JP2008048474A - Uninterruptible switching device - Google Patents
Uninterruptible switching device Download PDFInfo
- Publication number
- JP2008048474A JP2008048474A JP2006219019A JP2006219019A JP2008048474A JP 2008048474 A JP2008048474 A JP 2008048474A JP 2006219019 A JP2006219019 A JP 2006219019A JP 2006219019 A JP2006219019 A JP 2006219019A JP 2008048474 A JP2008048474 A JP 2008048474A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- switch
- switching
- supply terminal
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Stand-By Power Supply Arrangements (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Voltage And Current In General (AREA)
Abstract
Description
本発明は無瞬断切替装置に関し、とくに有接点スイッチと半導体スイッチとを組み合わせたハイブリッド方式の無瞬断切替装置に関する。 The present invention relates to an uninterruptible switching device, and more particularly to a hybrid uninterruptible switching device that combines a contact switch and a semiconductor switch.
近年の情報通信システムはネットワークサーバやコンピュータ、通信機器等の電子機器で支えられており、停止の許されない電子機器を用いるデータセンター(Internet Data Center)や電算センター、通信局、テレビ局、新聞社、工場、事務所ビル等では、商用電源の停電から電子機器を守るため、無停電電源装置(Uninterruptible Power Supply;UPS)の導入が積極的に進められている。また最近では、UPSの故障時や保守点検時等においても商用電源からではなくUPSから給電するシステムの要望があり、24時間365日無停止のUPS給電システムとするため常用系・予備系の2系統UPSを短時間で切り替える無瞬断切替装置の導入が進められている。 Information communication systems in recent years are supported by electronic devices such as network servers, computers, and communication devices. Data centers (Internet Data Center), computer centers, communication stations, television stations, newspaper companies, which use electronic devices that are not allowed to stop, In factories, office buildings, etc., uninterruptible power supply (UPS) has been actively introduced in order to protect electronic devices from power failure of commercial power. Recently, there is a demand for a system that supplies power from a UPS instead of a commercial power source even when a UPS fails or during maintenance inspections. Introduction of an uninterruptible switching device that switches the system UPS in a short time is underway.
2系統電源(常用系及び予備系)を短時間で切替える装置の一例は、図8(A)に示すように、高速形の双投式有接点スイッチ(例えば電磁接触器)55を用いたものである。図示例の切替装置は機器構成が単純であって信頼性も高い。しかし、停電時における2系統電源の自動的な切替(自動切替)に時間がかかるため、負荷に対する給電に瞬停が生じる問題点がある。すなわち、有接点スイッチでは常用系の停電検出から予備系の導通までに20〜50msec程度の瞬停時間が発生しうる。一般に無瞬断とは瞬停時間5msec(1/4サイクル)以下と定義されており、機器により異なるものの瞬停許容時間が5msec以下の電子機器も多く存在するので、20〜50msecにも及ぶ瞬停時間が生じると電子機器が誤動作したり機能を停止したりするおそれがある。なお、オーバーラップ式有接点スイッチを用いれば2系統電源の切替時間を短くすることが可能であるが(例えば15msec)、横流の発生する可能性がある。 An example of a device that switches between two power sources (normal system and standby system) in a short time uses a high-speed double-throw contact switch (for example, an electromagnetic contactor) 55 as shown in FIG. It is. The switching device of the illustrated example has a simple device configuration and high reliability. However, since it takes time to automatically switch (automatic switching) between the two power sources at the time of a power failure, there is a problem that an instantaneous interruption occurs in power supply to the load. That is, in a contact switch, an instantaneous power failure time of about 20 to 50 msec can occur from detection of a power failure in the normal system to conduction in the standby system. In general, no instantaneous interruption is defined as an instantaneous power interruption time of 5 msec (1/4 cycle) or less, and there are many electronic devices with an instantaneous power interruption allowable time of 5 msec or less although it varies depending on the equipment. If the downtime occurs, the electronic device may malfunction or stop functioning. In addition, although the switching time of a two-system power supply can be shortened if an overlap type contact switch is used (for example, 15 msec), there is a possibility of generating a cross current.
他方、図8(B)に示すように、2組の半導体スイッチ(例えばサイリスタ)56A、56Bを用いて自動切替の瞬停時間を短くした無瞬断切替装置が知られている。半導体スイッチは極めて短時間で導通・遮断を切替えることができるので、図示例の切替装置によれば、2系統電源の自動切替の瞬停時間を例えば実用上無瞬断の4msec程度とすることが可能である。しかも、半導体スイッチ56A、56Bを同時に導通させなければ横流が発生することもない。ただし、半導体スイッチ56A、56Bのみを用いた無瞬断切替装置は、半導体スイッチ56A、56Bの内部を流れる電力損失が大きくなるため運転コストが大きくなり、信頼性も低下する。また、冷却装置が必要となるため装置の寸法(設置スペース)が大きくなり、装置の価格も高くなる等の問題点もある。 On the other hand, as shown in FIG. 8B, an uninterruptible switching device is known in which the instantaneous switching stop time of automatic switching is shortened using two sets of semiconductor switches (for example, thyristors) 56A and 56B. Since the semiconductor switch can be switched on and off in a very short time, according to the switching device of the illustrated example, the instantaneous power failure time of the automatic switching of the two-system power supply can be set to about 4 msec which is practically uninterrupted, for example. Is possible. In addition, a cross current does not occur unless the semiconductor switches 56A and 56B are made conductive at the same time. However, in the non-instantaneous switching device using only the semiconductor switches 56A and 56B, the power loss flowing through the semiconductor switches 56A and 56B increases, so that the operation cost increases and the reliability also decreases. In addition, since a cooling device is required, the size (installation space) of the device is increased, and the price of the device is increased.
これに対し、例えば特許文献1及び2が開示するように、半導体スイッチと双投式有接点スイッチとを組み合わせたハイブリッド方式の切替装置が開発されている。図8(C)に示す特許文献1の切替装置は、例えば有接点スイッチ55を常用系電源に接続した運用中に(計画的な)切替え指令信号が発生すると、先ず有接点スイッチ55を予備系電源に切替えると共に、常用系の半導体スイッチ57Aを導通し且つ予備系の半導体スイッチ57Bを遮断する。有接点スイッチ55は常用系電源から遮断され、上述した20msec程度の時間経過後に予備系電源と導通するが、その有接点スイッチ55が何れの電源とも遮断されている間に半導体スイッチ57Aを遮断し、更に短時間(例えば3μsec)後に半導体スイッチ57Bを導通する。そして、有接点スイッチ55が予備系電源と導通したのち、半導体スイッチ57Bを遮断する。この切替装置によれば、有接点スイッチ55の切替中も半導体スイッチ57A、57Bが導通している限り電力が供給されるので瞬停時間を短く抑えることができ、運用中は半導体スイッチ57A、57Bが共に遮断されているので半導体スイッチ57A、57Bによる電力損失は発生しない。ただし、図示例の切替装置は停電検出回路を有しておらず、停電時は有接点スイッチ55のみによる自動切替となるので20〜50msec程度の瞬停時間が発生しうる。 On the other hand, as disclosed in Patent Documents 1 and 2, for example, a hybrid switching device that combines a semiconductor switch and a double-throw contact switch has been developed. In the switching device of Patent Document 1 shown in FIG. 8 (C), for example, when a (planned) switching command signal is generated during operation in which the contact switch 55 is connected to a normal power source, the contact switch 55 is first connected to the standby system. While switching to the power supply, the normal semiconductor switch 57A is turned on and the standby semiconductor switch 57B is turned off. The reed switch 55 is disconnected from the normal power supply and is connected to the standby power supply after the above-described time of about 20 msec. However, the semiconductor switch 57A is disconnected while the reed switch 55 is disconnected from any power supply. The semiconductor switch 57B is turned on after a further short time (eg, 3 μsec). Then, after the contact switch 55 is brought into conduction with the standby power supply, the semiconductor switch 57B is cut off. According to this switching device, power can be supplied even during switching of the reed switch 55 as long as the semiconductor switches 57A and 57B are conductive, so the instantaneous power failure time can be kept short, and during operation, the semiconductor switches 57A and 57B Since both are cut off, no power loss occurs due to the semiconductor switches 57A and 57B. However, since the switching device in the illustrated example does not have a power failure detection circuit and is automatically switched only by the contact switch 55 at the time of a power failure, an instantaneous power failure time of about 20 to 50 msec can occur.
図8(D)に示す特許文献2の切替装置は、例えば有接点スイッチ58Aを導通すると共に有接点スイッチ58Bを遮断した常用系での運用中(この運用中に有接点切替スイッチ59は予備系に切替えられている)に停電等の切替事象が発生すると、常用系の有接点スイッチ58Aを遮断すると共に、1組の半導体スイッチ(例えば逆並列接続された一対の半導体スイッチ素子からなるサイリスタスイッチ)60を導通させることにより有接点スイッチ58Aの電流を半導体スイッチ60に転流させた後、予備系の有接点スイッチ58Bを導通することにより負荷を予備系電源に切替える。具体的には、有接点スイッチ58Aを遮断して2系統電源間の絶縁性能が十分に確保できる所定時間T1後に有接点スイッチ58Aに流れる電流又は電圧の極性を検出して同極性側の半導体スイッチ素子を点呼し、有接点スイッチ58Aに流れる電流が零になって所定時間T2経過後に両半導体スイッチ素子を点呼し、更に両半導体スイッチ素子を点呼して一定時間T3経過後に有接点スイッチ58Bを導通し、そののち十分な時間T4を確保して両半導体スイッチ素子を遮断する。この切替装置によれば、自動切替の瞬停時間を比較的短く抑えることができると共に、運用中は半導体スイッチ60が遮断されているので電力損失も低減することができる。 The switching device of Patent Document 2 shown in FIG. 8D is in operation in a normal system in which, for example, the contact switch 58A is turned on and the contact switch 58B is turned off (during this operation, the contact switch 59 is a standby system). When a switching event such as a power failure occurs, the regular contact switch 58A is shut off and a pair of semiconductor switches (for example, a thyristor switch composed of a pair of semiconductor switch elements connected in reverse parallel) The current of the contact switch 58A is commutated to the semiconductor switch 60 by making the switch 60 conductive, and then the load is switched to the standby power supply by making the standby contact switch 58B conductive. Specifically, the same polarity side semiconductor switch is detected by detecting the polarity of the current or voltage flowing through the reed switch 58A after a predetermined time T1 when the reed switch 58A is shut off and sufficient insulation performance between the two power sources can be secured. The element is called, both semiconductor switch elements are called after a predetermined time T2 when the current flowing to the contact switch 58A becomes zero, and both semiconductor switch elements are called, and the contact switch 58B is turned on after a certain time T3 has passed. After that, sufficient time T4 is secured to shut off both semiconductor switch elements. According to this switching device, the instantaneous power interruption time can be kept relatively short, and the power loss can be reduced because the semiconductor switch 60 is cut off during operation.
図8(C)及び同図(D)のハイブリッド式切替装置は何れも、2系統電源を短時間で切替えることが可能であり、運転時の電力損失が小さい利点を有する。しかし、2組の半導体スイッチ57A、57Bを用いる同図(C)の切替装置は、半導体スイッチ57A、57Bの素子特性を揃える必要があり、複雑な制御回路を必要とするので、装置の寸法を十分に小さくすることが難しく、低価格化を図ることも難しい。しかも、メンテナンス時等における計画的な切替(計画切替)では実用上無瞬断切替が可能であるものの、自動切替では比較的長い瞬停時間が発生してしまう。とくに複数系統のUPSを用いる無停止のUPS給電システムでは、実用上無瞬断で自動切替可能な装置が求められており、しかも設置スペース等が限られている場合もあるので切替装置のコンパクト化が求められている。 Each of the hybrid switching devices shown in FIG. 8C and FIG. 8D has an advantage that the two-system power source can be switched in a short time, and the power loss during operation is small. However, the switching device shown in FIG. 6C using two sets of semiconductor switches 57A and 57B needs to have the same element characteristics as the semiconductor switches 57A and 57B, and requires a complicated control circuit. It is difficult to make it sufficiently small, and it is also difficult to reduce the price. Moreover, in the case of planned switching at the time of maintenance or the like (planned switching), switching without interruption is practically possible, but in automatic switching, a relatively long instantaneous power failure time occurs. Especially for non-disruptive UPS power supply systems that use multiple UPS systems, there is a need for a device that can be switched automatically without interruption for practical use, and the installation space may be limited. Is required.
図8(D)の切替装置は、半導体スイッチ60を1組としているので、制御回路を含めて機器構成をシンプルにすることができ、装置のコンパクト化を図ることができる。しかし同図の切替装置は、有接点スイッチ58A、58Bと半導体スイッチ60との切替に複数の待ち合わせ時間T1、T2、T3、T4が必要であり、2系統電源の自動切替の瞬停時間を実用上無瞬断(5msec以下)に抑えることが難しい場合がある。本発明者の計算によれば、同図において有接点スイッチ58Aの遮断に5msec程度が必要であり、半導体スイッチ70の導通に2msec程度が必要であり、自動切替の瞬停時間を5msec以下とすることができないおそれがある。また、同図の切替装置では計画的な無瞬断切替も難しいように思われる。 Since the switching device in FIG. 8D includes one set of semiconductor switches 60, the device configuration including the control circuit can be simplified, and the device can be made compact. However, the switching device shown in the figure requires multiple waiting times T1, T2, T3, and T4 for switching between the reed switches 58A and 58B and the semiconductor switch 60. In some cases, it is difficult to suppress the above instantaneous interruption (5 msec or less). According to the calculation of the present inventor, about 5 msec is necessary for the contact switch 58A to be cut off in the same figure, and about 2 msec is necessary for the conduction of the semiconductor switch 70, and the instantaneous switching interruption time is set to 5 msec or less. There is a risk that it will not be possible. In addition, the switching device shown in FIG.
そこで本発明の目的は、実用上無瞬断の自動切替が可能であり且つコンパクト化が可能な無瞬断切替装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an uninterruptible switching device that can be practically automatically switched without instantaneous interruption and can be made compact.
図1の実施例を参照するに、本発明による無瞬断切替装置は、第1交流電源及び第2交流電源(例えば図2の無停電電源装置41A、41B参照)に接続される第1電源端子A及び第2電源端子B、負荷D(図2参照)に接続される負荷端子C、第1電源端子A及び第2電源端子Bと負荷端子Cとに接続され且つ負荷端子Cを選択的に第1電源端子A又は第2電源端子Bに接続する双投式主切替スイッチ5、第1電源端子A及び第2電源端子Bに接続されると共に半導体スイッチ7と電磁接触器8との直列回路(7+8)を介して負荷端子Cに接続され且つその直列回路(7+8)を介して負荷端子Cを選択的に第2電源端子B又は第1電源端子Aに接続する双投式補助切替スイッチ6、第1電源端子Aと第2電源端子Bとの間の同期を検出する同期検出回路10、第1電源端子A及び/又は第2電源端子Bの停電発生を検出する停電検出回路20、並びに同期検出回路10の同期非検出時に電磁接触器8を遮断すると共に同期検出時に電磁接触器8を導通し且つ停電検出回路20の停電検出時に主切替スイッチ5の健全電源端子A又はBへの切替えと半導体スイッチ7の導通とを同時に駆動する制御回路15を備えてなるものである。 Referring to the embodiment of FIG. 1, an uninterruptible switching device according to the present invention includes a first power source connected to a first AC power source and a second AC power source (see, for example, the uninterruptible power source devices 41A and 41B in FIG. 2). The terminal A and the second power supply terminal B, the load terminal C connected to the load D (see FIG. 2), the first power supply terminal A and the second power supply terminal B connected to the load terminal C and the load terminal C selectively Are connected to the first power supply terminal A or the second power supply terminal B, and are connected to the first power supply terminal A and the second power supply terminal B, and the semiconductor switch 7 and the electromagnetic contactor 8 are connected in series. A double throw type auxiliary changeover switch connected to the load terminal C through the circuit (7 + 8) and selectively connecting the load terminal C to the second power supply terminal B or the first power supply terminal A through the series circuit (7 + 8) 6. Synchronization for detecting synchronization between the first power supply terminal A and the second power supply terminal B The power failure detection circuit 20 that detects the occurrence of a power failure in the output circuit 10, the first power supply terminal A and / or the second power supply terminal B, and the electromagnetic contactor 8 is shut off when the synchronization detection circuit 10 detects no synchronization, and the electromagnetic contactor is detected when synchronization is detected. It comprises a control circuit 15 that drives the contactor 8 and switches the main changeover switch 5 to the healthy power supply terminal A or B and the conduction of the semiconductor switch 7 simultaneously when a power failure is detected by the power failure detection circuit 20. .
好ましくは、電磁接触器8を遅延釈放形とするか、又は制御回路15に電磁接触器8の遮断遅延回路30を含める。望ましくは、補助切替スイッチ6を主切替スイッチ5の接続電源端子A又はBと逆側の電源端子B又はAに切替える電動又は手動のスイッチ切替手段13を設ける。 Preferably, the electromagnetic contactor 8 is of a delayed release type, or the control circuit 15 includes an interruption delay circuit 30 of the electromagnetic contactor 8. Desirably, an electric or manual switch switching means 13 for switching the auxiliary selector switch 6 to the power source terminal B or A on the side opposite to the connection power source terminal A or B of the main selector switch 5 is provided.
更に好ましくは、図5に示すように、停電検出回路20に、交流波の全相全波整流により直流波を得る整流回路22と、その直流波を入力して停電検出信号Lを出力する無接点リレー23とを含める。停電検出回路20は、図1に示すように、主切替スイッチ5と負荷端子Cとの間に接続することができる。望ましくは、制御回路15に計画的な切替信号Nを入力する切替信号入力手段14を設け、その切替信号Nの入力時に、制御回路15により主切替スイッチ5を健全電源端子A又はBに切替え且つその後の停電検出回路20の停電検出に応じて半導体スイッチ7を導通させる。 More preferably, as shown in FIG. 5, the power failure detection circuit 20 is a rectifier circuit 22 that obtains a direct current wave by full-phase full-wave rectification of alternating current waves, and a power failure detection signal L that is output by inputting the direct current wave. Contact relay 23 is included. The power failure detection circuit 20 can be connected between the main changeover switch 5 and the load terminal C as shown in FIG. Preferably, the control circuit 15 is provided with a switching signal input means 14 for inputting a planned switching signal N, and when the switching signal N is input, the control circuit 15 switches the main selector switch 5 to the healthy power supply terminal A or B. The semiconductor switch 7 is turned on in response to the subsequent power failure detection of the power failure detection circuit 20.
好ましい実施例では、同期検出回路10に、第1電源端子A及び第2電源端子Bのアナログ波を矩形波に整形する波形成形回路11と、第1電源端子A及び第2電源端子Bの矩形波から周波数及び/又は位相の同期を検出して同期検出信号Mを出力するディジタル処理装置12とを含める。また制御回路15に、停電検出信号Lに応じて主切替スイッチ5の切替えを制御する主スイッチ制御回路18と、同期検出信号Mに応じて電磁接触器8の導通・遮断を制御する電磁接触器制御回路17とを含める。 In the preferred embodiment, the synchronization detection circuit 10 includes a waveform shaping circuit 11 for shaping the analog wave of the first power supply terminal A and the second power supply terminal B into a rectangular wave, and the rectangular shape of the first power supply terminal A and the second power supply terminal B. And a digital processing device 12 for detecting the synchronization of the frequency and / or phase from the wave and outputting the synchronization detection signal M. The control circuit 15 includes a main switch control circuit 18 that controls the switching of the main selector switch 5 in accordance with the power failure detection signal L, and an electromagnetic contactor that controls the conduction / shut-off of the electromagnetic contactor 8 in accordance with the synchronization detection signal M. And a control circuit 17.
本発明による無瞬断切替装置は、負荷端子Cを選択的に第1電源端子A又は第2電源端子Bに接続する双投式主切替スイッチ5と、半導体スイッチ7及び電磁接触器8の直列回路(7+8)を介して負荷端子Cを選択的に第2電源端子B又は第1電源端子Aに接続する双投式補助切替スイッチ6とを有し、第1電源端子A及び第2電源端子Bの間の同期非検出時に電磁接触器8を遮断すると共に同期検出時に電磁接触器8を導通し、第1電源端子A及び/又は第2電源端子Bの停電検出時に主切替スイッチ5の電源切替と半導体スイッチ7の導通とを同時に駆動するので、次の顕著な効果を奏する。 The uninterruptible switching device according to the present invention is a series of a double-throw main switching switch 5 that selectively connects a load terminal C to a first power supply terminal A or a second power supply terminal B, a semiconductor switch 7 and an electromagnetic contactor 8. A double-throw auxiliary changeover switch 6 for selectively connecting the load terminal C to the second power supply terminal B or the first power supply terminal A via the circuit (7 + 8), and the first power supply terminal A and the second power supply terminal The magnetic contactor 8 is cut off when synchronization is not detected between B and the magnetic contactor 8 is turned on when synchronization is detected, and the power source of the main changeover switch 5 is detected when a power failure is detected at the first power supply terminal A and / or the second power supply terminal B. Since the switching and the conduction of the semiconductor switch 7 are driven simultaneously, the following remarkable effects can be obtained.
(イ)有接点切替スイッチ5の電源切替と半導体スイッチ7の導通とを同時に駆動するので、半導体スイッチの導通時間で電源端子A、Bを切替えることが可能であり、自動切替の瞬停時間を実用上無瞬断(5msec以下)とすることができる。
(ロ)第1電源端子Aと第2電源端子Bとが非同期である時は電磁接触器8が遮断されるので、半導体スイッチ7を有接点切替スイッチ5と同時に導通しても非同期の電源端子A、Bが接続されることはなく、非同期の電源切替による横流の発生や負荷に対する悪影響を有効に避けることができる。
(ハ)半導体スイッチ7を1個としているので、制御回路及び機器構成を簡単化することができ、装置の小型化・低価格化を図ることができる。
(ニ)停電検出回路20を主切替スイッチ5と負荷端子Cとの間に接続することにより、装置の更なる小型化・低価格化が図れると共に、負荷側の電源ダウンを直接検知した上で切替動作に入ることができるので、接点開極時におけるアーク放電による連係状態での切替動作を確実に回避し、横流発生による諸問題を確実に防止できる。
(ホ)また、計画的な切替信号Nを制御装置15に入力する切替信号入力手段14を設け、その計画切替信号Nの入力時に主切替スイッチ5を切替えたのち停電検出回路20の停電検出に応じて半導体スイッチ7を導通させることにより、自動切替だけでなく、計画切替においても瞬停時間を実用上無瞬断(5msec以下)とすることができる。
(ヘ)半導体スイッチ7を導通させたのち有接点切替スイッチ5が切替わるので、切替スイッチ5の接点におけるアーク発生を防止することができ、接点の磨耗を少なくして寿命を延ばすことができる。
(ト)2系統UPSを短時間で切り替える無瞬断切替装置として利用することができ、24時間365日無停止のUPS給電システムの普及に寄与できる。
(A) Since the power source switching of the contact switch 5 and the conduction of the semiconductor switch 7 are driven simultaneously, the power terminals A and B can be switched by the conduction time of the semiconductor switch, and the instantaneous switching interruption time can be reduced. In practice, there can be no instantaneous interruption (5 msec or less).
(B) When the first power supply terminal A and the second power supply terminal B are asynchronous, the electromagnetic contactor 8 is cut off. Therefore, even if the semiconductor switch 7 is turned on simultaneously with the reed switch 5, the asynchronous power supply terminal A and B are not connected, and it is possible to effectively avoid the occurrence of cross current and the adverse effect on the load due to asynchronous power supply switching.
(C) Since only one semiconductor switch 7 is provided, the control circuit and the equipment configuration can be simplified, and the apparatus can be reduced in size and price.
(D) By connecting the power failure detection circuit 20 between the main changeover switch 5 and the load terminal C, the device can be further reduced in size and price, and the load side power down can be detected directly. Since the switching operation can be entered, the switching operation in the linked state due to arc discharge at the time of contact opening can be surely avoided, and various problems due to the occurrence of cross current can be reliably prevented.
(E) In addition, the switching signal input means 14 for inputting the planned switching signal N to the control device 15 is provided, and the main switching switch 5 is switched when the planned switching signal N is input, and then the power failure detection circuit 20 detects the power failure. Accordingly, by making the semiconductor switch 7 conductive, the instantaneous power interruption time can be practically uninterrupted (5 msec or less) not only in automatic switching but also in planned switching.
(F) Since the contact switch 5 is switched after the semiconductor switch 7 is turned on, arcing at the contact of the switch 5 can be prevented, wear of the contact can be reduced, and the life can be extended.
(G) It can be used as an uninterruptible switching device that switches between two UPS systems in a short time, and can contribute to the spread of a 24 hour 365 day non-stop UPS power supply system.
図1は、本発明の無瞬断切替装置1の一実施例のブロック図を示す。図示例の無瞬断切替装置1は、第1三相交流電源に接続する第1電源端子Aと、第2三相交流電源に接続する第2電源端子Bと、負荷Dに接続する負荷端子Cとを有する。例えば図2に示すように、第1電源端子A及び第2電源端子Bをそれぞれ2系統の無停電電源装置(UPS)41A及び41Bと接続することにより、本発明の無瞬断切替装置1を用いて負荷Dに対し故障時や保守点検時等においてもUPSから給電するシステムを構築する。ただし、本発明はUPS給電システムへの適用に限定されるものではない。 FIG. 1 shows a block diagram of an embodiment of the uninterruptible switching device 1 of the present invention. The uninterruptible switching device 1 in the illustrated example includes a first power supply terminal A connected to a first three-phase AC power supply, a second power supply terminal B connected to a second three-phase AC power supply, and a load terminal connected to a load D. C. For example, as shown in FIG. 2, by connecting the first power supply terminal A and the second power supply terminal B to two uninterruptible power supply devices (UPS) 41A and 41B respectively, Using this, a system for supplying power to the load D from the UPS at the time of failure or maintenance inspection is constructed. However, the present invention is not limited to application to a UPS power supply system.
図2のUPS41A、41Bはそれぞれ、例えば6600V、50Hzの高圧三相の商用交流電力を高圧分岐用遮断器盤40経由で入力する高圧入力盤42と、その高圧三相交流を所要電圧とする入力変圧器盤43と、変圧後の三相交流を整流するコンバータ44と、整流後の直流を蓄電するバッテリー45と、バッテリー45の電力を所定電圧・所定周波数の交流に変換するインバータ46と、分岐ブレーカー49と、その分岐ブレーカー49を選択的にインバータ46又は入力変圧器盤43(バイパス回路47)に接続する切替スイッチ48とを有する。定常時は切替スイッチ48によりインバータ46と分岐ブレーカー49とが接続されており、商用電力と同期しながらインバータ46を通して分岐ブレーカー49に定電圧・定周波数の安定した交流電力が供給される。入力の瞬断や停電発生時にもバッテリー45によりインバータ46は運転を継続し、無瞬断の電力が連続的に分岐ブレーカー49に供給される。 Each of UPS 41A and 41B in FIG. 2 has, for example, a high-voltage input panel 42 for inputting high-voltage three-phase commercial AC power of 6600 V, 50 Hz via the high-voltage branch breaker panel 40, and an input having the high-voltage three-phase AC as a required voltage. A transformer panel 43, a converter 44 that rectifies the three-phase alternating current after transformation, a battery 45 that stores the direct current after rectification, an inverter 46 that converts the electric power of the battery 45 into alternating current of a predetermined voltage and a predetermined frequency, and a branch A breaker 49 and a changeover switch 48 that selectively connects the branch breaker 49 to the inverter 46 or the input transformer board 43 (bypass circuit 47). At constant time, the inverter 46 and the branch breaker 49 are connected by the changeover switch 48, and stable AC power of constant voltage and constant frequency is supplied to the branch breaker 49 through the inverter 46 while synchronizing with the commercial power. Even when an input interruption or a power failure occurs, the inverter 46 continues to be operated by the battery 45, and power without interruption is continuously supplied to the branch breaker 49.
図示例のUPS41A、41Bは、分岐ブレーカー49の負荷側に定格出力電流以上の過電流が発生した場合に切替スイッチ48をバイパス回路47に自動的に切替え、商用交流電力を分岐ブレーカー49に直接給電する機能を有する。負荷電流が正常に復帰すると、切替スイッチ48がインバータ46に自動的に切替えられ、インバータ46からの給電が再開される。本発明の無瞬断切替装置1の第1電源端子AをUPS41Aの分岐ブレーカー49Aに接続すると共に、第2電源端子BをUPS41Bの分岐ブレーカー49Bに接続し、負荷端子Cに例えば変圧器51を介して負荷Dを接続することにより、負荷Dに対し24時間365日無停止で定電圧・定周波数の電力を供給する信頼性の高いUPS給電システムを構築することができる。なお図示例のUPS給電システムは、信頼性及び凡長性を更に高めるため、保守バイパス回路50を介してUPS41Aのバイパス回路47をUPS41Bの分岐ブレーカー49Bに接続し、商用電力又はUPS41Aの異常時にも負荷Dに対する給電を可能している。 The UPS 41A and 41B in the illustrated example automatically switches the changeover switch 48 to the bypass circuit 47 when the overcurrent exceeding the rated output current occurs on the load side of the branch breaker 49, and directly supplies commercial AC power to the branch breaker 49. It has the function to do. When the load current returns to normal, the changeover switch 48 is automatically switched to the inverter 46, and power supply from the inverter 46 is resumed. The first power supply terminal A of the uninterruptible switching device 1 of the present invention is connected to the branch breaker 49A of the UPS 41A, the second power supply terminal B is connected to the branch breaker 49B of the UPS 41B, and a transformer 51 is connected to the load terminal C, for example. By connecting the load D via the load D, it is possible to construct a highly reliable UPS power supply system that supplies constant voltage / constant frequency power to the load D without stopping for 24 hours 365 days. The UPS power supply system in the illustrated example connects the bypass circuit 47 of the UPS 41A to the branch breaker 49B of the UPS 41B via the maintenance bypass circuit 50 in order to further improve the reliability and length, so that even when the commercial power or UPS 41A is abnormal, Power supply to the load D is possible.
図示例の無瞬断切替装置1は、第1電源端子A及び第2電源端子Bと負荷端子Cとに接続された双投式主切替スイッチ5と、第1電源端子A及び第2電源端子Bに接続されると共に半導体スイッチ7と電磁接触器8との直列回路(以下、半導体バイパス回路(7+8)ということがある)を介して負荷端子Cに接続された双投式補助切替スイッチ6とを有する。主切替スイッチ5は、負荷端子Cを選択的に第1電源端子A又は第2電源端子Bに低損失で接続し、しかも後述する制御回路15により自動切替えが可能なものであり、例えば双投式電磁接触器(MCDT)とすることができる。補助切替スイッチ6は、半導体バイパス回路(7+8)を介して負荷端子Cを選択的に第2電源端子B又は第1電源端子Aに低損失で接続するものであり、制御回路15により自動切替え可能としてもよいが、電動又は手動で切替え可能であれば足りる。図示例の無瞬断切替装置1は、補助切替スイッチ6を切替える手動又は電動のスイッチ切替手段13(例えば装置盤面上の操作スイッチ)を有し、そのスイッチ切替手段13の操作により補助切替スイッチ6を、主切替スイッチ5の接続電源端子A又はBと逆側の電源端子B又はAに切替可能としている。図示例の補助切替スイッチ6は、スイッチ切替手段13からの入力に応じて、補助切替スイッチ6を主切替スイッチ5と逆側の電源端子B又はAに切替える補助スイッチ制御回路19を有している。 The uninterruptible switching device 1 in the illustrated example includes a double throw type main selector switch 5 connected to a first power terminal A, a second power terminal B, and a load terminal C, and a first power terminal A and a second power terminal. A double throw type auxiliary changeover switch 6 connected to the load terminal C through a series circuit of the semiconductor switch 7 and the electromagnetic contactor 8 (hereinafter, also referred to as a semiconductor bypass circuit (7 + 8)). Have The main changeover switch 5 selectively connects the load terminal C to the first power supply terminal A or the second power supply terminal B with low loss, and can be automatically switched by a control circuit 15 to be described later. Type magnetic contactor (MCDT). The auxiliary changeover switch 6 selectively connects the load terminal C to the second power supply terminal B or the first power supply terminal A through the semiconductor bypass circuit (7 + 8) with low loss, and can be automatically switched by the control circuit 15. However, it is sufficient if it can be switched electrically or manually. The uninterruptible switching device 1 in the illustrated example has a manual or electric switch switching means 13 (for example, an operation switch on the device panel surface) for switching the auxiliary switch 6, and the auxiliary switch 6 is operated by operating the switch switching means 13. Can be switched to the power supply terminal B or A on the opposite side to the connection power supply terminal A or B of the main selector switch 5. The auxiliary changeover switch 6 in the illustrated example has an auxiliary switch control circuit 19 that changes the auxiliary changeover switch 6 to the power supply terminal B or A on the opposite side of the main changeover switch 5 in accordance with the input from the switch changing means 13. .
半導体スイッチ7及び電磁接触器8は、負荷端子Cと補助切替スイッチ6との間に直列に接続され、共に負荷端子Cと補助切替スイッチ6との間の導通・遮断を切替え可能とする。半導体スイッチ7は後述する制御回路15(半導体制御回路16)により導通制御が可能なものであり、例えば切替時間1msec程度の絶縁ゲートバイポーラトランジスタ(IGBT)、トランジスタ、サイリスタ、GTO等とすることができる。また電磁接触器8は後述する制御回路15(補助スイッチ制御回路17)により導通及び遮断の制御が可能なものであり、例えば遮断時も0.1〜数secの間は導通状態を保持する遅延釈放形電磁接触器(MC)とすることができる。電磁接触器8を遅延釈放形とする理由については後述するが、本発明で用いる電磁接触器8は遅延釈放形に限定されるものではない。 The semiconductor switch 7 and the electromagnetic contactor 8 are connected in series between the load terminal C and the auxiliary changeover switch 6, and both can switch between conduction and interruption between the load terminal C and the auxiliary changeover switch 6. The semiconductor switch 7 can be controlled by a control circuit 15 (semiconductor control circuit 16), which will be described later. For example, the semiconductor switch 7 can be an insulated gate bipolar transistor (IGBT), a transistor, a thyristor, a GTO, or the like having a switching time of about 1 msec. . The electromagnetic contactor 8 can be controlled to be turned on and off by a control circuit 15 (auxiliary switch control circuit 17), which will be described later. For example, a delayed release type that keeps a conductive state for 0.1 to several seconds even at the time of interruption. It can be an electromagnetic contactor (MC). Although the reason why the electromagnetic contactor 8 is a delayed release type will be described later, the electromagnetic contactor 8 used in the present invention is not limited to the delayed release type.
図示例の半導体バイパス回路(7+8)は、半導体スイッチ7と電磁接触器8との間に異常発生時の遮断用の保護ヒューズ9を設けている。後述するように半導体バイパス回路(7+8)は切替の際に一時的に負荷給電するものであり、例えば主切替スイッチ5が切替不能となって半導体バイパス回路(7+8)による負荷給電が継続する等の異常発生時に、保護ヒューズ9により半導体バイパス回路(7+8)を遮断することができる。ただし、本発明では異常発生時に制御回路15によって電磁接触器8を遮断することが可能であり、半導体バイパス回路(7+8)の遮断用の保護ヒューズ9は本発明に必須のものではない。なお、例えばIGBT等の自己消弧可能な半導体スイッチ7を用いれば制御回路15により半導体スイッチ7の遮断タイミングを制御することも可能であるが、本発明は制御装置15による半導体スイッチ7の遮断タイミングの制御を必須とするものではなく、自己消弧不能なサイリスタ等の半導体スイッチ7を用いて半導体バイパス回路(7+8)を構成することができる。 In the illustrated semiconductor bypass circuit (7 + 8), a protective fuse 9 is provided between the semiconductor switch 7 and the electromagnetic contactor 8 for interrupting when an abnormality occurs. As will be described later, the semiconductor bypass circuit (7 + 8) temporarily supplies a load at the time of switching. For example, the main switch 5 cannot be switched and the load supply by the semiconductor bypass circuit (7 + 8) is continued. When an abnormality occurs, the semiconductor bypass circuit (7 + 8) can be cut off by the protective fuse 9. However, in the present invention, the magnetic contactor 8 can be interrupted by the control circuit 15 when an abnormality occurs, and the protective fuse 9 for interrupting the semiconductor bypass circuit (7 + 8) is not essential to the present invention. For example, if a semiconductor switch 7 such as an IGBT that can self-extinguish is used, the control circuit 15 can control the shut-off timing of the semiconductor switch 7. The semiconductor bypass circuit (7 + 8) can be configured using a semiconductor switch 7 such as a thyristor that cannot self-extinguish.
また図示例の無瞬断切替装置1は、第1電源端子A及び/又は第2電源端子Bの停電発生を検出する停電検出回路20と、第1電源端子Aと第2電源端子Bとの間の同期を検出する同期検出回路10と、制御回路15とを有する。図示例の停電検出回路20は、主切替スイッチ5と負荷端子Cとの間に接続され、主切替スイッチ5の接続電源端子(負荷給電電源端子)A又はBの停電発生を検出している。負荷給電電源の停電を検出することは、負荷側の電源ダウンを直接検知した上で切替動作に入ることを可能とし、横流発生による諸問題を防止できる利点があると共に、後述する計画切替時の瞬停時間の短縮にも有効である。停電検出回路20の回路図の一例を図5に示す。図示例の停電検出回路20は、三相線U、V、Wが二相ずつペアを構成して1次側巻き線に接続されたトランス21と、トランス21の2次巻き線に接続されて交流波の全相全波整流により直流波を得る整流回路(例えばブリッジダイオード)22と、その直流波を入力して停電検出信号Lを出力する無接点リレー23とを有する。無接点リレーの一例は、整流回路22に接続された発光素子23を有するMOS−FET(Metal Oxide Semiconductor Field Effect Transistor)である。三相交流の全相を全波整流した直流を用いて停電を検出することにより、平準化のためのコンデンサ等が不要となり、極めて短時間(約0.3msec)で停電を検出する停電検出回路20を実現することができる。 Further, the uninterruptible switching device 1 in the illustrated example includes a power failure detection circuit 20 that detects the occurrence of a power failure at the first power supply terminal A and / or the second power supply terminal B, and the first power supply terminal A and the second power supply terminal B. And a control circuit 15. The power failure detection circuit 20 in the illustrated example is connected between the main changeover switch 5 and the load terminal C, and detects the occurrence of a power failure at the connection power supply terminal (load power supply power supply terminal) A or B of the main changeover switch 5. Detecting a power failure in the load power supply makes it possible to enter the switching operation after directly detecting a power-down on the load side, and has the advantage of preventing problems caused by the occurrence of cross currents. It is also effective for shortening the instantaneous power interruption time. An example of a circuit diagram of the power failure detection circuit 20 is shown in FIG. The power failure detection circuit 20 in the illustrated example is configured such that a three-phase wire U, V, W constitutes a pair of two phases and is connected to a primary winding and a secondary winding of the transformer 21. It has a rectifier circuit (for example, a bridge diode) 22 that obtains a direct current wave by full-phase full-wave rectification of an alternating current wave, and a contactless relay 23 that inputs the direct current wave and outputs a power failure detection signal L. An example of a contactless relay is a MOS-FET (Metal Oxide Semiconductor Field Effect Transistor) having a light emitting element 23 connected to a rectifier circuit 22. A power failure detection circuit that detects power failure in an extremely short time (approximately 0.3msec) by detecting a power failure using a direct current obtained by full-wave rectification of all phases of a three-phase alternating current. Can be realized.
負荷給電電源の停電を検出する停電検出回路20に代えて、回路素子(制御部品)の数は増えるが、例えば図1に点線で示すように一対の停電検出回路20A、20Bを用いて第1電源端子A及び第2電源端子Bの両者の停電発生を同時に検出することも可能である。この場合も、停電検出回路20A、20Bの各々において第1電源端子A、第2電源端子Bの三相全波整流により直流波を得て停電検出信号LA、LBを出力することにより、第1電源端子A及び第2電源端子Bの両者の停電を極めて短時間で検出することができる。ただし、本発明で用いる停電検出回路20の構成は図5の例に限定されるものではなく、同等以下の短時間(約0.3msec以下)で停電を検出できる適当な停電検出回路20を用いることができる。なお、図5の停電検出回路20については本出願人による特許文献3に詳述されている。 The number of circuit elements (control parts) is increased in place of the power failure detection circuit 20 that detects a power failure of the load power supply power source. For example, as shown by a dotted line in FIG. It is also possible to detect the occurrence of a power failure at both the power supply terminal A and the second power supply terminal B at the same time. Also in this case, in each of the power failure detection circuits 20A and 20B, the first power supply terminal A and the second power supply terminal B obtain a direct current wave by three-phase full-wave rectification and output the power failure detection signals LA and LB. It is possible to detect a power failure at both the power supply terminal A and the second power supply terminal B in a very short time. However, the configuration of the power failure detection circuit 20 used in the present invention is not limited to the example of FIG. 5, and an appropriate power failure detection circuit 20 that can detect a power failure in a short time (approximately 0.3 msec or less) equal to or less than that is used. Can do. The power failure detection circuit 20 shown in FIG. 5 is described in detail in Patent Document 3 by the present applicant.
図示例の同期検出回路10は、第1電源端子A及び第2電源端子Bの電圧を検出する電圧検出回路と、第1電源端子A及び第2電源端子Bのアナログ波を矩形波に整形する波形成形回路11と、第1電源端子A及び第2電源端子Bの矩形波から周波数及び/又は位相の同期を検出して同期検出信号Mを出力するディジタル処理装置12とを有する。図6は、本発明で用いる同期検出回路10の一例の機能ブロック図を示す。電圧検出回路は、電源端子A及びBの三相線U、V、Wに接続された1次側巻き線を有するトランス29と、そのトランス29の2次巻き線に接続された整流回路及び平準回路とを有し、A/D変換後の平準回路の出力値をディジタル処理装置12に入力して電圧を算出する。また、そのトランス29の2次巻き線のアナログ波を波形成形回路11により周期Tより十分に短いサンプリング間隔Δtで整形して矩形波とし、A/D変換後の矩形波をディジタル処理装置12に入力してゼロクロス点を抽出し、ゼロクロス点の時間間隔から入力波形の周期T及びその逆数である周波数を検出する。更にディジタル処理装置12は、電源端子A及びBの矩形波のゼロクロス点の時間差から位相差を検出し、位相差が実質上同期状態とみなすことができる範囲にある場合に同期検出信号Mを出力する。図示例の同期検出回路10は、同期状態以外を非同期状態と判断する。 The synchronization detection circuit 10 in the illustrated example shapes a voltage detection circuit that detects voltages at the first power supply terminal A and the second power supply terminal B, and an analog wave at the first power supply terminal A and the second power supply terminal B into a rectangular wave. It has a waveform shaping circuit 11 and a digital processing device 12 that detects the synchronization of the frequency and / or phase from the rectangular wave of the first power supply terminal A and the second power supply terminal B and outputs the synchronization detection signal M. FIG. 6 shows a functional block diagram of an example of the synchronization detection circuit 10 used in the present invention. The voltage detection circuit includes a transformer 29 having a primary winding connected to the three-phase wires U, V, and W of power supply terminals A and B, a rectifier circuit connected to the secondary winding of the transformer 29, and a leveling circuit. The output value of the leveling circuit after A / D conversion is input to the digital processor 12 to calculate the voltage. The analog wave of the secondary winding of the transformer 29 is shaped by the waveform shaping circuit 11 at a sampling interval Δt sufficiently shorter than the period T to form a rectangular wave, and the rectangular wave after A / D conversion is sent to the digital processing device 12. The zero cross point is extracted by inputting, and the period T of the input waveform and the frequency which is the reciprocal thereof are detected from the time interval of the zero cross point. Further, the digital processor 12 detects the phase difference from the time difference between the zero cross points of the rectangular waves of the power supply terminals A and B, and outputs the synchronization detection signal M when the phase difference is in a range that can be regarded as a substantially synchronized state. To do. The synchronization detection circuit 10 in the illustrated example determines that the state other than the synchronization state is an asynchronous state.
本発明者は、図2のように電源端子A、BをUPS41A及び41Bに接続した場合に、負荷の回路条件等によって異なるものの、位相差14°以内であれば負荷への悪影響(突入電流の発生等)を避けることが可能であり、位相差10°以内(更に好ましくは位相差7°以内)であれば実質上同期状態とみなすことができることを実験的に見出した。例えば、同期検出回路10のディジタル処理装置12に同期状態とみなす位相差を14°以内の範囲内で1°ステップ毎に設定できる設定スイッチを設け、負荷の回路条件等に応じて同期検出信号Mを出力する位相差を調整することが可能である。なお、図示例の同期検出回路10は、両電源端子A及びBの電圧差、周波数差の検出が可能であり、例えばディジタル処理装置12の設定スイッチで同期状態とみなす電圧差、周波数差を設定することにより、位相差だけでなく電圧差、周波数差も同期状態とみなすことができる場合にのみ同期検出信号Mを出力することができる。 When the power supply terminals A and B are connected to the UPS 41A and 41B as shown in FIG. 2, the inventor has an adverse effect on the load (inrush current) if the phase difference is within 14 °, depending on the circuit conditions of the load. It has been experimentally found that it can be regarded as a substantially synchronized state if the phase difference is within 10 ° (more preferably within 7 °). For example, the digital processing device 12 of the synchronization detection circuit 10 is provided with a setting switch that can set a phase difference regarded as a synchronization state within a range of 14 ° for each 1 ° step, and the synchronization detection signal M according to the circuit condition of the load. Can be adjusted. Note that the synchronization detection circuit 10 in the illustrated example can detect the voltage difference and the frequency difference between both power supply terminals A and B. For example, the voltage difference and the frequency difference that are considered to be in the synchronized state can be set with the setting switch of the digital processing device 12. Thus, the synchronization detection signal M can be output only when not only the phase difference but also the voltage difference and the frequency difference can be regarded as the synchronization state.
図示例の制御回路15は、同期検出回路10の同期検出信号Mと停電検出回路20の停電検出信号Lとを入力し、半導体スイッチ7の導通を制御する半導体制御回路16と、電磁接触器8の導通・遮断を制御する電磁接触器制御回路17と、主切替スイッチ5の切替えを制御する主スイッチ制御回路18とを有する。また図示例の制御回路15は、意図的に電源端子A、Bを切替えるための計画切替信号Nを入力する切替信号入力手段14(例えば装置盤面上の操作スイッチ)を有している。 The control circuit 15 in the illustrated example receives the synchronization detection signal M of the synchronization detection circuit 10 and the power failure detection signal L of the power failure detection circuit 20 and controls the semiconductor control circuit 16 for controlling the conduction of the semiconductor switch 7 and the electromagnetic contactor 8. The magnetic contactor control circuit 17 that controls conduction / cutoff of the main switch 5 and the main switch control circuit 18 that controls switching of the main changeover switch 5 are provided. Further, the control circuit 15 in the illustrated example has a switching signal input means 14 (for example, an operation switch on the device panel surface) for inputting a planned switching signal N for intentionally switching the power supply terminals A and B.
制御回路15は、同期検出信号Mが入力された場合に電磁接触器制御回路17を介して電磁接触器8を導通させて半導体バイパス回路(7+8)を有効とし、同期検出信号Mが入力されない場合に電磁接触器制御回路17を介して電磁接触器8を遮断して半導体バイパス回路(7+8)を無効とする。図示例の制御回路15は遅延回路30を有し、遅延回路30を介して電磁接触器制御回路17と接続されている。遅延回路30を設けることにより、同期検出信号Mが無入力となったときに電磁接触器制御回路17に対する制御信号を遅延させ、電磁接触器8の遮断を0.1〜数sec程度遅延させることができる。ただし、遅延回路30は本発明に必須のものではなく、例えば電磁接触器8を遅延釈放形とした場合は省略可能である。 When the synchronization detection signal M is input, the control circuit 15 causes the magnetic contactor 8 to conduct via the electromagnetic contactor control circuit 17 to enable the semiconductor bypass circuit (7 + 8), and the synchronization detection signal M is not input. Then, the magnetic contactor 8 is cut off via the electromagnetic contactor control circuit 17 to invalidate the semiconductor bypass circuit (7 + 8). The control circuit 15 in the illustrated example has a delay circuit 30 and is connected to the electromagnetic contactor control circuit 17 via the delay circuit 30. By providing the delay circuit 30, it is possible to delay the control signal for the electromagnetic contactor control circuit 17 when the synchronization detection signal M is not input, and to delay the interruption of the electromagnetic contactor 8 by about 0.1 to several seconds. . However, the delay circuit 30 is not essential for the present invention, and can be omitted, for example, when the electromagnetic contactor 8 is of a delayed release type.
また図示例の制御回路15は、停電検出信号Lが入力された場合に、主スイッチ制御回路18に駆動電圧(図示例では電源端子A又はBからの単相駆動電圧)を印加して主切替スイッチ5を切替えると同時に、半導体制御回路16を介して半導体スイッチ7を導通させる。IGBT等の自己消弧可能な半導体スイッチ7を用いた場合は、停電検出信号Lが入力されない場合に半導体制御回路16を介して半導体スイッチ7を直ちに遮断するように制御回路15を構成することができるが、制御装置15は半導体スイッチ7の導通タイミングの制御が可能であれば足りる。 In addition, when the power failure detection signal L is input, the control circuit 15 in the illustrated example applies a drive voltage (single-phase drive voltage from the power supply terminal A or B in the illustrated example) to the main switch control circuit 18 to perform main switching. At the same time as switching the switch 5, the semiconductor switch 7 is turned on via the semiconductor control circuit 16. When a semiconductor switch 7 capable of self-extinguishing such as an IGBT is used, the control circuit 15 may be configured to immediately shut off the semiconductor switch 7 via the semiconductor control circuit 16 when the power failure detection signal L is not input. However, it is sufficient that the control device 15 can control the conduction timing of the semiconductor switch 7.
図3は無瞬断切替装置1による停電時の電源切替動作の流れ図を示し、図7(A)はその切替タイムチャートを示す。以下、両図を参照して停電自動切替時における本発明の無瞬断切替装置1の作用を説明する。図3(A)は、主切替スイッチ5により負荷端子Cが第1電源端子Aと接続され、第1交流電源から負荷端子Cに給電中の状態を表す。このとき、補助切替スイッチ6はスイッチ切替手段13によって主切替スイッチ5と逆側の電源端子Bに切替えられており、電磁接触器8は同期検出回路10により電源端子A、Bの同期が検出されている限り導通している。しかし、半導体スイッチ7は遮断されており、負荷端子Cと第2電源端子Bとは遮断されている。 FIG. 3 shows a flowchart of the power source switching operation at the time of a power failure by the uninterruptible switching device 1, and FIG. 7 (A) shows the switching time chart. Hereinafter, the operation of the uninterruptible switching device 1 of the present invention at the time of automatic power failure switching will be described with reference to both drawings. 3A shows a state in which the load terminal C is connected to the first power supply terminal A by the main changeover switch 5 and power is being supplied from the first AC power supply to the load terminal C. FIG. At this time, the auxiliary changeover switch 6 is switched to the power supply terminal B opposite to the main changeover switch 5 by the switch changeover means 13, and the magnetic contactor 8 detects the synchronization of the power supply terminals A and B by the synchronization detection circuit 10. As long as it is conductive. However, the semiconductor switch 7 is cut off, and the load terminal C and the second power supply terminal B are cut off.
図3(B)は、同図(A)の状態において停電検出回路20により電源端子Aの停電が検出された状態を表す。図7(A)に示すように、停電検出回路20は停電を検出すると停電検出信号Lを制御回路15に出力し、制御回路15が主切替スイッチ5を第1電源端子Aから第2電源端子Bへ切替えると同時に半導体スイッチ7を導通させる。上述したように主切替スイッチ5の切替動作には20〜50msec程度の時間t1がかかるのに対し、半導体スイッチ7は短時間t2で導通するので、負荷端子Cと第2電源端子Bとが補助切替スイッチ6と電磁接触器8と半導体スイッチ7とを介して接続され、第2交流電源から負荷端子Cへの給電が短時間で開始する。すなわち、電源端子Aから電源端子B2への自動切替の瞬停時間は停電検出時間(約0.3msec)と半導体スイッチ7の導通時間(約1msec)との合計である1.3msec程度であり、実用上無瞬断の自動切替えが可能となる。 FIG. 3B shows a state in which a power failure of the power supply terminal A is detected by the power failure detection circuit 20 in the state of FIG. As shown in FIG. 7A, when the power failure detection circuit 20 detects a power failure, it outputs a power failure detection signal L to the control circuit 15, and the control circuit 15 moves the main changeover switch 5 from the first power supply terminal A to the second power supply terminal. At the same time as switching to B, the semiconductor switch 7 is turned on. As described above, the switching operation of the main selector switch 5 takes a time t1 of about 20 to 50 msec, whereas the semiconductor switch 7 is turned on in a short time t2, so that the load terminal C and the second power supply terminal B are auxiliary. The changeover switch 6, the magnetic contactor 8, and the semiconductor switch 7 are connected, and power supply from the second AC power source to the load terminal C starts in a short time. That is, the instantaneous power failure time of automatic switching from the power supply terminal A to the power supply terminal B2 is about 1.3 msec, which is the sum of the power failure detection time (about 0.3 msec) and the conduction time of the semiconductor switch 7 (about 1 msec). Automatic switching without interruption is possible.
図3(B)において、主切替スイッチ5が第1電源端子Aと遮断される前に半導体スイッチ7が導通するが、図7(A)に示すように電源端子Aが停電しているので、電源端子A、B間の横流は発生しない。ただし、電源端子Aの停電が発生した場合に、停電検出回路20による停電の検出と同時に同期検出回路10により電源端子A、Bの非同期が検出され、その非同期検出信号Mにより電磁接触器8の遮断が駆動されるため、停電後も主切替スイッチ5の切替動作完了までの間は電磁接触器8を導通状態に保持する必要がある。図示例では、電磁接触器8を遅延釈放形とし、及び/又は制御回路15に電磁接触器8の遮断遅延回路30を含めることにより、主切替スイッチ5の切替動作完了まで電磁接触器8を導通状態に保持している。電磁接触器8の遮断遅延時間は、主切替スイッチ5の切替完了時間(上述した20〜50msec程度)以上の範囲内で適当に選択できるが、例えば0.1sec程度であれば足りる。主切替スイッチ5の切替動作完了まで半導体バイパス回路(7+8)の遮断を確実に防ぐためには、遅延釈放形の電磁接触器8と制御回路15の遅延回路30との両者を用いることも有効である。 In FIG. 3 (B), the semiconductor switch 7 is turned on before the main changeover switch 5 is disconnected from the first power supply terminal A. However, as shown in FIG. No cross current occurs between the power terminals A and B. However, when a power failure occurs at the power supply terminal A, the synchronization detection circuit 10 detects the asynchronous power supply terminals A and B at the same time as the power failure detection by the power failure detection circuit 20. Since the interruption is driven, it is necessary to keep the electromagnetic contactor 8 in a conductive state after the power failure until the switching operation of the main changeover switch 5 is completed. In the illustrated example, the electromagnetic contactor 8 is made to be a delayed release type and / or the electromagnetic contactor 8 is conducted until the switching operation of the main changeover switch 5 is completed by including the interruption delay circuit 30 of the electromagnetic contactor 8 in the control circuit 15. Held in a state. The interruption delay time of the magnetic contactor 8 can be appropriately selected within a range not less than the switching completion time of the main changeover switch 5 (about 20 to 50 msec described above), but for example, about 0.1 sec is sufficient. It is also effective to use both the delay release type electromagnetic contactor 8 and the delay circuit 30 of the control circuit 15 in order to reliably prevent the semiconductor bypass circuit (7 + 8) from being interrupted until the switching operation of the main changeover switch 5 is completed. .
図3(C)は、同図(A)の状態において電源端子A、Bが非同期である場合に電源端子Aの停電が検出された状態を表す。この場合は、電磁接触器制御回路17により電磁接触器8が遮断されているので、制御回路15が主切替スイッチ5の切替えと同時に半導体スイッチ7を導通しても負荷端子Cと第2電源端子Bとは遮断されており、主切替スイッチ5の切替え完了後に第2交流電源から負荷端子Cへの給電が開始する(同図(D)参照)。 FIG. 3C shows a state in which a power failure of the power terminal A is detected when the power terminals A and B are asynchronous in the state of FIG. In this case, since the electromagnetic contactor 8 is cut off by the electromagnetic contactor control circuit 17, even if the control circuit 15 turns on the semiconductor switch 7 simultaneously with the switching of the main selector switch 5, the load terminal C and the second power supply terminal B is cut off, and power supply from the second AC power source to the load terminal C is started after completion of switching of the main selector switch 5 (see FIG. 4D).
図3(D)は、主切替スイッチ5の切替えが完了し、主切替スイッチ5により負荷端子Cが第2電源端子Bと接続された状態を表す。このとき、比較的損失の大きい半導体バイパス回路(7+8)を介してではなく、比較的低損失の主切替スイッチ5を介して負荷端子Cに給電される。また、主切替スイッチ5の切替動作完了後、制御回路15により半導体制御回路16を介して半導体スイッチ7を遮断することができ、半導体スイッチ7の通電による電力損失が除去される。半導体スイッチ7の遮断は交流波形のゼロクロスを待って行えば足りるので、半導体スイッチ7は自己消弧不能なサイリスタ等であってもよい。その後、同図(E)においてスイッチ切替手段13によって補助切替スイッチ6を主切替スイッチ5と逆側の電源端子Aに切替え、電源端子Bの停電検出時に対応可能とする。 FIG. 3D shows a state in which switching of the main selector switch 5 is completed and the load terminal C is connected to the second power supply terminal B by the main selector switch 5. At this time, power is supplied to the load terminal C not through the semiconductor bypass circuit (7 + 8) having a relatively large loss but through the main changeover switch 5 having a relatively low loss. In addition, after the switching operation of the main changeover switch 5 is completed, the semiconductor switch 7 can be cut off by the control circuit 15 via the semiconductor control circuit 16, and the power loss due to the energization of the semiconductor switch 7 is removed. Since the semiconductor switch 7 need only be interrupted after waiting for the zero crossing of the AC waveform, the semiconductor switch 7 may be a thyristor or the like that is not capable of self-extinguishing. Thereafter, in FIG. 5E, the auxiliary changeover switch 6 is switched to the power supply terminal A on the opposite side of the main changeover switch 5 by the switch changeover means 13 so as to be able to cope with a power failure detection of the power supply terminal B.
図3(F)は、同図(E)の状態において、切替信号入力手段14により制御回路15に計画切替信号Nを入力した状態を表す。そのような計画切替時の切替タイムチャートを示す図7(B)を参照するに、計画切替信号Nの入力時に制御回路15は、上述した停電自動切替時のように主切替スイッチ5と半導体スイッチ7とを同時に駆動するのではなく、先ず主切替スイッチ5を駆動したのち停電検出回路20の停電検出に応じて半導体スイッチ7を駆動する。すなわち制御回路15は、切替信号Nの入力時に先ず主切替スイッチ5を第2電源端子Bから第1電源端子Aへ切替える。その後、主切替スイッチ5が電源端子Bから離れて負荷端子Cに瞬停が発生すると、停電検出器20が停電を検出して制御回路15に停電検出信号Lを出力する。制御回路15は、この停電検出信号Lに応じて半導体スイッチ7を短時間t2で導通させる。主切替スイッチ5の切替動作には20〜50msec程度の時間t1がかかるが、半導体スイッチ7の導通により負荷端子Cと電源端子Aとが補助切替スイッチ6、電磁接触器8、半導体スイッチ7を介して接続されるので、第1交流電源から負荷端子Cへの給電が短時間で開始する。すなわち、上述した停電自動切替の場合と同様に、計画切替の瞬停時間も実用上無瞬断の1.3msec程度に抑えることができる。主切替スイッチ5の切替えが完了したのち半導体スイッチ7が自動的に遮断され、更にスイッチ切替手段13により補助切替スイッチ6を主切替スイッチ5と逆側の電源端子Bに切替えることにより、同図(A)の状態に復帰する。なお、電源端子A、Bが非同期である場合は、非同期電源の短時間切替(5msec以下)による負荷への悪影響を避けるため、例えば同期検出回路10の非同期検出信号Mに応じて、制御回路15による計画切替信号Nの入力受付けを拒否又は無視することができる。 FIG. 3F shows a state in which the planned switching signal N is input to the control circuit 15 by the switching signal input means 14 in the state of FIG. Referring to FIG. 7B showing a switching time chart at the time of such plan switching, the control circuit 15 at the time of inputting the plan switching signal N, the main changeover switch 5 and the semiconductor switch as at the time of automatic power failure switching described above. 7 is driven at the same time, first the main changeover switch 5 is driven, and then the semiconductor switch 7 is driven in response to the power failure detection of the power failure detection circuit 20. That is, when the switching signal N is input, the control circuit 15 first switches the main changeover switch 5 from the second power supply terminal B to the first power supply terminal A. Thereafter, when the main changeover switch 5 moves away from the power supply terminal B and a momentary power failure occurs at the load terminal C, the power failure detector 20 detects a power failure and outputs a power failure detection signal L to the control circuit 15. In response to the power failure detection signal L, the control circuit 15 causes the semiconductor switch 7 to conduct in a short time t2. Although the switching operation of the main changeover switch 5 takes a time t1 of about 20 to 50 msec, the load terminal C and the power supply terminal A are connected via the auxiliary changeover switch 6, the electromagnetic contactor 8, and the semiconductor switch 7 due to the conduction of the semiconductor switch 7. Therefore, the power supply from the first AC power source to the load terminal C starts in a short time. That is, as in the case of the automatic power failure switching described above, the instantaneous power failure time for planned switching can be suppressed to about 1.3 msec, which is practically uninterrupted. After the switching of the main changeover switch 5 is completed, the semiconductor switch 7 is automatically cut off, and the auxiliary changeover switch 6 is switched to the power supply terminal B opposite to the main changeover switch 5 by the switch changeover means 13 (FIG. Return to the state of A). When the power supply terminals A and B are asynchronous, the control circuit 15 is controlled according to the asynchronous detection signal M of the synchronous detection circuit 10, for example, in order to avoid adverse effects on the load due to the short-time switching of the asynchronous power supply (5 msec or less). It is possible to reject or ignore the input of the plan switching signal N.
本発明の無瞬断切替装置1は、負荷端子Cを選択的に電源端子A又はBに接続する主切替スイッチ5と、半導体バイパス回路(7+8)を介して負荷端子Cを選択的に電源端子B又はAに接続する補助切替スイッチ6とを用い、停電検出時に主切替スイッチ5の電源切替と半導体スイッチ7の導通とを同時に駆動するので、半導体スイッチ7の導通時間で電源端子A、Bを切替えることが可能であり、実用上無瞬断(5msec以下)の自動切替が実現できる。この場合において、電源端子A、Bの非同期時はパイパス回路(7+8)が遮断されるので、非同期の電源端子A、Bの混色を避けることができ、横流が発生するおそれはない。また、自動切替だけでなく計画的な切替においても、主切替スイッチ5の切替時の停電を検出して半導体スイッチ7を導通させることができ、実用上無瞬断(5msec以下)の計画切替が実現できる。しかも、使用する半導体スイッチ7は1個で足りるので、制御回路及び機器構成の簡単化を図ることができ、コンパクトな装置を低価格で製造することが可能となる。 The uninterruptible switching device 1 of the present invention selectively connects a load terminal C to a power supply terminal via a main changeover switch 5 that selectively connects the load terminal C to a power supply terminal A or B, and a semiconductor bypass circuit (7 + 8). Since the auxiliary changeover switch 6 connected to B or A is used and the power changeover of the main changeover switch 5 and the conduction of the semiconductor switch 7 are simultaneously driven when a power failure is detected, the power supply terminals A and B are connected with the conduction time of the semiconductor switch 7. It is possible to switch, and practically automatic switching without interruption (5 msec or less) can be realized. In this case, since the bypass circuit (7 + 8) is cut off when the power supply terminals A and B are asynchronous, the color mixture of the asynchronous power supply terminals A and B can be avoided and there is no possibility of generating a cross current. Moreover, not only automatic switching but also planned switching, it is possible to detect a power failure at the time of switching of the main switch 5 and to make the semiconductor switch 7 conductive, so that practical switching without interruption (5 msec or less) is possible. realizable. Moreover, since only one semiconductor switch 7 is used, the control circuit and the equipment configuration can be simplified, and a compact device can be manufactured at a low cost.
こうして本発明の目的である「実用上無瞬断の自動切替が可能であり且つコンパクト化が可能な無瞬断切替装置」の提供を達成することができる。 In this way, it is possible to achieve the object of the present invention, which is “a non-instantaneous switching device that can be switched automatically in practice and can be made compact”.
なお、図2に示すように本発明の無瞬断切替装置1を2系統のUPS41A及び41Bと組み合わせた場合は、各UPS41A及び41Bが商用電力と同期しながら定電圧・定周波数の安定した交流電力を出力するので、電源端子A、Bが非同期となる事態(図3(C)の状態)が頻発するおそれは小さく、無瞬断切替装置1により2系統UPS41A、41Bから24時間365日無停止で給電する高信頼性のUPS給電システムが実現可能である。また、例えば無瞬断切替装置1とUPS41A、41Bのインバータ46A、46Bとの間に同期検出信号Mを伝送する信号ケーブル(図示せず)を設け、2系統のUPS41A、41Bの非同期検出時にインバータ46A、46Bの電圧・周波数等を調節するような設計にも容易に対応可能である。 As shown in FIG. 2, when the uninterruptible switching device 1 of the present invention is combined with two systems of UPS 41A and 41B, each UPS 41A and 41B is synchronized with commercial power and has a stable constant voltage and constant frequency AC. Since power is output, there is little possibility that the power supply terminals A and B become asynchronous (the state shown in FIG. 3 (C)), and the uninterruptible switching device 1 provides 24 hours 365 days from the two systems UPS 41A and 41B. A highly reliable UPS power supply system that supplies power when stopped can be realized. Further, for example, a signal cable (not shown) for transmitting a synchronous detection signal M is provided between the uninterruptible switching device 1 and the inverters 46A and 46B of the UPS 41A and 41B, and the inverter is detected when asynchronously detecting the two systems of UPS 41A and 41B. Designs that adjust the voltage and frequency of 46A and 46B can be easily accommodated.
図示例の無瞬断切替装置1は、第1電源端子Aと主切替スイッチ5及び補助切替スイッチ6との間に第1電源端子Aを選択的に両切替スイッチ5、6又は負荷端子Cに接続するオーバーラップ式第1切替スイッチ2Aを設け、第2電源端子Bと主切替スイッチ5及び補助切替スイッチ6との間に第2電源端子Bを選択的に両切替スイッチ5、6又は負荷端子Cに接続するオーバーラップ式第2切替スイッチ2Bを設け、負荷端子Cと主切替スイッチ5及び補助切替スイッチ6との間にブレーカー4を設け、無瞬断切替装置1のメンテナンスの容易化を図っている。図示例の無瞬断切替装置1によれば、メンテナンス時においても負荷Dへの給電を停止する必要がなくなる。 The non-instantaneous switching device 1 in the illustrated example selectively connects the first power supply terminal A between the first power supply terminal A and the main changeover switch 5 and the auxiliary changeover switch 6 to both the changeover switches 5 and 6 or the load terminal C. An overlapping first changeover switch 2A is provided, and the second power supply terminal B is selectively connected between the second power supply terminal B, the main changeover switch 5 and the auxiliary changeover switch 6, or both changeover switches 5, 6 or load terminals. An overlap type second changeover switch 2B connected to C is provided, and a breaker 4 is provided between the load terminal C, the main changeover switch 5 and the auxiliary changeover switch 6 to facilitate maintenance of the uninterruptible changeover device 1. ing. According to the non-instantaneous switching device 1 of the illustrated example, it is not necessary to stop the power supply to the load D even during maintenance.
図4は、メンテナンス時における無瞬断切替装置1の電源切替動作の流れ図を示す。同図(A)は、図3(A)と同様に、第1電源端子Aから負荷端子Cに給電中の状態を表す。例えば、この状態において無瞬断切替装置1の第2電源端子Bと第2交流電源(例えば図2のUPS41B)との接続を遮断したうえで、第1切替スイッチ2Aを両切替スイッチ5、6に接続する電源監視回路38Aから負荷端子Cに直接接続するバイパス回路39Aに切替える(図4(B)参照)。切替スイッチ2Aをオーバーラップ式とすることにより、第1電源端子Aと負荷端子Cとを無瞬断で切替え接続することが可能であり、負荷端子Cの瞬停の発生を避けることができる。図4(B)において、ブレーカー4を閉鎖した状態では主切替スイッチ5から負荷端子Cまで充電状態となっているが、ブレーカー4を開放することに主切替スイッチ5から負荷端子Cまで無充填状態とすることができる。 FIG. 4 shows a flowchart of the power switching operation of the uninterruptible switching device 1 during maintenance. 3A shows a state in which power is being supplied from the first power supply terminal A to the load terminal C, as in FIG. 3A. For example, in this state, after the connection between the second power supply terminal B of the uninterruptible switching device 1 and the second AC power supply (for example, UPS 41B in FIG. 2) is cut off, the first changeover switch 2A is changed to the changeover switches 5, 6 To the bypass circuit 39A directly connected to the load terminal C (see FIG. 4B). By making the changeover switch 2A an overlap type, the first power supply terminal A and the load terminal C can be switched and connected without instantaneous interruption, and the occurrence of instantaneous interruption of the load terminal C can be avoided. 4B, when the breaker 4 is closed, the main changeover switch 5 is charged to the load terminal C, but when the breaker 4 is opened, the main changeover switch 5 to the load terminal C is not charged. It can be.
図4(C)は、第1切替スイッチ2Aと共に、第2切替スイッチ2Bを両切替スイッチ5、6に接続する電源監視回路38Bから負荷端子Cに直接接続するバイパス回路39Bに切替えた状態を表す。第1切替スイッチ2A及び第2切替スイッチ2Bをバイパス回路39Bに切替え、ブレーカー4を開放したのち、無瞬断切替装置1のメンテナンスを行う。なお、図4(C)の状態において第2電源端子Bと第2交流電源(図2のUPS41B)とを接続すると、2系統の交流電源から負荷端子Cへの並列供給となる。この場合は、2系統の交流電源の同期が取れていない場合もありえるため、注意が必要である。 FIG. 4C shows a state in which the first changeover switch 2A and the second changeover switch 2B are switched from the power supply monitoring circuit 38B connecting to both changeover switches 5 and 6 to the bypass circuit 39B connecting directly to the load terminal C. . After switching the first changeover switch 2A and the second changeover switch 2B to the bypass circuit 39B and opening the breaker 4, maintenance of the uninterruptible switching device 1 is performed. In addition, if the 2nd power supply terminal B and the 2nd AC power supply (UPS41B of FIG. 2) are connected in the state of FIG.4 (C), it will become parallel supply to the load terminal C from two AC power supplies. In this case, care must be taken because the two systems of AC power supplies may not be synchronized.
1…無瞬断切替装置 2A…(オーバーラップ形)手動切替器
2B…(オーバーラップ形)手動切替器 4…ブレーカー(MCCB)
5…双投式主切替スイッチ 6…双投式補助切替スイッチ
7…半導体スイッチ 8…遅延釈放形電磁接触器
9…保護ヒューズ 10…同期検出回路
11…波形成形回路 12…ディジタル処理装置
13…スイッチ切替手段(電動又は手動) 14…切替信号入力手段
15…制御回路 16…半導体制御回路
17…接触器制御回路 18…主スイッチ制御回路
19…補助スイッチ制御回路 20…停電検出回路
21…トランス 22…整流回路
23…無接点リレー
29…トランス 30…遅延回路
38…電源監視回路 39…バイパス回路
40…高圧分岐用遮断器盤 41…無停電電源装置(UPS)
42…高圧入力盤 43…入力変圧器盤
44…コンバータ 45…バッテリー
46…インバータ 47…バイパス回路
48…切替スイッチ 49…分岐ブレーカー
50…保守バイパス回路 51…変圧器
55…有接点スイッチ 56…半導体スイッチ
57…半導体スイッチ 58…有接点スイッチ
59…有接点切替スイッチ 60…半導体スイッチ
62…メンテナンス用スイッチ
A…第1電源端子 B…第2電源端子
C…負荷端子 D…負荷
L…停電検出信号 M…同期検出信号
N…計画切替信号
1 ... Non-instantaneous switching device 2A ... (overlap type) manual switching device
2B ... (overlap type) manual changer 4 ... Breaker (MCCB)
5 ... Double throw type main changeover switch 6 ... Double throw type auxiliary changeover switch 7 ... Semiconductor switch 8 ... Delay release electromagnetic contactor 9 ... Protection fuse 10 ... Synchronous detection circuit
11 ... Waveform shaping circuit 12 ... Digital processing equipment
13 ... Switch switching means (electrical or manual) 14 ... Switch signal input means
15 ... Control circuit 16 ... Semiconductor control circuit
17 ... Contactor control circuit 18 ... Main switch control circuit
19… Auxiliary switch control circuit 20… Power failure detection circuit
21 ... Transformer 22 ... Rectifier circuit
23… Solid state relay
29 ... Transformer 30 ... Delay circuit
38 ... Power supply monitoring circuit 39 ... Bypass circuit
40 ... High voltage branch circuit breaker panel 41 ... Uninterruptible power supply (UPS)
42 ... High voltage input panel 43 ... Input transformer panel
44 ... Converter 45 ... Battery
46… Inverter 47… Bypass circuit
48 ... changeover switch 49 ... branch breaker
50 ... Maintenance bypass circuit 51 ... Transformer
55 ... reed switch 56 ... semiconductor switch
57 ... Semiconductor switch 58 ... Reed switch
59 ... Reed switch 60 ... Semiconductor switch
62 ... Maintenance switch A ... First power supply terminal B ... Second power supply terminal C ... Load terminal D ... Load L ... Power failure detection signal M ... Synchronization detection signal N ... Plan switching signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006219019A JP4476980B2 (en) | 2006-08-10 | 2006-08-10 | Non-instantaneous switching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006219019A JP4476980B2 (en) | 2006-08-10 | 2006-08-10 | Non-instantaneous switching device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008048474A true JP2008048474A (en) | 2008-02-28 |
JP4476980B2 JP4476980B2 (en) | 2010-06-09 |
Family
ID=39181674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006219019A Active JP4476980B2 (en) | 2006-08-10 | 2006-08-10 | Non-instantaneous switching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4476980B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101205354B1 (en) | 2012-08-31 | 2012-11-29 | 네오피스 주식회사 | Protective relay for switching circuit breaker at high speed and method for controlling circuit breaker in the same |
JP2013162711A (en) * | 2012-02-08 | 2013-08-19 | Toshiba Corp | Static transfer switch |
CN104600834A (en) * | 2015-02-11 | 2015-05-06 | 深圳市金优科技有限公司 | Emergency power supply circuit and power supply circuit conversion method |
JP2015198547A (en) * | 2014-04-03 | 2015-11-09 | 株式会社新愛知電機製作所 | Hybrid-type power source switching device |
JP2016189656A (en) * | 2015-03-30 | 2016-11-04 | 大同信号株式会社 | Power supply switching device with bypass |
JP2016194927A (en) * | 2012-02-22 | 2016-11-17 | ネイバー ビジネス プラットフォーム コーポレーション | Highly efficient power supply unit and method for supplying power using the same |
CN108462251A (en) * | 2017-02-17 | 2018-08-28 | 施耐德电器工业公司 | The source of method and this method of implementation for monitoring source switching switch switches switch |
JP2020162383A (en) * | 2019-03-28 | 2020-10-01 | 北海道電力株式会社 | Uninterruptible switching device, switching breaker device, and uninterruptible switching system |
CN112018864A (en) * | 2019-05-31 | 2020-12-01 | 核工业理化工程研究院 | Multi-power switching control system and control method |
CN112018873A (en) * | 2020-08-24 | 2020-12-01 | 安徽动力源科技有限公司 | Double-input circuit |
-
2006
- 2006-08-10 JP JP2006219019A patent/JP4476980B2/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013162711A (en) * | 2012-02-08 | 2013-08-19 | Toshiba Corp | Static transfer switch |
JP2016194927A (en) * | 2012-02-22 | 2016-11-17 | ネイバー ビジネス プラットフォーム コーポレーション | Highly efficient power supply unit and method for supplying power using the same |
KR101205354B1 (en) | 2012-08-31 | 2012-11-29 | 네오피스 주식회사 | Protective relay for switching circuit breaker at high speed and method for controlling circuit breaker in the same |
JP2015198547A (en) * | 2014-04-03 | 2015-11-09 | 株式会社新愛知電機製作所 | Hybrid-type power source switching device |
CN104600834A (en) * | 2015-02-11 | 2015-05-06 | 深圳市金优科技有限公司 | Emergency power supply circuit and power supply circuit conversion method |
JP2016189656A (en) * | 2015-03-30 | 2016-11-04 | 大同信号株式会社 | Power supply switching device with bypass |
CN108462251A (en) * | 2017-02-17 | 2018-08-28 | 施耐德电器工业公司 | The source of method and this method of implementation for monitoring source switching switch switches switch |
CN108462251B (en) * | 2017-02-17 | 2023-09-15 | 施耐德电器工业公司 | Method for monitoring a source switching switch and source switching switch for carrying out said method |
JP2020162383A (en) * | 2019-03-28 | 2020-10-01 | 北海道電力株式会社 | Uninterruptible switching device, switching breaker device, and uninterruptible switching system |
CN112018864A (en) * | 2019-05-31 | 2020-12-01 | 核工业理化工程研究院 | Multi-power switching control system and control method |
CN112018873A (en) * | 2020-08-24 | 2020-12-01 | 安徽动力源科技有限公司 | Double-input circuit |
Also Published As
Publication number | Publication date |
---|---|
JP4476980B2 (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4476980B2 (en) | Non-instantaneous switching device | |
US7129599B2 (en) | Dual feed power supply systems with enhanced power quality | |
US5386147A (en) | Aerospace power control system for monitoring and reliably transferring power buses | |
US6317346B1 (en) | Redundant multiphase power supplies for common load device | |
US10666160B2 (en) | Power conversion device and method for operating same with reactive power compensation | |
JP2010273430A (en) | Device for switching load of transformer | |
JP2007306643A (en) | Uninterruptible power supply system | |
JP2024075630A (en) | Uninterruptible power supply controller, and ups module to which the power supply controller is applied | |
AU2017208281A1 (en) | Device for commanding/controlling a source changeover switch | |
US11349299B2 (en) | Transformer rectifier unit power quality protection | |
RU2656372C1 (en) | Dynamic voltage compensator | |
Bhakar et al. | A new fault-tolerant scheme for switch failures in dual active bridge DC-DC converter | |
CN109687569B (en) | Data center power supply system | |
JP5220514B2 (en) | Uninterruptible power switching device | |
CN112820565B (en) | Automatic transfer switching device control method and automatic transfer switching device | |
JP6310728B2 (en) | Power supply system, power supply control device, power supply control method and program in power supply system | |
US7405496B2 (en) | Transfer circuit topology for redundant power generator regulators and inverting DC drives | |
JP2004048964A (en) | Uninterruptible power supply and no-instantaneous interruption system switching device | |
US10608466B1 (en) | Pulsed direct current power distribution | |
JP2007202362A (en) | Power supply method coping with power failure and instantaneous voltage drop and device thereof | |
WO2020121466A1 (en) | Power supply system and power supply method | |
JP3248962B2 (en) | How to protect the inverter distribution system | |
JP4381711B2 (en) | Method for opening and closing circuit breaker synchronously in distribution system and device for implementing this method | |
US8064173B2 (en) | Energizing capacitor loads | |
Paul et al. | Performance evaluation and operation of Auto Load transfer switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4476980 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160319 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |