnitude different from the first magnitude only in the opposite direction to the first current shunt circuit; It is equipped with the following.

【0015】また本発明に係る海底ケーブル通信システ
ムの給電方法は、上述の各給電方法において、給電路切
替え回路として上述の本発明の給電路切替え回路を用い
たものである。
The power supply method for a submarine cable communication system according to the present invention uses the above-described power supply line switching circuit of the present invention as the power supply line switching circuit in each of the above-mentioned power supply methods.

【0016】[0016]

【作用】図1の海底ケーブル通信システムを例にして本
発明の動作原理を説明する。図中、A、B、C、Dは例
えば陸揚局などの局、BU1、BU2は海中分岐装置で
あり、海中分岐装置BU1、BU2の動作電流は、海中
分岐装置BU1からBU2方向(図中の→印の方向)に
給電電流が流れる時には海中分岐装置BU1がα、海中
分岐装置BU2がβとなり、一方、海中分岐装置BU2
からBU1方向(図中の←印の方向)に給電電流が流れ
る時には海中分岐装置BU1がβ、海中分岐装置BU2
がαとなる。この動作電流はα<βの関係にある。
[Operation] The principle of operation of the present invention will be explained using the submarine cable communication system shown in FIG. 1 as an example. In the figure, A, B, C, and D are stations such as landing stations, and BU1 and BU2 are underwater branching devices.The operating current of the underwater branching devices BU1 and BU2 is from the underwater branching device BU1 to BU2 ( When the power supply current flows in the direction of → mark), the underwater branching device BU1 becomes α, the underwater branching device BU2 becomes β, and on the other hand, the underwater branching device BU2 becomes
When the power supply current flows from BU1 direction (← mark direction in the figure), the underwater branching device BU1 is β, and the underwater branching device BU2 is β.
becomes α. This operating current has a relationship of α<β.

【0017】このシステムの通常の立上げ動作は「従来
の技術」の欄で説明した通りである。いま、海中分岐装
置BU2と陸揚局D間のケーブルが地絡障害を起こした
ものとする。この時、局AとC間に両端給電路を設定し
て、局Dへの障害回線を切り離すことになるが、局Aか
ら局C方向に給電電流を流した場合には「発明が解決し
ようとする課題」の欄で説明したような問題が生じる。
The normal start-up operation of this system is as described in the "Prior Art" section. Now, it is assumed that a ground fault has occurred in the cable between the underwater branching device BU2 and the landing station D. At this time, a both-end power supply path is set up between stations A and C to disconnect the faulty line to station D. However, if the power supply current is passed from station A to station C, the invention will solve the problem. Problems such as those explained in the section ``Issues to be solved'' arise.

【0018】そこで、局AとC間の給電電流方向が局C
からA方向(←方向)に流れるよう局A、Cで電流方向
をコントロールする。これにより海中分岐装置BU2の
動作電流はα、海中分岐装置BU1の動作電流はβとな
る。ここでα<βであるので、海中分岐装置BU2、B
U1の順で切替えを行うようにする。、すなわち、まず
給電電流としてαを流し、海中分岐装置BU2において
局Dへの障害回線を切り離す。これにより海中分岐装置
BU2の対地電位は障害点のゼロ電位に影響されて固定
されることがなくなるので、次の海中分岐装置BU1に
おける局B側給電路の海中アースのための切替えにあた
っては、動作電流をβ、海中分岐装置BU1の対地電位
をゼロに設定するよう、両端の局A、Cでコントロール
することが可能となり、ホットスイッチングを防止でき
る。
Therefore, the feeding current direction between stations A and C is
Stations A and C control the direction of the current so that it flows in the A direction (← direction). As a result, the operating current of the underwater branching device BU2 becomes α, and the operating current of the underwater branching device BU1 becomes β. Here, since α<β, the underwater branching devices BU2 and B
The switching is performed in the order of U1. That is, first, α is passed as a power supply current, and the faulty line to station D is disconnected at the underwater branch unit BU2. As a result, the ground potential of the underwater branching device BU2 is no longer fixed due to the influence of the zero potential at the fault point, so when switching the station B side power supply line in the next underwater branching device BU1 for underwater grounding, the operation It becomes possible to control the stations A and C at both ends to set the current to β and the ground potential of the underwater branching device BU1 to zero, and hot switching can be prevented.

【0019】また上述の給電方法で用いる給電路切替え
回路として、本発明に係る給電路切替え回路を用いるこ
とができる。この本発明に係る給電路切替え回路では、
例えば第1の電流分流回路に流れる電流を第2の電流分
流回路に流れる電流よりも大きくすると、第1の電流分
流回路の通電方向に供給電流を流した時に給電路切替え
回路の駆動回路に分流される動作電流がα、第2の電流
分流回路の通電方向に供給電流を流した時に駆動回路に
分流される動作電流がβとなり、α<βとなる。したが
ってこの給電路切替え回路では動作電流の通電方向を変
えることで、その動作電流の大きさを変えることができ
る。
Furthermore, the power supply path switching circuit according to the present invention can be used as the power supply path switching circuit used in the above-described power feeding method. In the power supply path switching circuit according to the present invention,
For example, if the current flowing through the first current shunt circuit is made larger than the current flowing through the second current shunt circuit, when the supply current flows in the current direction of the first current shunt circuit, the current will be shunted to the drive circuit of the power supply path switching circuit. The operating current that is applied is α, and the operating current that is shunted to the drive circuit when the supply current is passed in the current direction of the second current shunting circuit is β, so that α<β. Therefore, in this power supply path switching circuit, by changing the direction in which the operating current flows, the magnitude of the operating current can be changed.

【0030】[0030]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図2には本発明の一実施例としての給電方法を用
いた海底ケーブル通信システムが示される。図中、A、
B、C、Dは陸揚局、BU1、BU2は海中分岐装置で
ある。海中分岐装置BU1、BU2内におけるK1〜K
4はリレーであり、各リレーK1〜K4に付されている
矢印は各リレーが動作する動作電流の方向を表し、α、
βは各リレーが動作する動作電流の大きさを表し、この
動作電流はα<βの関係にある。また各リレーK1〜K
4の接点は各リレーの番号に対応させて■〜■で示され
ている。なお、これらの表記法は後に述べる各実施例で
も同じである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a submarine cable communication system using a power feeding method as an embodiment of the present invention. In the figure, A,
B, C, and D are landing stations, and BU1 and BU2 are underwater branching devices. K1 to K in the underwater branching devices BU1 and BU2
4 is a relay, and the arrows attached to each relay K1 to K4 represent the direction of the operating current in which each relay operates, α,
β represents the magnitude of the operating current at which each relay operates, and this operating current has a relationship of α<β. Also each relay K1~K
4 contacts are indicated by ■ to ■ in correspondence with the numbers of each relay. Note that these notations are the same in each embodiment described later.

【0031】この実施例では、動作電流の方向と大きさ
が異なるリレーK1とK3の組合せ、またはリレーK2
とK4の組合せにより、給電電流の方向と大きさにより
給電路の切替り態様が異なるようにしている。
In this embodiment, a combination of relays K1 and K3 with different operating current directions and magnitudes, or a combination of relays K2 and
By the combination of and K4, the switching mode of the power supply path is made to differ depending on the direction and magnitude of the power supply current.

【0032】システムを通常に立ち上げた時には、例え
ば陸揚局AとD間を両端給電、陸揚局BとCを片端給電
に設定するものとする。。それには、まず陸揚局Aから
陸揚局Dへの方向に給電電流αを流して海中分岐装置B
U1のリレーK1を動作させ、その接点■を開閉して陸
揚局B側の分岐給電路を海中アースし、しかる後に動作
電流βを流して海中分岐装置BU2のリレーK1を動作
させ、その接点■を開閉して陸揚局C側の分岐給電路を
海中アースする。なお、各海中分岐装置BU1、BU2
での切替えにあたってはその対地電位をゼロに設定する
よう両端の陸揚局で給電電圧の調整を行っており、これ
は以降に述べる各実施例でも同じである。
[0032] When the system is normally started up, it is assumed that, for example, the landing stations A and D are set to have power supplied at both ends, and the landing stations B and C are set to be powered at one end. . To do this, first, feed current α is passed in the direction from landing station A to landing station D, and
Activate relay K1 of U1, open and close its contact ■ to ground the branch power supply line on the landing station B side underwater, and then apply operating current β to operate relay K1 of underwater branch device BU2, and connect its contact ■Open and close the branch power supply line on the landing station C side to the underwater ground. In addition, each underwater branching device BU1, BU2
When switching, the power supply voltage is adjusted at the landing stations at both ends so that the ground potential is set to zero, and this is the same in each of the embodiments described below.

【0033】いまこの実施例で、例えば海中分岐装置B
U2と陸揚局D間のケーブルが地絡障害を起こしたもの
とする。この場合、システム全体をいったん無給電状態
に戻し、その後に、陸揚局AとC間で両端給電を、陸揚
局Bで片端給電を行うよう給電路切替えを行うものとす
る。
In this embodiment, for example, underwater branching device B
Assume that a ground fault has occurred in the cable between U2 and landing station D. In this case, the entire system is temporarily returned to the unpowered state, and then the power supply path is switched so that the landing stations A and C are supplied with power at both ends, and the landing station B is supplied with power at one end.

【0034】陸揚局AとC間では、陸揚局CからA方向
(←方向)に給電電流を流すよう陸揚局A、Cの給電電
流方向を調整する。まず給電電流αを流すと、海中分岐
装置BU2におけるリレーK4が動作してその接点■を
開閉し、それにより障害のあった陸揚局Dへの分岐給電
路を海中アースして陸揚局A、C間給電路から切り離す
。しかる後に、給電電流βを流して海中分岐装置BU1
におけるリレーK3を動作させてその接点■を開閉して
陸揚局Bを海中アースする。
Between the landing stations A and C, the direction of the power supply current of the landing stations A and C is adjusted so that the power supply current flows from the landing station C in the A direction (← direction). First, when the power supply current α is applied, the relay K4 in the underwater branch unit BU2 operates to open and close its contact ■, thereby grounding the branch power supply path to the faulty landing station D under the sea and connecting it to the landing station A. , disconnect from the power supply path between C and C. After that, the power supply current β is applied to the underwater branching device BU1.
The relay K3 is operated to open and close its contact (2), thereby grounding the landing station B underwater.

【0035】図3には本発明の他の実施例が示される。 ます図4にはこの図3の実施例で設定可能な給電経路が
示される。前述の図2の実施例は、海中分岐装置BU1
とBU2間で地絡障害が発生するとシステム全体がシス
テムダウンしてしまう。この図3の実施例はかかる点を
改良したものである。この実施例では、各リレーK1〜
K6の動作電流はα=200mA、β=400mA、γ
=m600Aの三種類となっている。
Another embodiment of the invention is shown in FIG. FIG. 4 shows power supply paths that can be set in the embodiment of FIG. In the embodiment of FIG. 2 described above, the underwater branching device BU1
If a ground fault occurs between BU2 and BU2, the entire system will go down. The embodiment shown in FIG. 3 is an improvement on this point. In this embodiment, each relay K1~
The operating current of K6 is α=200mA, β=400mA, γ
There are three types: = m600A.

【0036】まず、通常時には陸揚局AとD間で両端給
電、陸揚局B、Cでそれぞれ片端給電をする。そのため
には、立上げ時に、まず陸揚局AからD方向に200m
Aの給電電流を流して海中分岐装置BU2のリレーK6
を動作させて陸揚局C側を切り離して海中アースし、次
いで400mAの給電電流を流して海中分岐装置BU1
のリレーK6を動作させて陸揚局B側を切り離して海中
アースする。
First, under normal conditions, power is supplied at both ends between landing stations A and D, and power is supplied at one end at each of landing stations B and C. To do this, at the time of startup, first 200m from landing station A in direction D.
A feed current is passed to relay K6 of underwater branching device BU2.
The landing station C side is disconnected and grounded underwater, and then a 400 mA power supply current is applied to the underwater branch unit BU1.
Activate relay K6 to disconnect the landing station B side and ground it underwater.

【0037】いま例えば海中分岐装置BU2と陸揚局D
間のケーブルが地絡障害を起こしたものとする。この時
には、陸揚局AとC間で両端給電、陸揚局Bで片端給電
をする。そのためには、陸揚局CからA方向に200m
Aの給電電流を流し海中分岐装置BU2のリレーK4と
K5を動作させて陸揚局D側を切り離して海中アースし
、次いで、400mAの給電電流を流し海中分岐装置B
U1のリレーK2を動作させて陸揚局B側を切り離して
海中アースする。
For example, the underwater branching device BU2 and the landing station D
It is assumed that a ground fault has occurred in the cable between the two. At this time, power is supplied at both ends between landing stations A and C, and power is supplied at one end at landing station B. For that purpose, 200m from landing station C in direction A.
A power supply current is applied to activate relays K4 and K5 of underwater branching device BU2 to disconnect the landing station D side and ground it underwater, and then a 400 mA power supply current is applied to underwater branching device B.
Activate relay K2 of U1 to disconnect the landing station B side and ground it underwater.

【0038】図5には本発明のまた他の実施例が示され
る。また図6には図5の実施例で設定可能な給電経路が
示される。各リレーの動作電流はα=200mA、β=
400mAであり、リレーK5は両方向(←→方向)の
動作電流に対して動作するリレーである。
FIG. 5 shows yet another embodiment of the invention. Further, FIG. 6 shows power supply paths that can be set in the embodiment of FIG. The operating current of each relay is α=200mA, β=
The current is 400 mA, and the relay K5 is a relay that operates with operating current in both directions (←→ direction).

【0039】まず、通常時には陸揚局AとD間で両端給
電、陸揚局B、Cでそれぞれ片端給電をする。そのため
には、立上げ時に、まず陸揚局AからD方向に200m
Aの給電電流を流して海中分岐装置BU2のリレーK2
とK5を動作させて陸揚局C側を切り離して海中アース
し、次いで400mAの給電電流を流して海中分岐装置
BU1のリレーK5(200Aで動作済)とK6を動作
させて陸揚局B側を切り離して海中アースする。なお陸
揚局DからA方向に給電電流を流した場合にも同様な動
作となる。
First, under normal conditions, power is supplied at both ends between landing stations A and D, and power is supplied at one end at each of landing stations B and C. To do this, at the time of startup, first 200m from landing station A in direction D.
Relay K2 of underwater branching device BU2 by passing power supply current A
and operate K5 to disconnect the landing station C side and connect it to underwater ground, then apply a 400mA power supply current and operate relays K5 (already operated at 200A) and K6 of the underwater branch unit BU1 to disconnect the landing station B side. Separate it and ground it underwater. Note that the same operation occurs when the feeding current is passed in the direction A from the landing station D.

【0040】いま例えば海中分岐装置BU2と陸揚局D
間のケーブルが地絡障害を起こしたものとする。この時
には、陸揚局AとC間で両端給電、陸揚局Bで片端給電
をする。そのためには、陸揚局AからC方向に200m
Aの給電電流を流し海中分岐装置BU2のリレーK1と
K5を動作させて陸揚局D側を切り離して海中アースし
、次いで、400Aの給電電流を流し海中分岐装置BU
1のリレーK5(200mAで動作済)とK6を動作さ
せて陸揚局B側を切り離して海中アースする。
For example, the underwater branching device BU2 and the landing station D
It is assumed that a ground fault has occurred in the cable between the two. At this time, power is supplied at both ends between landing stations A and C, and power is supplied at one end at landing station B. To do this, you need to travel 200m from landing station A in the direction of C.
A power supply current is applied to operate relays K1 and K5 of the underwater branching device BU2, and the landing station D side is disconnected and grounded under the sea.Then, a 400A power supply current is applied to the underwater branching device BU.
Activate relays K5 (already operated at 200 mA) and K6 of No. 1 to disconnect the landing station B side and ground it underwater.

【0041】図7には本発明の更に他の実施例が示され
る。また図8には図7の実施例で設定可能な給電経路が
示される。各リレーの動作電流はα=200mA、β=
400mAであり、リレーK1とK2はそれぞれ、動作
電流方向を変えることで動作電流の大きさが変わるリレ
ーである。かかるリレーK1、K2を給電路切替え回路
中に用いることで、給電電流の方向と大きさにより給電
路切替え回路の切替り態様を変化させることができる。 かかるリレーK1、K2の構成例については後に詳しく
述べる。
FIG. 7 shows yet another embodiment of the present invention. Further, FIG. 8 shows power supply paths that can be set in the embodiment of FIG. The operating current of each relay is α=200mA, β=
400 mA, and relays K1 and K2 are relays in which the magnitude of the operating current changes by changing the direction of the operating current. By using such relays K1 and K2 in the power supply path switching circuit, the switching mode of the power supply path switching circuit can be changed depending on the direction and magnitude of the power supply current. A configuration example of such relays K1 and K2 will be described in detail later.

【0042】まず、通常時には陸揚局AとD間で両端給
電、陸揚局B、Cでそれぞれ片端給電をする。そのため
には、立上げ時に、まず陸揚局DからA方向に200m
Aの給電電流を流して海中分岐装置BU1のリレーK1
とK2を動作させて陸揚局B側を切り離して海中アース
し、次いで400mAの給電電流を流して海中分岐装置
BU2のリレーK1を動作させて陸揚局C側を切り離し
て海中アースする。
First, under normal conditions, power is supplied at both ends between landing stations A and D, and power is supplied at one end at each of landing stations B and C. To do this, at the time of startup, first 200m from landing station D in direction A.
Relay K1 of underwater branching device BU1 by passing power supply current A
K2 is operated to disconnect the landing station B side and ground it in the sea, and then a 400 mA feeding current is applied to operate the relay K1 of the underwater branching device BU2 to disconnect the landing station C side and ground it in the sea.

【0043】いま例えば海中分岐装置BU2と陸揚局D
間のケーブルが地絡障害を起こしたものとする。この時
には、陸揚局AとC間で両端給電、陸揚局Bで片端給電
をする。そのためには、陸揚局AからC方向に200m
Aの給電電流を流し海中分岐装置BU2のリレーK2を
動作させて陸揚局D側を切り離して海中アースし、次い
で、400mAの給電電流を流し海中分岐装置BU1の
リレーK1とK2を動作させて陸揚局B側を切り離して
海中アースする。
For example, the underwater branching device BU2 and the landing station D
It is assumed that a ground fault has occurred in the cable between the two. At this time, power is supplied at both ends between landing stations A and C, and power is supplied at one end at landing station B. To do this, you need to travel 200m from landing station A in the direction of C.
A power supply current is applied to operate relay K2 of underwater branch unit BU2, disconnecting the landing station D side and grounded under the sea.Next, 400 mA of power supply current is applied to operate relays K1 and K2 of underwater branch unit BU1. Disconnect the landing station B side and ground it underwater.

【0044】図9には本発明の更にまた他の実施例が示
される。また図10には図9の実施例で設定可能な給電
経路が示される。各リレーの動作電流は海中分岐装置B
U1側でα=200mA、β=400mA、海中分岐装
置BU2側でα=200mA、β=400mAであり、
海中分岐装置BU2のリレーK1とK2はそれぞれ、動
作電流方向を変えることで動作電流の大きさが変わるリ
レーである。
FIG. 9 shows yet another embodiment of the present invention. Further, FIG. 10 shows power supply paths that can be set in the embodiment of FIG. The operating current of each relay is undersea branch device B
α = 200 mA, β = 400 mA on the U1 side, α = 200 mA, β = 400 mA on the underwater branch unit BU2 side,
The relays K1 and K2 of the underwater branching device BU2 are relays in which the magnitude of the operating current changes by changing the direction of the operating current.

【0045】まず、通常時には陸揚局AとD間で両端給
電、陸揚局B、Cでそれぞれ片端給電をする。そのため
には、立上げ時に、まず陸揚局DからA方向に400m
Aの給電電流を流して海中分岐装置BU1のリレーK2
を動作させて陸揚局B側を切り離して海中アースし、次
いで600mAの給電電流を流して海中分岐装置BU2
のリレーK2を動作させて陸揚局C側を切り離して海中
アースする。
First, under normal conditions, power is supplied at both ends between landing stations A and D, and power is supplied at one end at each of landing stations B and C. To do this, at the time of startup, first 400m from landing station D in direction A.
Relay K2 of underwater branching device BU1 by passing power supply current A
The landing station B side is disconnected and grounded underwater, and then a 600 mA power supply current is applied to the underwater branch unit BU2.
Activate relay K2 to disconnect the landing station C side and ground it underwater.

【0046】いま例えば海中分岐装置BU2と陸揚局D
間のケーブルが地絡障害を起こしたものとする。この時
には、陸揚局AとC間で両端給電、陸揚局Bで片端給電
をする。そのためには、陸揚局AからC方向に200m
Aの給電電流を流し海中分岐装置BU2のリレーK1を
動作させて陸揚局D側を切り離して海中アースし、次い
で、400mAの給電電流を流し海中分岐装置BU1の
リレーK6を動作させて陸揚局B側を切り離して海中ア
ースする。
For example, the underwater branching device BU2 and the landing station D
It is assumed that a ground fault has occurred in the cable between the two. At this time, power is supplied at both ends between landing stations A and C, and power is supplied at one end at landing station B. To do this, you need to travel 200m from landing station A in the direction of C.
A power supply current is applied to operate relay K1 of underwater branching device BU2, disconnecting the landing station D side and grounding it under the sea.Next, a 400mA power supply current is applied and relay K6 of underwater branching device BU1 is operated to land the landing station. Disconnect the station B side and ground it underwater.

【0047】次に上述の図7、図9の実施例で用いられ
たリレーK1、K2のような給電電流方向の変えること
で動作電流の大きさが変わるリレーの構成について説明
する。図11にはこの構成例が示される。図中、Lは給
電路切替え回路の駆動回路としてのリレーコイルであり
、このリレーコイルLにダイオードD1と調整抵抗R1
の直列回路、およびダイオードD2と調整抵抗R2の直
列回路がそれぞれ並列接続される。ダイオードD1とダ
イオードD2は電流方向を制限するためのものでありそ
れぞれ極性が逆に接続される。まだ調整抵抗R1とR2
はその抵抗値が異なっている。
Next, the structure of a relay such as relays K1 and K2 used in the embodiments shown in FIGS. 7 and 9 described above, in which the magnitude of the operating current changes by changing the direction of the power supply current, will be described. FIG. 11 shows an example of this configuration. In the figure, L is a relay coil as a drive circuit of the power supply path switching circuit, and this relay coil L has a diode D1 and an adjustment resistor R1.
A series circuit of , and a series circuit of diode D2 and adjustment resistor R2 are connected in parallel. The diode D1 and the diode D2 are used to limit the direction of current, and are connected with opposite polarities. Still adjusting resistors R1 and R2
have different resistance values.

【0048】このように構成すると、←方向に給電電流
を供給した時にはその一部が調整抵抗R1側に分流され
、→方向に供給した時にはその一部が調整抵抗R2側に
分流されることになり、調整抵抗R1とR2は抵抗値が
異なっているのでそれぞれの分流電流値が異なり、結局
、リレーコイルLにそれを駆動するための一定値以上の
動作電流を流すためには、←方向に給電電流を流す時と
→方向に給電電流を流すときで、給電電流の大きさが異
なる。例えば調整抵抗R1>調整抵抗R2とすると、←
方向の給電電流をαとすると、→方向にはこのαよりも
大きい給電電流βを流さなければリレーは作動しない。
With this configuration, when the feed current is supplied in the ← direction, part of it is shunted to the adjustment resistor R1 side, and when it is supplied in the → direction, a part of it is shunted to the adjustment resistor R2 side. Since the adjustment resistors R1 and R2 have different resistance values, their respective shunt current values are different, and in the end, in order to flow an operating current of more than a certain value to drive the relay coil L, it is necessary to move it in the ← direction. The magnitude of the power supply current is different when the power supply current is flowing and when the power supply current is flowing in the → direction. For example, if adjustment resistance R1>adjustment resistance R2, ←
If the feeding current in the direction is α, the relay will not operate unless a feeding current β larger than α is passed in the → direction.

【0049】図12はかかる動作電流方向で動作電流値
が異なるデバイスの他の構成例が示される。この回路が
上述の図11の回路と異なる点は、逆極性で直列接続さ
れたツェナーダイオードZD1、ZD2の直列回路がリ
レーコイルLに並列接続されていることである。このツ
ェナーダイオードZD1、ZD2はリレーコイルに過電
圧がかからないようにする保護回路である。
FIG. 12 shows another configuration example of a device having different operating current values in the operating current direction. This circuit differs from the circuit shown in FIG. 11 described above in that a series circuit of Zener diodes ZD1 and ZD2 connected in series with opposite polarities is connected in parallel to the relay coil L. The Zener diodes ZD1 and ZD2 are a protection circuit that prevents overvoltage from being applied to the relay coil.

【0050】この回路では、→方向に給電電流を流した
時には、ゼロから給電電流を除々に増加していくと、こ
の給電電流はリレーコイルL側と調整抵抗R2側とに分
流する。やがてリレーは調整抵抗R2によって設定され
た電流値で動作する。さらに給電電流を増加させると、
ツェナーダイオードZD2にも電流が流れはじめ、ツェ
ナー電圧によってリレーコイル両端電圧は一定値に固定
されるので、リレーコイルLに流れる動作電流を制限し
てコイルLを保護することができる。←方向に給電電流
を流した時も同様にしてツェナーダイオードZD1でコ
イルを保護できる。
In this circuit, when a feeding current is passed in the → direction and the feeding current is gradually increased from zero, this feeding current is divided into the relay coil L side and the adjustment resistor R2 side. Eventually, the relay operates at the current value set by the regulating resistor R2. If the supply current is further increased,
Current also begins to flow through the Zener diode ZD2, and the Zener voltage fixes the voltage across the relay coil to a constant value, so the operating current flowing through the relay coil L can be limited to protect the coil L. The coil can be protected by the Zener diode ZD1 in the same way when the feeding current is passed in the ← direction.

【0051】図13は同様に動作電流方向で動作電流値
が異なるデバイスのまた他の構成例が示される。この回
路が上述の図11の回路と異なる点は、調整抵抗R1に
並列に保護用のツェナーダイオードZD1が接続され、
調整抵抗R2に並列にツェナーダイオードZD1と逆極
性の保護用のツェナーダイオードZD2が接続されてい
ることである。
FIG. 13 similarly shows another configuration example of a device in which the operating current value differs in the operating current direction. This circuit differs from the circuit of FIG. 11 described above in that a protective Zener diode ZD1 is connected in parallel to the adjustment resistor R1.
A protective Zener diode ZD2 having a polarity opposite to that of the Zener diode ZD1 is connected in parallel to the adjustment resistor R2.

【0052】この回路の動作は図12の場合とほぼ同じ
である。すなわち、→方向に給電電流を流した時には、
ゼロから給電電流を除々に増加していくと、この給電電
流はリレーコイルL側と調整抵抗R2側とに分流する。 やがてリレーは調整抵抗R2によって設定された電流値
で動作する。さらに給電電流を増加させると、ツェナー
ダイオードZD2にも電流が流れはじめ、ツェナー電圧
によってリレーコイル両端電圧は一定値に固定されるの
で、リレーコイルLに流れる動作電流を制限してコイル
Lを保護することができる。←方向に給電電流を流した
時も同様にしてツェナーダイオードZD1でコイルを保
護できる。
The operation of this circuit is almost the same as that shown in FIG. In other words, when the feeding current flows in the → direction,
When the power supply current is gradually increased from zero, this power supply current is divided into the relay coil L side and the adjustment resistor R2 side. Eventually, the relay operates at the current value set by the regulating resistor R2. When the power supply current is further increased, current also begins to flow through the Zener diode ZD2, and the voltage across the relay coil is fixed at a constant value due to the Zener voltage, so the operating current flowing through the relay coil L is limited and the coil L is protected. be able to. The coil can be protected by the Zener diode ZD1 in the same way when the feeding current is passed in the ← direction.

【0053】電流方向によって動作電流の大きさを変え
るデバイスとしては、上述の図11〜図13のもの以外
に、図2の実施例で用いた回路、つまり図14に示され
るような回路によってももちろん実現できるが、上述の
ように構成することで、リレーの数を一つで構成でき、
かつ接点構成も簡素化できるものである。
As a device that changes the magnitude of the operating current depending on the current direction, in addition to the devices shown in FIGS. 11 to 13 described above, the circuit used in the embodiment of FIG. 2, that is, the circuit shown in FIG. Of course it can be realized, but by configuring as described above, the number of relays can be configured with one,
Moreover, the contact configuration can also be simplified.

【0060】[0060]

【発明の効果】以上に説明したように、本発明の給電方
法によれば、障害発生時等における給電システムの再構
築にあたって、いわゆるホットスイッチングを防止しつ
つ、各海中分岐装置で給電路切替えを行うことが可能と
なり、海底ケーブル通信システムの信頼性を向上できる
。また本発明の給電路切替え回路によれば、回路を小型
化、簡素化することができる。
[Effects of the Invention] As explained above, according to the power supply method of the present invention, when rebuilding the power supply system in the event of a failure, it is possible to switch the power supply route at each underwater branch device while preventing so-called hot switching. This makes it possible to improve the reliability of submarine cable communication systems. Further, according to the power supply path switching circuit of the present invention, the circuit can be downsized and simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る原理説明のための図である。FIG. 1 is a diagram for explaining the principle of the present invention.

【図2】本発明の一実施例としての給電方法による海底
ケーブル通信システムを示すブロック図である。
FIG. 2 is a block diagram showing a submarine cable communication system using a power feeding method as an embodiment of the present invention.

【図3】本発明の他の実施例を示すブロック図である。FIG. 3 is a block diagram showing another embodiment of the present invention.

【図4】図3の実施例システムで設定可能な給電路の態
様を説明する図である。
FIG. 4 is a diagram illustrating aspects of a power supply path that can be set in the embodiment system of FIG. 3;

【図5】本発明のまた他の実施例を示すブロック図であ
る。
FIG. 5 is a block diagram showing another embodiment of the present invention.

【図6】図5の実施例システムで設定可能な給電路の態
様を説明する図である。
FIG. 6 is a diagram illustrating aspects of a power supply path that can be set in the embodiment system of FIG. 5;

【図7】本発明の更に他の実施例を示すブロック図であ
る。
FIG. 7 is a block diagram showing still another embodiment of the present invention.

【図8】図7の実施例システムで設定可能な給電路の態
様を説明する図である。
8 is a diagram illustrating aspects of a power supply path that can be set in the embodiment system of FIG. 7. FIG.

【図9】本発明のまた更に他の実施例を示すブロック図
である。
FIG. 9 is a block diagram showing still another embodiment of the present invention.

【図10】図9の実施例システムで設定可能な給電路の
態様を説明する図である。
10 is a diagram illustrating aspects of a power supply path that can be set in the embodiment system of FIG. 9; FIG.

【図11】本発明の一実施例としての給電路切替え回路
の例を示す図である。
FIG. 11 is a diagram showing an example of a power supply path switching circuit as an embodiment of the present invention.

【図12】本発明の他の実施例としての給電路切替え回
路の例を示す図である。
FIG. 12 is a diagram showing an example of a power supply path switching circuit as another embodiment of the present invention.

【図13】本発明のまた他の実施例としての給電路切替
え回路の例を示す図である。
FIG. 13 is a diagram showing an example of a power supply path switching circuit as still another embodiment of the present invention.

【図14】電流方向により同じ場所の接点が異なる電流
値で動作する回路の例を示す図である。
FIG. 14 is a diagram showing an example of a circuit in which contacts at the same location operate at different current values depending on the current direction.

【図15】海底ケーブル通信システムでの給電路切替え
の従来方法を説明する図である。
FIG. 15 is a diagram illustrating a conventional method of switching power supply lines in a submarine cable communication system.

【図16】従来方法の問題点を説明するための図である
FIG. 16 is a diagram for explaining problems with the conventional method.

【符号の説明】[Explanation of symbols]

A、B、C、D  陸揚局 BU1  BU2  海中分岐装置 K1〜K7  リレー ■〜■  各リレーK1〜K6の接点 D1、D2  ダイオード R1、R2  調整抵抗 L  リレーコイル A, B, C, D Landing station BU1 BU2 Undersea branching device K1~K7 Relay ■~■ Contact points of each relay K1~K6 D1, D2 Diode R1, R2 Adjustment resistance L Relay coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  海底ケーブルを複数の海中分岐装置(
BU1、BU2・・・)で分岐して複数の局(A、B、
C、D・・・)間を接続する海底ケーブル通信システム
の給電方法であって、電流方向を変えることで動作電流
の大きさが異なる給電路切替え回路を各海中分岐装置が
備え、各海中分岐装置の給電路切替え回路は設定せんと
する両端給電路における同一給電電流方向に対して各々
動作電流値が異なるよう構成され、障害発生時における
システムの立ち上げに際し、両端給電路を設定せんとす
る障害側海中分岐装置側の非障害回線側局と非障害側海
中分岐装置側の局間で、まず障害側海中分岐装置におけ
る給電路切替え回路が小なる動作電流で動作する給電電
流方向で給電して障害回線を分離するよう給電路切替え
を行い、しかる後に同一給電電流方向に大なる給電電流
を給電して非障害側海中分岐装置における給電路切替え
回路を切り替えて給電路設定を行うようにした給電方法
[Claim 1] A submarine cable is connected to a plurality of underwater branching devices (
Branch at BU1, BU2...) and connect to multiple stations (A, B,
This is a power supply method for a submarine cable communication system that connects C, D... The device's power supply path switching circuit is configured to have different operating current values for the same power supply current direction in the two-end power supply path to be set, and when starting up the system in the event of a failure, it is difficult to set the two-end power supply path. Between the non-faulty line side station on the faulty underwater branching device side and the station on the non-faulty underwater branching device side, first, the power supply path switching circuit in the faulty underwater branching device supplies power in the feed current direction that operates with a small operating current. The power supply path was switched to isolate the faulty circuit, and then a large power supply current was fed in the same direction of current, and the power supply path switching circuit in the non-faulty underwater branch device was switched to set up the power supply path. Power supply method.
【請求項2】  海底ケーブルを複数の海中分岐装置(
BU1、BU2・・・)で分岐して多地点(A、B、C
、D・・・)間を結ぶ海底ケーブル通信システムにおい
て該複数の海中分岐装置の給電路切替え回路にそれぞれ
異なる動作電流を割り当て、小さい動作電流の海中分岐
装置側の給電路切替え回路側から順次に動作させて給電
路を切り替える給電方法であって、該複数の海中分岐装
置を給電路内に直列に配置し、その両端の地点から給電
して給電電流を一方向に流した時とその反対方向に流し
た時とで、該複数の海中分岐装置の給電路切替え回路の
動作順序が逆となるようにした海底ケーブル通信システ
ムの給電方法。
[Claim 2] A submarine cable is connected to a plurality of underwater branching devices (
Branch at BU1, BU2...) and connect to multiple points (A, B, C
, D...), a different operating current is assigned to each of the power supply switching circuits of the plurality of underwater branching devices, and sequentially starting from the power supply switching circuit side of the underwater branching device with the smaller operating current. A power supply method that switches the power supply route by operating the power supply route, in which a plurality of underwater branch devices are arranged in series in the power supply route, and power is supplied from both ends of the power supply route, and the supply current flows in one direction and in the opposite direction. A power feeding method for a submarine cable communication system in which the operating order of the power feeding path switching circuits of the plurality of underwater branching devices is reversed when the power is supplied to the submarine cable communication system.
【請求項3】  該海中分岐装置の一部または全ての分
岐給電路に給電路切替え機能を持たない海中分岐装置が
設置されている請求項1または2記載の給電方法。
3. The power feeding method according to claim 1, wherein an underwater branching device having no power feeding path switching function is installed in some or all of the branching power feeding paths of the underwater branching device.
【請求項4】  給電路切替え回路を駆動するための動
作電流を通電する駆動回路に並列接続されて一方向にの
み第1の大きさの電流を通電する第1の電流分流回路と
、該駆動回路に並列接続されて該第1の電流分流回路と
逆方向にのみ該第1の大きさと異なる第2の大きさの電
流を通電する第2の電流分流回路とを備えた給電路切替
え回路。
4. A first current shunting circuit that is connected in parallel to a drive circuit that passes an operating current for driving the power supply path switching circuit and that passes a current of a first magnitude only in one direction; A power supply path switching circuit comprising: a second current shunting circuit connected in parallel to the circuit and passing a current having a second magnitude different from the first magnitude only in a direction opposite to the first current shunting circuit.
【請求項5】  給電路切替え回路として請求項2記載
の給電路切替え回路を用いた請求項1〜3の何れかに記
載の海底ケーブル通信システムの給電方法。
5. The method of feeding power to a submarine cable communication system according to claim 1, wherein the power feeding path switching circuit according to claim 2 is used as the feeding path switching circuit.
JP3817391A 1991-01-17 1991-02-07 Feeding method and feed line switching circuit for sea-bottom cable communication system Withdrawn JPH04256225A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3817391A JPH04256225A (en) 1991-02-07 1991-02-07 Feeding method and feed line switching circuit for sea-bottom cable communication system
CA 2059493 CA2059493C (en) 1991-01-17 1992-01-16 Feeding system and feeding method for a submarine cable communication system
EP19920100737 EP0495509B1 (en) 1991-01-17 1992-01-17 Feeding system and feeding method for a submarine cable communication system
US08/092,563 US5334879A (en) 1991-01-17 1993-07-16 Feeding system and feeding method for a submarine cable communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3817391A JPH04256225A (en) 1991-02-07 1991-02-07 Feeding method and feed line switching circuit for sea-bottom cable communication system

Publications (1)

Publication Number Publication Date
JPH04256225A true JPH04256225A (en) 1992-09-10

Family

ID=12517999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3817391A Withdrawn JPH04256225A (en) 1991-01-17 1991-02-07 Feeding method and feed line switching circuit for sea-bottom cable communication system

Country Status (1)

Country Link
JP (1) JPH04256225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644466A (en) * 1994-03-17 1997-07-01 Fujitsu Limited Power feed circuit for use in a submarine cable branching unit
WO2016092806A1 (en) * 2014-12-10 2016-06-16 日本電気株式会社 Feedline branching apparatus and feedline branching method
EP2728765A3 (en) * 2012-10-31 2018-01-03 Fujitsu Limited Power feeding path switching device and power feeding system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644466A (en) * 1994-03-17 1997-07-01 Fujitsu Limited Power feed circuit for use in a submarine cable branching unit
EP2728765A3 (en) * 2012-10-31 2018-01-03 Fujitsu Limited Power feeding path switching device and power feeding system
WO2016092806A1 (en) * 2014-12-10 2016-06-16 日本電気株式会社 Feedline branching apparatus and feedline branching method
JPWO2016092806A1 (en) * 2014-12-10 2017-09-14 日本電気株式会社 Feeding path branching device and feeding path branching method
US10355744B2 (en) 2014-12-10 2019-07-16 Nec Corporation Feed line branching apparatus and feed line branching method

Similar Documents

Publication Publication Date Title
US5517383A (en) Branching unit for submarine systems
US5841205A (en) Branching unit for underwater telecommunications systems
US5196984A (en) Submarine telecommunications systems
EP0495509B1 (en) Feeding system and feeding method for a submarine cable communication system
US6895187B1 (en) Branching unit and system for underwater optical communication
JPH04256225A (en) Feeding method and feed line switching circuit for sea-bottom cable communication system
US6414405B1 (en) Method and apparatus for operating cabled-fiber undersea network, and fault-tolerant branching unit for use therein
US5532478A (en) Underwater branching device
JP2786524B2 (en) Feeding line switching circuit for undersea branching device and method for feeding power in undersea cable communication system
EP1294113B1 (en) Branching unit for an optical transmission system
JPH0253332A (en) Feeder switching circuit
JP2002164820A (en) Submarine feeding method
JPH04341018A (en) Feeder line switching circuit for submarine branching device and feeding method for submarine communication system
JPH05327561A (en) Feeding path switching circuit
EP1437840B1 (en) Submarine cable branching unit
JPH04222123A (en) Feeding path switching circuit
JP2552165B2 (en) Submarine optical cable power supply branch device
JP2805147B2 (en) Submarine branch cable power supply system
JPH0815370B2 (en) Submarine relay transmission line power supply switching method
JPH01276937A (en) Optical submarine feeding system
EP1322046B1 (en) Submarine branching unit having asymmetrical architecture
JPH01200832A (en) Power suppling line switching circuit for underwater branching device
JPH01243734A (en) Switching method and switching circuit for feeder line of transmission path
JPH01289323A (en) Feeding switching system for submarine relay transmission line
JP2006303886A (en) Submarine cable communication system with double feed line

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514