JP2008271739A - Distribution system switching device - Google Patents

Distribution system switching device Download PDF

Info

Publication number
JP2008271739A
JP2008271739A JP2007113864A JP2007113864A JP2008271739A JP 2008271739 A JP2008271739 A JP 2008271739A JP 2007113864 A JP2007113864 A JP 2007113864A JP 2007113864 A JP2007113864 A JP 2007113864A JP 2008271739 A JP2008271739 A JP 2008271739A
Authority
JP
Japan
Prior art keywords
switch
feeder
substation
bus
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007113864A
Other languages
Japanese (ja)
Inventor
Hideo Watanabe
秀夫 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007113864A priority Critical patent/JP2008271739A/en
Publication of JP2008271739A publication Critical patent/JP2008271739A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a distribution system switching device in which a distribution system can be switched during short time power interruption and which is made small in size and inexpensive in cost by common use of a semiconductor switch. <P>SOLUTION: In the distribution system switching device, a plurality of feeders 21L, 22L, 12L, 11L are respectively connected to DC bus-bars 1, 3 of substations on fixed position and opposite position sides via breakers VCB 1 through VCB8 and disconnectors DS1 through DS8, the feeders 21L, 22L, 12L, 11L on the fixed position side and the feeders 21L, 22L, 12L, 11L on the opposite position side are connected via feeder lines 5, 6, the DC bus-bars 1, 3 on the fixed position and opposite position sides are connected to the respective feeders 21L, 22L, 12L, 11L via the common semiconductor switches 7, 8, and the respective switching units LBS1 through LBS8, and power supplies of the feeder lines are successively switched by opening/closing of the breakers VCB1 through VCB8 and the disconnectors DS1 through DS8 and also by opening/closing of the semiconductor switches 7, 8 and the switching units LBS1 through LBS8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、電鉄用変電所配電系統の電源切替等を高速で行い、停電を防止する配電系統切替装置に関するものである。   The present invention relates to a distribution system switching device that performs power supply switching and the like of a substation distribution system for electric railways at high speed to prevent a power failure.

図3は従来の電鉄用変電所の配電系統切替装置の電源切替操作時の構成を示し、1は定位側のA変電所の交流電源2に図示しない整流器を介して接続された6kVの直流母線、3は反位側のB変電所の交流電源4に図示しない整流器を介して接続された6kVの直流母線であり、隣接する変電所間で直流母線1,3は相互に突き合っている。直流母線1には遮断器VCB1〜VCB4及び断路器DS1〜DS4を介してA変電所側のき電線21L,22L,12L,11Lがそれぞれ接続され、直流母線3には遮断器VCB5〜VCB8及び断路器DS5〜DS8を介してB変電所側のき電線21L,22L,12L,11Lがそれぞれ接続される。又、き電線11L,21L間は1号のき電回線5を介して接続され、き電線12L,22L間は2号のき電回線6を介して接続され、1号,2号のき電回線5,6はき電回路に接続される。又、A変電所側及びB変電所側の各き電線21L,22L,12L,11Lにはそれぞれ計測・制御に必要な情報を取り込むための計器用変圧器PT1〜PT8が接続されている。また、A変電所のき電線21L,22L及びB変電所のき電線11L,12Lは他の隣接変電所及び他のセクションのき電線と接続される。   FIG. 3 shows the configuration of a conventional power distribution switching device for an electric railway substation when power is switched. 1 is a 6 kV DC bus connected to an AC power source 2 of a localization A substation via a rectifier (not shown). Reference numeral 3 denotes a 6 kV DC bus connected to the AC power source 4 of the reverse B substation via a rectifier (not shown), and the DC buses 1 and 3 face each other between adjacent substations. The DC bus 1 is connected to the A substation side feeders 21L, 22L, 12L, and 11L via the circuit breakers VCB1 to VCB4 and the disconnectors DS1 to DS4, respectively, and the DC bus 3 is connected to the circuit breakers VCB5 to VCB8 and the disconnection. The feeder lines 21L, 22L, 12L, and 11L on the B substation side are connected through the devices DS5 to DS8, respectively. The feeders 11L and 21L are connected via a feeder line 5 of No. 1, and the feeders 12L and 22L are connected via a feeder line 6 of No. 2 and the feeders of No. 1 and No. 2 are connected. Lines 5 and 6 are connected to feeder circuits. In addition, instrument transformers PT1 to PT8 are connected to the feeder lines 21L, 22L, 12L, and 11L on the A substation side and the B substation side, respectively, for capturing information necessary for measurement and control. The feeder lines 21L and 22L of the A substation and the feeder lines 11L and 12L of the B substation are connected to other adjacent substations and feeders of other sections.

上記構成において、定常時には、遮断器VCB3,VCB4及び断路器DS3,DS4が投入されて、A変電所側のき電線11L,12Lを投入状態とし、B変電所側のき電線21L,22Lは待機状態とする。待機状態とは、投入指令を受けているが、き電回線5,6に電圧があるために、遮断器が投入されていない状態をいう。ただし、投入指令を記憶しているために、き電回線5,6の電圧がなくなると、遮断器は自動投入される。従って、定常時には各き電回線5,6にはA変電所側の電源から給電が行われる。ここで、定位側のA変電所の作業停電等により給電を停止する場合には、反位側のB変電所側の電源から各き電回線5,6に給電するようにする。その切替手順は次のようになる。(1)遮断器VCB4及び断路器DS4を遮断してA変電所側のき電線11Lを遮断状態とする。(2)遮断器VCB5及び断路器DS5を待機状態から投入状態とし、B変電所側のき電線21Lを投入状態とし、1号のき電回線5の電源をA変電所側からB変電所側に切り替える。同様に、2号のき電回線6の電源の切替手順を次のようにする。(1)遮断器VCB3及び断路器DS3を遮断してA変電所側のき電線12Lを遮断状態とする。(2)遮断器VCB6及び断路器DS6を待機状態から投入状態とし、B変電所側のき電線22Lを投入状態とし、2号のき電回線6の電源をA変電所側からB変電所側に切り替える。B変電所側からA変電所側へ電源を戻す場合には、上記と逆の操作を行う。   In the above configuration, the circuit breakers VCB3 and VCB4 and the disconnecting devices DS3 and DS4 are turned on in a steady state, the feeders 11L and 12L on the A substation side are turned on, and the feeders 21L and 22L on the B substation side are on standby. State. The standby state refers to a state in which the circuit breaker is not turned on due to a voltage on the feeder lines 5 and 6 although receiving the turn-on command. However, since the closing command is stored, the circuit breaker is automatically switched on when the voltage on the feeder lines 5 and 6 is lost. Accordingly, during normal operation, power is supplied to the feeder lines 5 and 6 from the power source on the A substation side. Here, when the power supply is stopped due to a work blackout or the like of the localization A substation, the power lines 5 and 6 are supplied with power from the power supply on the reverse B substation side. The switching procedure is as follows. (1) The circuit breaker VCB4 and the disconnecting switch DS4 are cut off, and the feeder line 11L on the A substation side is cut off. (2) The circuit breaker VCB5 and the disconnector DS5 are switched from the standby state to the charged state, the feeder line 21L on the B substation side is switched on, and the power source of the No. 1 feeder line 5 is switched from the A substation side to the B substation side. Switch to. Similarly, the procedure for switching the power source of No. 2 feeder 6 is as follows. (1) The circuit breaker VCB3 and the disconnecting switch DS3 are disconnected, and the feeder line 12L on the A substation side is brought into a disconnected state. (2) The circuit breaker VCB6 and the disconnecting switch DS6 are switched from the standby state, the feeder line 22L on the B substation side is switched on, and the power supply of the No. 2 feeder line 6 is switched from the A substation side to the B substation side. Switch to. When power is returned from the B substation side to the A substation side, the operation reverse to the above is performed.

図4は従来の電鉄用変電所の配電系統切替装置の区間停止及び復電操作時の構成を示し、PAS1、PAS2は1号のき電回線5に設けられた区分開閉器である。まず、区間停止操作においては、初期状態では、定常状態と同様であり、遮断器VCB3,VCB4及び断路器DS3,DS4が投入されてA変電所側のき電線11L,12Lを投入状態とし、B変電所側のき電線21L,22Lを待機状態とする。又、区分開閉器PAS1、PAS2を投入状態とする。この状態では、A変電所側から1号,2号のき電回線5,6の全区間に給電される。ここで、区分開閉器PAS1,PAS2間を停電とする操作手順を述べると、(1)区分開閉器PAS2を遮断する。(2)遮断器VCB5及び断路器DS5を待機状態から投入状態としてB変電所側のき電線21Lを投入状態とする。(3)区分開閉器PAS1を遮断状態とし、区分開閉器PAS1,PAS2間のき電回線5を停電区間とする。又、区分開閉器PAS1,PAS2間のき電回線5を復電する場合の手順は、(1)遮断器VCB5及び断路器DS5を遮断してB変電所側のき電線21Lを遮断状態とする。(2)区分開閉器PAS1を投入する。(3)区分開閉器PAS2を投入し、この間を復電する。   FIG. 4 shows the configuration of a conventional distribution system switching device for a railway substation at the time of section stop and power recovery operation. PAS1 and PAS2 are section switches provided in the feeder line 5 of No. 1. First, in the section stop operation, the initial state is the same as the steady state, the circuit breakers VCB3 and VCB4 and the disconnecting devices DS3 and DS4 are turned on, and the feeders 11L and 12L on the A substation side are turned on. The feeders 21L and 22L on the substation side are set in a standby state. Further, the section switches PAS1 and PAS2 are turned on. In this state, power is supplied from the A substation side to all sections of feeder lines 5 and 6 of No. 1 and No. 2. Here, the operation procedure for making a power failure between the section switches PAS1 and PAS2 will be described. (1) The section switch PAS2 is shut off. (2) The circuit breaker VCB5 and the disconnector DS5 are switched from the standby state to the input state, and the feeder line 21L on the B substation side is set to the input state. (3) The section switch PAS1 is turned off, and the feeder line 5 between the section switches PAS1 and PAS2 is set as the power failure section. The procedure for restoring the feeder line 5 between the section switches PAS1 and PAS2 is as follows: (1) The circuit breaker VCB5 and disconnector DS5 are shut off, and the feeder line 21L on the B substation side is shut off. . (2) Turn on the section switch PAS1. (3) Turn on the section switch PAS2 and restore power during this period.

これらの一連の配電系統の切替操作は標準的な連動により自動的に行われるが、1〜2秒程度の停電が発生する。   These series of distribution system switching operations are automatically performed by standard interlocking, but a power outage of about 1 to 2 seconds occurs.

又、特許文献1には、半導体スイッチで構成されたGTO遮断器を用いた直流き電システムが記載され、特許文献2には、遮断器と並列に静止形スイッチ(半導体スイッチ)を設け、常用電源の遮断器開放に伴う零相電圧の発生により予備電源の静止形スイッチを導通し、予備電源の遮断器投入後に静止形スイッチをオフし、電源切替を高速に行う高速電源切替装置が記載されている。
特開平8−310278号公報 特開平6−189470号公報
Patent Document 1 describes a DC feeding system using a GTO circuit breaker composed of semiconductor switches. Patent Document 2 provides a stationary switch (semiconductor switch) in parallel with a circuit breaker. Describes a high-speed power supply switching device that conducts a static switch of a standby power supply when a zero-phase voltage is generated when the power supply circuit breaker is opened, turns off the static switch after the standby power supply circuit breaker is turned on, and switches the power supply at high speed ing.
JP-A-8-310278 JP-A-6-189470

上記したように、現状の6kV配電系統の切替には、短時間の停電を伴うシステムとなっており、従来では、配電系統間に列車が存在しない時間を見計らって系統切替を行えば、列車の信号システムが一旦止まっても問題にならなかった。又、配電線の一部分を停電させる区間停電についても、従来の設備構成では、配電系統を定位に戻すため、一度短時間停電を取り、切替を行わざるを得ない状態となっている。しかし、最近は列車の運行密度が高くなり、停電を伴う切替を行える時間が取れなくなってきている。又、首都圏等の駅においては、従来は駅の直接的な業務にしか使用していなかった当該の配電系統から、駅中にある商業設備にも電源供給を行うようになっており、終電後駅が閉まった後も、昼夜駅中の電源停電が短時間といえども許されない状況となってきている。このようなことから、直流き電変電所の停止が従来のように簡単に取れない事態となっており、定期的な保守点検作業にも支障をきたす事態となっている。   As described above, switching of the current 6 kV distribution system is a system that involves a short interruption of power. Conventionally, if the system is switched with the time when there is no train between the distribution systems, There was no problem even if the signaling system stopped. Moreover, also about the section power failure which interrupts a part of distribution line, in the conventional equipment structure, in order to return a distribution system to a localization, it is in the state which must take a power failure for a short time and to switch once. However, recently, the operation density of trains has increased, and it has become impossible to take time for switching with a power failure. At stations in the Tokyo metropolitan area, etc., power is also supplied to commercial facilities in the station from the power distribution system that was previously used only for direct business of the station. Even after the rear station is closed, power outages in the station are not allowed even for a short time. For this reason, it is impossible to easily stop the DC feeder substation as in the past, and this also causes a problem in periodic maintenance and inspection work.

又、特許文献1の場合には、複数のGTO遮断器を使用しているため、電源の切替は瞬時に行われるが、設備のコストが高くなる。又、特許文献2の場合には、静止形スイッチの通電時間が極短時間であるため、通電負担が少なく、静止形スイッチを小形、安価なものにすることができる。しかしながら、上記の図3,図4に示された技術と特許文献1,2に示された技術とを組み合わせても、機械式遮断器と小形の静止形スイッチがそれぞれ複数個必要となり、結局システムとしてはコスト高で設置スペースの大きなものになった。   In the case of Patent Document 1, since a plurality of GTO circuit breakers are used, the power supply is switched instantaneously, but the cost of the equipment increases. In the case of Patent Document 2, since the energization time of the static switch is extremely short, the energization load is small, and the static switch can be made small and inexpensive. However, even if the techniques shown in FIGS. 3 and 4 and the techniques shown in Patent Documents 1 and 2 are combined, a plurality of mechanical circuit breakers and a plurality of small static switches are required. As a result, the cost was high and the installation space was large.

この発明は上記のような課題を解決するために成されたものであり、配電系統の切替を短い停電時間で行うことができるとともに、高速半導体スイッチの共用化により小形安価とすることができる配電系統切替装置を得ることを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is possible to switch the distribution system in a short power failure time, and to reduce the size and cost by sharing a high-speed semiconductor switch. The purpose is to obtain a system switching device.

この発明の請求項1に係る配電系統切替装置は、定位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続するとともに、反位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続し、定位側のき電線と反位側のき電線とをそれぞれき電回線を介して接続した配電系統切替装置において、定位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器を介して接続するとともに、反位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器とを介して接続し、遮断器、断路器の開閉及び切替開閉器、半導体スイッチの開閉によりき電回線の電源の切替を順次行うようにしたものである。   The distribution system switching device according to claim 1 of the present invention connects a plurality of feeders via a circuit breaker and a disconnector to a DC bus of a localization substation, and connects to a DC bus of an inverted substation. In a distribution system switching device in which a plurality of feeders are connected via a circuit breaker and disconnector, and a feeder on the localization side and a feeder on the opposite side are connected via a feeder line, respectively, a DC bus on the localization side Are connected to each other via a common semiconductor switch and each switching switch connected in series with this semiconductor switch, and between the DC bus and each feeder on the opposite side. Connected via a semiconductor switch and each switching switch connected in series with this semiconductor switch, the circuit breaker, disconnect switch open / close switch, switching switch, and switching of the power line of the feeder line by switching the semiconductor switch in sequence To do One in which the.

請求項2に係る配電系統切替装置は、定位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続するとともに、反位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続し、定位側のき電線と反位側のき電線とをそれぞれき電回線を介して接続した配電系統切替装置において、定位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器を介して接続するとともに、反位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器とを介して接続し、かつき電回線の停電区間の両端に区分開閉器を設け、遮断器、断路器の開閉、切替開閉器、半導体スイッチの開閉及び区分開閉器の開閉により停電区間の停電及び復電を行うようにしたものである。   The distribution system switching device according to claim 2 is configured to connect a plurality of feeders via a circuit breaker and a disconnector to a DC bus of a localization-side substation, and to connect a circuit breaker to a DC bus of an inversion-side substation. In a distribution system switching device in which a plurality of feeders are connected via a disconnector, and a feeder on the localization side and a feeder on the opposite side are connected via a feeder line, the DC bus and each A common semiconductor switch is connected between the wires and each semiconductor switch and each switching switch connected in series, and a common semiconductor switch is connected between the DC bus and each feeder on the opposite side. Connected via each switch connected in series with this semiconductor switch, and provided with section switches at both ends of the power outage section of the feeder line, circuit breaker, switch open / close switch, switch switch, semiconductor Switch opening and closing The opening and closing of the partial switches is obtained to perform the power failure and power restoration blackout interval.

以上のようにこの発明の請求項1によれば、定位側及び反位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線をそれぞれ接続するとともに、定位側のき電線と反位側のき電線とをそれぞれき電回線を介して接続し、定位側及び反位側の直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器を介して接続しており、遮断器、断路器の開閉及び半導体スイッチ、切替開閉器の開閉によりき電回線の電源を定位側から反位側あるいは反位側から定位側へと切り替えるようにしており、変電所の計画停電に対応すればよいので、全てのき電回線を一括で切り替える必要がなく、き電回線を順次切り替えればよいので、半導体スイッチを用いて負荷の乗せ替えを行うことにより、電源切替を数ms程度の短時間の停電時間により行うことができ、負荷設備への影響を無くすことができる。又、回線選択のための切替開閉器を用いることにより、半導体スイッチを1組だけ持つだけで高速切替が可能となり、高速切替を安価にかつ小形に実現することができる。   As described above, according to the first aspect of the present invention, a plurality of feeders are connected to the DC buses of the substations on the localization side and the reverse side via the circuit breakers and disconnectors, respectively, Are connected in series with a common semiconductor switch and this semiconductor switch between the DC bus on the localization side and the reverse side and each feeder line. The power supply of the feeder line is switched from the localized side to the inverted side or from the inverted side to the localized side by opening and closing the circuit breaker, disconnector and semiconductor switch and switching switch. Since it is only necessary to respond to planned power outages at substations, it is not necessary to switch all feeder lines at once, and it is only necessary to sequentially switch feeder lines. By doing a replacement , The power supply switching can be carried out by a brief power outage time of the order of a few ms, you are possible to eliminate the influence of the load equipment. Further, by using a switching switch for line selection, high-speed switching can be realized by having only one set of semiconductor switches, and high-speed switching can be realized at low cost and in a small size.

又、請求項2によれば、定位側及び反位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線をそれぞれ接続するとともに、定位側のき電線と反位側のき電線とをそれぞれき電回線を介して接続し、定位側及び反位側の直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器を介して接続し、かつき電回線の停電区間の両端に区分開閉器を設け、遮断器、断路器の開閉、半導体スイッチ、切替開閉器の開閉、及び区分開閉器の開閉により停電区間の停電及び復電を行うようにしており、配電線作業等のために停電及び復電を行う場合に、これらの操作を停電区間以外の区間を停電させることなく行うことができる。又、回線選択のための切替開閉器を用いることにより、半導体スイッチを1組だけ持つだけで高速切替が可能となり、高速切替を安価にかつ小形に実現することができる。   According to claim 2, a plurality of feeders are connected to the DC buses of the localization side and the inversion side substations through the circuit breakers and disconnectors, respectively, and the localization side feeder and the inversion side are connected. Each switch is connected to a feeder line via a feeder line, and a common semiconductor switch and each switch are connected in series between the DC bus on the localization side and the opposite side and each feeder line. Power supply in the power outage section by installing a section switch at both ends of the power outage section of the feed line, and opening / closing the circuit breaker, disconnector, semiconductor switch, switching switch, and section switch In the case of power failure and power recovery for distribution line work or the like, these operations can be performed without causing a power failure in a section other than the power failure section. Further, by using a switching switch for line selection, high-speed switching can be realized by having only one set of semiconductor switches, and high-speed switching can be realized at low cost and in a small size.

実施最良形態1
以下、この発明を実施のするための最良の形態を図面とともに説明する。図1はこの発明の実施最良形態1による配電系統切替装置の電源切替操作時の構成を示し、定位側のA変電所の6kVの直流母線1に遮断器VCB1〜VCB4及び断路器DS1〜DS4を介して各き電線21L,22L,12L,11Lをそれぞれ接続するとともに、反位側のB変電所の6kVの直流母線3に遮断器VCB5〜VCB8及び断路器DS5〜DS8を介して各き電線21L,22L,12L,11Lをそれぞれ接続し、定位側の各き電線21L,22L,12L,11Lと反位側の各き電線21L,22L,12L,11Lとを1号、2号のき電回線5,6を介して接続し、き電回線5,6を各電気車に給電するき電回路に接続する。又、定位側の直流母線1と定位側の各き電線21L,22L,12L,11Lとの間を共通の半導体スイッチ7及びこの半導体スイッチ7とそれぞれ直列に接続されたモータ駆動の各切替開閉器LBS1〜LBS4を介して接続するとともに、反位側の直流母線3と反位側の各き電線21L,22L,12L,11Lとの間を共通の半導体スイッチ8及びこの半導体スイッチ8とそれぞれ直列に接続されたモータ駆動の各切替開閉器LBS5〜LBS8を介して接続する。
Best Embodiment 1
The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the distribution system switching device according to the first embodiment of the present invention at the time of power switching operation. Circuit breakers VCB1 to VCB4 and disconnecting switches DS1 to DS4 are connected to a 6 kV DC bus 1 of the A substation on the localization side. 21L, 22L, 12L, and 11L are connected to each other, and each feeder 21L is connected to the 6 kV DC bus 3 of the reverse B substation via the circuit breakers VCB5 to VCB8 and disconnectors DS5 to DS8. , 22L, 12L, and 11L are connected to each other, and each feeder 21L, 22L, 12L, and 11L on the localization side and each feeder 21L, 22L, 12L, and 11L on the opposite side are connected to No. 1 and No. 2 feeders. 5 and 6, and the feeder lines 5 and 6 are connected to feeder circuits for supplying power to each electric vehicle. Further, a common semiconductor switch 7 is connected between the localization-side DC bus 1 and the localization-side feeders 21L, 22L, 12L, 11L, and motor-operated switching switches connected in series with the semiconductor switch 7, respectively. In addition to being connected via LBS1 to LBS4, a common semiconductor switch 8 and the semiconductor switch 8 are connected in series between the reverse-side DC bus 3 and the reverse-side feeders 21L, 22L, 12L, and 11L. The connection is made via each connected motor-driven switching switch LBS5 to LBS8.

上記構成において、定常時は、遮断器VCB3,VCB4及び断路器DS3,DS4を投入してA変電所側のき電線11L,12Lを投入するとともに、B変電所側のき電線21L,22Lを待機状態とする。従って、定常時には各き電回線5,6にはA変電所側から給電が行われる。ここで、1号のき電回線5の電源をA変電所側からB変電所側に切り替える際には、次のような手順により行う。(1)まず、B変電所側の切替開閉器LBS5を閉とする。(2)A変電所側の遮断器VCB4及び断路器DS4を遮断してき電線11Lを遮断する。(3)B変電所側の半導体スイッチ8をオンにして、数ms以内に1号のき電回線5をB変電所側の電源により加圧する。(4)遮断器VCB5及び断路器DS5を待機状態から投入状態にしてB変電所側のき電線21Lを投入状態とする。(5)半導体スイッチ8をオフにする。(6)B変電所側の切替開閉器LBS5を開にする。これにより、1号のき電回線5の電源はA変電所側からB変電所側に切り替えられる。又、2号のき電回線6の電源をA変電所側からB変電所側に切り替える際には、(1)切替開閉器LBS6を閉とする。(2)遮断器VCB3及び断路器DS3を遮断してき電線12Lを遮断する。(3)B変電所側の半導体スイッチ8をオンにして、数ms以内に2号のき電回線6をB変電所側の電源により加圧する。(4)遮断器VCB6及び断路器DS6を待機状態から投入状態にしてB変電所側のき電線22Lを投入状態とする。(5)半導体スイッチ8をオフする。(6)B変電所側の切替開閉器LBS6を開にする。これにより、2号のき電回線6の電源はA変電所側からB変電所側に切り替えられる。電源をB変電所側からA変電所側へ戻す場合には、上記と逆の操作をすればよい。   In the above configuration, during normal operation, the circuit breakers VCB3 and VCB4 and the disconnecting devices DS3 and DS4 are turned on, the feeder lines 11L and 12L on the A substation side are turned on, and the feeder lines 21L and 22L on the B substation side are on standby. State. Accordingly, during normal operation, power is supplied to the feeder lines 5 and 6 from the A substation side. Here, when switching the power source of No. 1 feeder line 5 from the A substation side to the B substation side, the following procedure is performed. (1) First, the switching switch LBS5 on the B substation side is closed. (2) The circuit breaker VCB4 and the disconnect switch DS4 on the A substation side are cut off and the electric wire 11L is cut off. (3) The semiconductor switch 8 on the B substation side is turned on, and the feeder line 5 of No. 1 is pressurized by the power source on the B substation side within a few ms. (4) The circuit breaker VCB5 and the disconnecting switch DS5 are turned on from the standby state, and the feeder line 21L on the B substation side is turned on. (5) The semiconductor switch 8 is turned off. (6) Open the switching switch LBS5 on the B substation side. Thereby, the power supply of No. 1 feeder line 5 is switched from the A substation side to the B substation side. When switching the power source of the feeder line 6 of No. 2 from the A substation side to the B substation side, (1) the switching switch LBS6 is closed. (2) The circuit breaker VCB3 and the disconnector DS3 are disconnected and the electric wire 12L is disconnected. (3) The semiconductor switch 8 on the B substation side is turned on, and the feeder line 6 of No. 2 is pressurized by the power source on the B substation side within a few ms. (4) The circuit breaker VCB6 and the disconnecting switch DS6 are turned on from the standby state, and the feeder line 22L on the B substation side is turned on. (5) The semiconductor switch 8 is turned off. (6) Open the switching switch LBS6 on the B substation side. Thereby, the power supply of No. 2 feeder 6 is switched from the A substation side to the B substation side. When the power source is returned from the B substation side to the A substation side, an operation reverse to the above may be performed.

実施最良形態1においては、半導体スイッチ7,8の開閉により負荷の乗せ替えを行うことにより、5ms程度の停電時間により電源の切替を行うことができ、列車の間合いを気にすることなく、また負荷設備を気にすることなく、任意の時間で電源の切替を行うことができる。又、回線選択のための切替開閉器LBS1〜LBS8を設けることにより、半導体スイッチ7,8の共用化が可能となり、半導体スイッチ7,8を1組だけ設けることで電源切替が可能となり、高速での切替を安価小形に実現することができる。さらに、従来、駅の重要負荷設備に、系統切替時の停電対策として設けられていた無停電電源装置(UPS)が不要となる。   In the first embodiment, by switching the load by opening and closing the semiconductor switches 7 and 8, it is possible to switch the power supply in a power failure time of about 5 ms, without worrying about the time between trains. The power supply can be switched at any time without worrying about the load equipment. Further, by providing the switching switches LBS1 to LBS8 for line selection, the semiconductor switches 7 and 8 can be shared, and by providing only one set of the semiconductor switches 7 and 8, the power supply can be switched at high speed. Can be realized in a small and inexpensive manner. Furthermore, an uninterruptible power supply (UPS), which has been conventionally provided as a power failure countermeasure at the time of system switching, in the important load facility of the station becomes unnecessary.

実施最良形態2
図2はこの発明の実施最良形態2による電鉄用変電所の配電系統切替装置の区間停止及び復電操作時の構成を示し、PAS1、PAS2は1号のき電回線5の停電区間の両端に設けられた区分開閉器であり、その他の構成は実施最良形態1と同様である。まず、区間停止操作時においては、初期状態では、定常状態と同様であり、遮断器VCB3,VCB4及び断路器DS3,DS4が投入されてA変電所側のき電線11L,12Lが投入され、B変電所側のき電線21L,22Lを待機状態とする。又、区分開閉器PAS1、PAS2を投入状態とする。この状態では、A変電所側から1号,2号のき電回線5,6の全区間に給電される。ここで、配電線作業等のために、1号のき電回線5の区分開閉器PAS1,PAS2間を停電とするためには、次の手順による。(1)まず、B変電所側の切替開閉器LBS5を閉とする。(2)次に、区分開閉器PAS2を開とする。(3)B変電所側の半導体スイッチ8をオンし、数ms以内にB変電所側から1号のき電回線5の区分開閉器PAS2までをB変電所側の電源により加圧する。(4)遮断器VCB5及び断路器DS5を待機状態から投入状態とし、B変電所側のき電線21Lを投入状態とする。(5)半導体スイッチ8をオフにする。(6)区分開閉器PAS1を開とする。(7)切替開閉器LBS5を開とする。
Embodiment 2
FIG. 2 shows a configuration of a section switching and power recovery operation of a distribution system switching device of a railway substation according to Embodiment 2 of the present invention. PAS1 and PAS2 are located at both ends of a power outage section of No. 1 feeder line 5. It is the provided division switch, and the other structure is the same as that of the first embodiment. First, at the time of the section stop operation, the initial state is the same as the steady state, the circuit breakers VCB3 and VCB4 and the disconnecting devices DS3 and DS4 are turned on, and the feeders 11L and 12L on the A substation side are turned on. The feeders 21L and 22L on the substation side are set in a standby state. Further, the section switches PAS1 and PAS2 are turned on. In this state, power is supplied from the A substation to all sections of No. 1 and No. 2 feeder lines 5 and 6. Here, in order to make a power failure between the section switches PAS1 and PAS2 of the No. 1 feeder line 5 for distribution line work and the like, the following procedure is used. (1) First, the switching switch LBS5 on the B substation side is closed. (2) Next, the section switch PAS2 is opened. (3) The semiconductor switch 8 on the B substation side is turned on, and within a few ms, the power from the B substation side to the section switch PAS2 of the feeder line 5 of No. 1 is pressurized by the power source on the B substation side. (4) The circuit breaker VCB5 and the disconnecting device DS5 are turned on from the standby state, and the feeder line 21L on the B substation side is turned on. (5) The semiconductor switch 8 is turned off. (6) The section switch PAS1 is opened. (7) Open the switching switch LBS5.

次に、復電操作時においては、(1)まず、B変電所側の切替開閉器LBS5を閉とする。(2)B変電所側の半導体スイッチ8をオンする。(3)遮断器VCB5及び断路器DS5を遮断する。(4)区分開閉器PAS1を投入する。(5)区分開閉器PAS2を投入する。(6)1号のき電回線5にはA変電所及びB変電所から並列給電され、横流が流れる。これを図示しない検知手段により検知し、半導体スイッチ8をオフする(横流が検知されない場合には、指令扱いでオフする必要がある。)。(7)B変電所のき電線21Lを投入扱いで待機状態とする。(8)B変電所の切替開閉器LBS5を開とする。もちろん、半導体スイッチ7及び切替開閉器LBS1〜LBS4を用いて停電、復電操作を行うこともできる。   Next, at the time of power recovery operation, (1) First, the switching switch LBS5 on the B substation side is closed. (2) Turn on the semiconductor switch 8 on the B substation side. (3) The circuit breaker VCB5 and the disconnector DS5 are disconnected. (4) Turn on the section switch PAS1. (5) Turn on the section switch PAS2. (6) The feeder line 5 of No. 1 is fed in parallel from the A substation and the B substation, and a cross current flows. This is detected by a detection means (not shown) and the semiconductor switch 8 is turned off (if a cross current is not detected, it is necessary to turn it off as a command). (7) The feeder line 21L of the B substation is put into a standby state by being handled. (8) Open the switching switch LBS5 of the B substation. Of course, a power failure and power recovery operation can be performed using the semiconductor switch 7 and the switching switches LBS1 to LBS4.

実施最良形態2においては、配電作業等のために区分開閉器PAS1,PAS2を用いて停電及び復電操作を行うが、停止区間以外の部分を停止することなく、停電及び復電を行うことができる。又、半導体スイッチ7,8を用いて高速に系統解列を行うことができるので、並列配電による横流検知方式を採用することができ、無停電での復電操作を行うことができる。又、回線選択のための切替開閉器LBS1〜LBS8を設けることにより、半導体スイッチ7,8の共用化が可能となり、半導体スイッチ7,8を1組だけ設けることで停電及び復電操作が可能となり、高速での切替操作を安価小形に実現することができる。さらに、従来、駅の重要負荷設備に、系統切替時の停電対策として設けられていた無停電電源装置(UPS)が不要となる。   In the second embodiment, a power failure and power recovery operation are performed using the section switches PAS1 and PAS2 for power distribution work or the like, but power failure and power recovery can be performed without stopping the portion other than the stop section. it can. Moreover, since the system disconnection can be performed at high speed using the semiconductor switches 7 and 8, a cross current detection method using parallel power distribution can be adopted, and a power recovery operation can be performed without a power failure. In addition, by providing the switching switches LBS1 to LBS8 for line selection, it becomes possible to share the semiconductor switches 7 and 8, and by providing only one set of the semiconductor switches 7 and 8, it is possible to perform a power failure and power recovery operation. The switching operation at high speed can be realized in a small and inexpensive manner. Furthermore, an uninterruptible power supply (UPS), which has been conventionally provided as a power failure countermeasure at the time of system switching, in the important load facility of the station becomes unnecessary.

この発明の実施最良形態1による配電系統切替装置の電源切替操作時の構成図である。It is a block diagram at the time of the power supply switching operation of the power distribution system switching apparatus by Embodiment 1 of this invention. 実施最良形態2による配電系統切替装置の区間停止及び復電操作時の構成図である。It is a block diagram at the time of the section stop of the distribution system switching apparatus by Embodiment 2 and a power recovery operation. 従来の配電系統切替装置の電源切替操作時の構成図である。It is a block diagram at the time of the power supply switching operation of the conventional power distribution system switching apparatus. 従来の配電系統切替装置の区間停止及び復電操作時の構成図である。It is a block diagram at the time of the section stop and power recovery operation of the conventional distribution system switching apparatus.

符号の説明Explanation of symbols

1、3…直流母線
5,6…き電回線
7,8…半導体スイッチ
VCB1〜VCB8…遮断器
DS1〜DS8…断路器
21L,22L、12L,11L…き電線
LBS1〜LBS8…切替開閉器
DESCRIPTION OF SYMBOLS 1, 3 ... DC bus 5,6 ... Feeding line 7,8 ... Semiconductor switch VCB1-VCB8 ... Circuit breaker DS1-DS8 ... Disconnector 21L, 22L, 12L, 11L ... Feeding wire LBS1-LBS8 ... Switching switch

Claims (2)

定位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続するとともに、反位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続し、定位側のき電線と反位側のき電線とをそれぞれき電回線を介して接続した配電系統切替装置において、定位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器を介して接続するとともに、反位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器とを介して接続し、遮断器、断路器の開閉及び切替開閉器、半導体スイッチの開閉によりき電回線の電源の切替を順次行うようにしたことを特徴とする配電系統切替装置。   Connect multiple feeders to the DC bus of the localization substation via a circuit breaker and disconnector, and connect multiple feeders to the DC bus of the substation via a circuit breaker and disconnector In the distribution system switching device in which the feeder on the localization side and the feeder on the opposite side are connected via a feeder line, a common semiconductor switch is connected between the DC bus and each feeder on the localization side. Each switch connected in series with each semiconductor switch and each switching switch connected in series, and between the DC bus and each feeder line on the opposite side, a common semiconductor switch and each of these semiconductor switches connected in series A distribution system switching device, which is connected via a switching switch, and sequentially switches the power supply of the feeder line by opening / closing the circuit breaker, disconnecting switch, switching switch, and semiconductor switch. 定位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続するとともに、反位側の変電所の直流母線に遮断器及び断路器を介して複数のき電線を接続し、定位側のき電線と反位側のき電線とをそれぞれき電回線を介して接続した配電系統切替装置において、定位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器を介して接続するとともに、反位側において直流母線と各き電線との間を共通の半導体スイッチとこの半導体スイッチとそれぞれ直列に接続された各切替開閉器とを介して接続し、かつき電回線の停電区間の両端に区分開閉器を設け、遮断器、断路器の開閉、切替開閉器、半導体スイッチの開閉及び区分開閉器の開閉により停電区間の停電及び復電を行うようにしたことを特徴とする配電系統切替装置。   Connect multiple feeders to the DC bus of the localization substation via a circuit breaker and disconnector, and connect multiple feeders to the DC bus of the substation via a circuit breaker and disconnector In the distribution system switching device in which the feeder on the localization side and the feeder on the opposite side are connected via a feeder line, a common semiconductor switch is connected between the DC bus and each feeder on the localization side. Each switch connected in series with each semiconductor switch and each switching switch connected in series, and between the DC bus and each feeder line on the opposite side, a common semiconductor switch and each of these semiconductor switches connected in series Connected via a switching switch and provided with a section switch at both ends of the power cut section of the feeder line, and a power failure occurred by opening / closing the circuit breaker, disconnect switch, switching switch, semiconductor switch, and section switch Section stop And distribution system switch device being characterized in that to perform the power recovery.
JP2007113864A 2007-04-24 2007-04-24 Distribution system switching device Pending JP2008271739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113864A JP2008271739A (en) 2007-04-24 2007-04-24 Distribution system switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113864A JP2008271739A (en) 2007-04-24 2007-04-24 Distribution system switching device

Publications (1)

Publication Number Publication Date
JP2008271739A true JP2008271739A (en) 2008-11-06

Family

ID=40050533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113864A Pending JP2008271739A (en) 2007-04-24 2007-04-24 Distribution system switching device

Country Status (1)

Country Link
JP (1) JP2008271739A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055685A (en) * 2009-09-04 2011-03-17 Railway Technical Res Inst Superconductivity dc feeder system and failure detection method
CN102185371A (en) * 2011-04-21 2011-09-14 北京航空航天大学 Terminal user bus-tie spare power source automatic switching control device with overcurrent self-protection
CN104369676A (en) * 2014-04-30 2015-02-25 吉林大学 Whole-journey no-negative sequence power supply system of highway passenger transport line
CN105790419A (en) * 2016-03-09 2016-07-20 中车青岛四方机车车辆股份有限公司 Auxiliary power supply device for motor train unit
CN107499189A (en) * 2017-07-18 2017-12-22 中铁第四勘察设计院集团有限公司 A kind of high-speed railway power supply network system and its guard method
CN111216562A (en) * 2018-11-23 2020-06-02 中车唐山机车车辆有限公司 Auxiliary power supply system, magnetic suspension train and magnetic suspension rail

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011055685A (en) * 2009-09-04 2011-03-17 Railway Technical Res Inst Superconductivity dc feeder system and failure detection method
CN102185371A (en) * 2011-04-21 2011-09-14 北京航空航天大学 Terminal user bus-tie spare power source automatic switching control device with overcurrent self-protection
CN104369676A (en) * 2014-04-30 2015-02-25 吉林大学 Whole-journey no-negative sequence power supply system of highway passenger transport line
CN104369676B (en) * 2014-04-30 2016-06-01 吉林大学 High speed passenger dedicated railway is omnidistance without negative phase-sequence power supply system
CN105790419A (en) * 2016-03-09 2016-07-20 中车青岛四方机车车辆股份有限公司 Auxiliary power supply device for motor train unit
US10411503B2 (en) 2016-03-09 2019-09-10 Crrc Qingdao Sifang Co., Ltd. Motor train unit auxiliary power supply apparatus
CN107499189A (en) * 2017-07-18 2017-12-22 中铁第四勘察设计院集团有限公司 A kind of high-speed railway power supply network system and its guard method
CN107499189B (en) * 2017-07-18 2019-08-27 中铁第四勘察设计院集团有限公司 A kind of high-speed railway power supply network system and its guard method
CN111216562A (en) * 2018-11-23 2020-06-02 中车唐山机车车辆有限公司 Auxiliary power supply system, magnetic suspension train and magnetic suspension rail
CN111216562B (en) * 2018-11-23 2021-03-16 中车唐山机车车辆有限公司 Auxiliary power supply system, magnetic suspension train and magnetic suspension rail

Similar Documents

Publication Publication Date Title
US20180138740A1 (en) Reserve power system transfer switches for data center
JP2008271739A (en) Distribution system switching device
WO2016025566A2 (en) Shared resource system
JP2014193107A (en) Highly reliable static transfer switch circuit for uninterruptible power supply system
JP2008048474A (en) Uninterruptible switching device
JP5211853B2 (en) Middle section power switching system for AC electric railway
US9660484B2 (en) Power distribution unit inrush current monitor and method for protecting an uninterruptible power supply from inrush current
US10666087B2 (en) System for redundant power supply to a data center
RU2647108C1 (en) Method of partly non-selective protection of a threshold ac network
JP6520773B2 (en) POWER SUPPLY SYSTEM AND POWER SUPPLY METHOD
US20160336754A1 (en) High power solid state switches for aircraft
KR102545246B1 (en) Apparatus and method of supplying power for railway signal
RU2531025C2 (en) Short-circuit control device in alternating-current contact system of double-track railway line
Akhunov et al. Development of automatic transfer switch
JP2018074643A (en) Distribution board with power failure compensation device
RU104390U1 (en) DC SHIELD (OPTIONS)
US8803369B1 (en) Automatic isolation switch for power transfer with emergency isolation control
Paul et al. Performance evaluation and operation of Auto Load transfer switch
JP2009055731A (en) Automatic power recovery system of spot network power receiving equipment
KR200429059Y1 (en) The switch choosing a button with the source of many electric powers automatically
KR101002263B1 (en) Automatic voltage transfer system of the two power supply according to set-voltage
CN115848456B (en) Subway train operation monitoring method and system matched with power supply capacity
JPH08310278A (en) Feeder device
CN108199337B (en) Transformer station secondary system and its performance improvement method are pressed in one kind
JPH072000A (en) Driving electric power supply system for linear motor car