JPH0375816B2 - - Google Patents
Info
- Publication number
- JPH0375816B2 JPH0375816B2 JP63048429A JP4842988A JPH0375816B2 JP H0375816 B2 JPH0375816 B2 JP H0375816B2 JP 63048429 A JP63048429 A JP 63048429A JP 4842988 A JP4842988 A JP 4842988A JP H0375816 B2 JPH0375816 B2 JP H0375816B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- tail
- head
- link
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 5
- 230000005856 abnormality Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
- G01M13/045—Acoustic or vibration analysis
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、軸受の温度変化率及び振動等により
その故障を検知する軸受故障検知用複合センサー
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite sensor for detecting bearing failure, which detects failure based on the temperature change rate, vibration, etc. of the bearing.
[従来の技術]
従来から知られている軸受の異常監視装置にお
いては、軸受の温度または振動に関する情報を基
に、正常、異常の判断を行う場合が多い。そし
て、その多くは単に正常な状態における温度なり
振動なりのレベル+αの値の閾値を設定してお
き、入力信号の値がそれを超えた場合に異常を知
らせる信号を発するか、または機械の運転を停止
する、というものである。[Prior Art] Conventionally known bearing abnormality monitoring devices often determine whether the bearing is normal or abnormal based on information regarding the temperature or vibration of the bearing. Most of them simply set a threshold value of the temperature or vibration level + α value under normal conditions, and when the input signal value exceeds this threshold, a signal is issued to notify of an abnormality, or the machine is operated. The idea is to stop.
これに対し、温度の変化速度、即ち温度変化率
も軸受の異常監視に有効に利用することができ
る。この温度変化率は、温度の時間による微分値
で、デジタル的に、あるいは電気的に求めること
ができる。そして、これを温度コントロール等の
情報として用いると、将来の温度の変化の傾向を
予測できるので、異常温度上昇等に対する判断を
早期に行うことができる。 On the other hand, the rate of temperature change, that is, the rate of temperature change, can also be effectively used to monitor abnormalities in the bearing. This temperature change rate is a differential value of temperature with respect to time, and can be determined digitally or electrically. If this information is used as information for temperature control, etc., it is possible to predict future trends in temperature change, and therefore it is possible to make early decisions regarding abnormal temperature rises, etc.
しかしながら、一般に信号の微分をデジタル的
に行うには高価な装置を必要とし、またそれを電
気的に行うにはノイズに弱い電気的微分回路を必
要とする。このような問題に対処し、奈良らは、
第5図に示すような温度変化率センサーを開発し
ている(奈良、田村:1984年45回応用物理学会学
術講演会及び1985年46回応用物理学会学術講演会
予稿集参照)。そのセンサーは、構造的には同図
に示すような断面円筒形のもので、被測定物に当
てるヘツド1、そのヘツドに取付けられたリンク
2、そのリンクの先端に取付けられたテイル3及
び内部を真空に保つて熱的に外部と遮断するカバ
ー4からなつている。この場合、ヘツド1とテイ
ル3の温度差は、ヘツド1の温度の時間的変化率
に近似的に比例する値になる。このヘツド1とテ
イル3の温度差の測定には、温接点と基準接点を
それぞれヘツド1とテイル3に置いた直列熱電対
が用いられている。 However, digitally differentiating signals generally requires expensive equipment, and electrically differentiating signals requires an electrical differentiation circuit that is susceptible to noise. Addressing these issues, Nara et al.
We have developed a temperature change rate sensor as shown in Figure 5 (Nara, Tamura: see the proceedings of the 45th Annual Meeting of the Japan Society of Applied Physics in 1984 and the 46th Academic Conference of the Japan Society of Applied Physics in 1985). Structurally, the sensor has a cylindrical cross section as shown in the figure, with a head 1 that touches the object to be measured, a link 2 attached to the head, a tail 3 attached to the tip of the link, and an internal It consists of a cover 4 that maintains a vacuum and thermally isolates it from the outside. In this case, the temperature difference between head 1 and tail 3 is approximately proportional to the rate of change of the temperature of head 1 over time. To measure the temperature difference between head 1 and tail 3, a series thermocouple with a hot junction and a reference junction placed at head 1 and tail 3, respectively, is used.
この温度変化率センサーは、上述したように、
軸受の異常温度上昇の検知には有効に利用できる
ものであるが、単純な温度変化率のみの検知では
未だ軸受の異常を効果的にに検知できるとは言え
ず、振動センサー等との併用が必要になる。 This temperature change rate sensor, as mentioned above,
Although it can be effectively used to detect abnormal temperature rises in bearings, it is still not possible to effectively detect abnormalities in bearings by simply detecting the rate of temperature change. It becomes necessary.
[発明が解決しようとする課題]
本発明の技術的課題は、上記温度変化率センサ
ーを利用し、それに若干の改変を加えることによ
つて振動や温度をも検知可能にし、軸受の故障の
早期発見を可能にした軸受故障検知用複合センサ
ーを得ることにある。[Problems to be Solved by the Invention] A technical problem of the present invention is to use the temperature change rate sensor described above and make it possible to detect vibration and temperature by slightly modifying it, thereby detecting bearing failures at an early stage. The objective is to obtain a composite sensor for bearing failure detection that makes discovery possible.
[課題を解決するための手段]
上記課題を解決するため、本発明の温度変化率
センサーは、測定対象物に当てるヘツドに、先端
にテイルを設けたリンクを片持ち梁状に取付け、
上記リンク及びテイルは、振動を検出するための
振動子を構成するばね及び質量として、それらを
カバーにより熱的に外部と遮断し、ヘツドとテイ
ルの温度差を測定すると同時に金属細線歪ゲージ
として機能する熱電対群を上記リンクの表面に取
付け、且つその熱電対群の一部を温度検出に使用
可能に構成している。[Means for Solving the Problems] In order to solve the above problems, the temperature change rate sensor of the present invention is provided by attaching a link with a tail at the tip in the form of a cantilever to the head that touches the object to be measured.
The above link and tail serve as springs and masses that constitute a vibrator for detecting vibrations, and are thermally isolated from the outside by a cover, measuring the temperature difference between the head and tail, and at the same time functioning as a thin metal wire strain gauge. A thermocouple group is attached to the surface of the link, and a part of the thermocouple group is configured to be usable for temperature detection.
[作用]
複合センサーのヘツドを軸受の一部またはその
近辺に取付けた状態で稼動し、ヘツドとテイルの
温度差を熱電対群によりヘツドの温度の時間的変
化率として測定すれば、軸受等の温度がある危険
温度に達する以前に、それが危険温度に達する時
点を予想して、警報を発したり負荷を軽減するこ
とが可能になる。[Operation] If the head of the composite sensor is operated with the head attached to or near a part of the bearing, and the temperature difference between the head and the tail is measured as the temporal rate of change in the temperature of the head using a group of thermocouples, it is possible to Before the temperature reaches a certain dangerous temperature, it is possible to predict the point in time when the temperature will reach a certain dangerous temperature and issue a warning or reduce the load.
また、上記温度の時間的変化率と同時に、熱電
対群を金属細線歪ゲージとして、リンクとテイル
により構成される振動子の振動を検出すれば、振
動の異常により上記と同様の処置をとることが可
能となる。 Additionally, if the thermocouple group is used as a thin metal wire strain gauge to detect the vibration of the vibrator made up of links and tails at the same time as the above temporal temperature change rate, the same measures as above can be taken due to abnormal vibration. becomes possible.
さらに、軸受の温度が徐々に上昇して危険温度
に達する場合には、上記熱電対の一部により温度
を検出し、その温度がある閾値を超えた場合に同
様の処置をとらせることができる。 Furthermore, if the temperature of the bearing gradually increases and reaches a dangerous temperature, the temperature can be detected by some of the thermocouples, and similar measures can be taken if the temperature exceeds a certain threshold. .
[実施例]
第1図ないし第4図は本発明に係る軸受故障検
知用複合センサーの実施例を示している。[Embodiment] FIGS. 1 to 4 show an embodiment of a composite sensor for bearing failure detection according to the present invention.
この軸受故障検知用複合センサーは、軸受の故
障の早期発見を目的とし、単一のセンサーによつ
て軸受の温度変化率、振動、さらには温度をも検
知可能にしたものである。即ち、軸受周辺の温度
変化率を知ることによつて、軸受等の温度が危険
温度に達する以前に、ある時間後には危険温度に
達することを予想し、また、同一のセンサーによ
つて振動も検知し、危険温度に至る虞れがなくと
も、振動が異常に大きい場合には、異常であるこ
とを示す信号を出力させる。さらに、温度が極め
て徐々にではあるが継続的に上昇し、危険温度に
達するような場合は、上記温度変化率では発見で
きないので、温度変化率を計測する熱電対を利用
して温度に比例する信号を出力させるものであ
る。 This composite sensor for bearing failure detection is designed to detect bearing failure early, and is capable of detecting the temperature change rate, vibration, and even temperature of the bearing with a single sensor. In other words, by knowing the rate of temperature change around the bearing, it is possible to predict that the temperature of the bearing, etc. will reach the dangerous temperature after a certain period of time, before the temperature reaches the dangerous temperature. If the vibration is abnormally large even if there is no risk of reaching a dangerous temperature, a signal indicating that there is an abnormality is output. Furthermore, if the temperature rises very gradually but continuously and reaches a dangerous temperature, it cannot be detected using the above temperature change rate, so a thermocouple that measures the temperature change rate can be used to measure the temperature in proportion to the temperature. It outputs a signal.
上記軸受故障検知用センサーの構成は、第1図
及び第2図に示すように、測定対象物に当てるヘ
ツド11に、先端にテイル13を設けた平板状の
リンク12を片持ち梁状に取付け、カバー14に
よりそれらを気密に被覆して内部を真空に保ち、
熱的に外部と遮断している。上記リンク12及び
テイル13は、振動を検出するための振動子を構
成するばね及び質量として機能するものである。 As shown in Figures 1 and 2, the sensor for detecting bearing failure has a structure in which a flat link 12 with a tail 13 at its tip is attached in a cantilevered manner to a head 11 that touches the object to be measured. , cover them airtight with a cover 14 to keep the inside vacuum,
It is thermally isolated from the outside. The link 12 and tail 13 function as a spring and mass that constitute a vibrator for detecting vibrations.
ヘツド11の温度の時間的変化率に近似的に比
例するところのヘツド11とテイル13の温度差
の測定には、第3図に示すように、リンク12の
表面に直列熱電対群15a〜15dを取付け、そ
れを第4図に示すように接続することにより、熱
電対群15a〜15bに生じるヘツド11とテイ
ル13の温度差に比例する直流電圧を電圧計16
で測定して、ヘツド11の温度変化率とし、同時
に、この熱電対群15a〜15dをホイートスト
ン・ブリツジ接続して、交流搬送波を使つた金属
細線歪ゲージとして利用し、上述したように、リ
ンク12をばね、テイル13を質量とした振動子
の振動を検出可能に形成している。また、同じ熱
電対群のうちの一素子17を温度検出に用いるよ
うにし、熱電対温度計に接続している。 To measure the temperature difference between the head 11 and the tail 13, which is approximately proportional to the temporal rate of change in the temperature of the head 11, as shown in FIG. By attaching and connecting them as shown in FIG. 4, a DC voltage proportional to the temperature difference between the head 11 and the tail 13 generated in the thermocouple groups 15a to 15b can be measured by the voltmeter 16.
At the same time, these thermocouple groups 15a to 15d are connected via a Wheatstone bridge and used as a thin metal wire strain gauge using an AC carrier wave. is a spring and the tail 13 is a mass so that the vibration of the vibrator can be detected. Further, one element 17 of the same thermocouple group is used for temperature detection and is connected to a thermocouple thermometer.
なお、歪測定用のホイートストン・ブリツジを
流れる直流成分は、外付けのコンデンサ18,1
8でカツトし、温度変化率測定用の電圧計16に
おいては、平均化によつて搬送波の交流成分及び
ノイズの影響を除去している。 Note that the DC component flowing through the Wheatstone bridge for strain measurement is connected to external capacitors 18 and 1.
8, and in the voltmeter 16 for measuring the temperature change rate, the effects of the alternating current component of the carrier wave and noise are removed by averaging.
上記センサーの熱的特性は、リンク12の断面
積と長さ、テイル13の体積、比熱、及びそれら
の熱伝導率によつて決まり、また振動測定用の振
動子としての重要な特性である固有振動数は、リ
ンク12の断面二次モーメント、長さ、縦弾性係
数、及びテイル13のヘツド部分に対する慣性モ
ーメントによつて決まるものである。これらの値
が上記センサーに必要な条件を常に満足できると
は限らないが、測定する振動の周波数とセンサー
の固有振動数との関係から、加速度型、速度型ま
たは変位型として使い分けることにより、軸受に
ついての精密測定用としてではなく、軸受故障検
知用のセンサーとして使用することが可能にな
る。 The thermal characteristics of the sensor described above are determined by the cross-sectional area and length of the link 12, the volume of the tail 13, the specific heat, and their thermal conductivity, and are also important characteristics as a vibrator for vibration measurement. The frequency is determined by the moment of inertia of the link 12, its length, modulus of longitudinal elasticity, and the moment of inertia of the tail 13 relative to the head portion. Although these values may not always satisfy the conditions required for the above-mentioned sensor, depending on the relationship between the vibration frequency to be measured and the natural frequency of the sensor, it is possible to use the acceleration type, velocity type, or displacement type depending on the relationship between the vibration frequency to be measured and the sensor's natural frequency. This makes it possible to use the sensor not only for precision measurements but also as a sensor for detecting bearing failures.
なお、熱電対群15a〜15dの製作には、蒸
着、スパツタリング、エツチングの手法を利用す
るのが有利である。 Note that it is advantageous to use vapor deposition, sputtering, and etching methods to manufacture the thermocouple groups 15a to 15d.
上記構成を有する複合センサーは、軸受の故障
の早期発見を目的とし、そのヘツド11を軸受の
一部またはその近辺に取付けて使用するもので、
上述した電圧計16でヘツド11とテイル13の
温度差をヘツド11の温度の時間的変化率として
測定することにより、軸受等の温度がある危険温
度に達する以前に、その危険温度に接近すること
を予想して警報を発するとか、負荷を軽減する等
の処置をとることが可能になる。 The composite sensor having the above configuration is used with its head 11 attached to a part of the bearing or in the vicinity, for the purpose of early detection of bearing failure.
By measuring the temperature difference between the head 11 and the tail 13 with the voltmeter 16 described above as a time rate of change in the temperature of the head 11, it is possible to approach the dangerous temperature before the temperature of the bearing etc. reaches the dangerous temperature. It becomes possible to take measures such as emitting a warning or reducing the load by anticipating this.
また、上記温度変化率と同時に、熱電対群15
a〜15dを金属細線歪ゲージとして利用して、
リンク12とテイル13により構成される振動子
の振動を検出することにより、軸受が危険温度に
至る虞れがなくとも、振動が異常に大きい場合に
は、前記と同様の処置をとることが可能となる。
なお、この振動の検出のためには、平板状のリン
ク12における平板面が振動の方向と直交するよ
うにして、センサーを軸受に取付ける必要があ
る。 In addition, at the same time as the above temperature change rate, the thermocouple group 15
Using a to 15d as thin metal wire strain gauges,
By detecting the vibration of the vibrator made up of the link 12 and the tail 13, even if there is no risk of the bearing reaching a dangerous temperature, it is possible to take the same measures as above if the vibration is abnormally large. becomes.
In order to detect this vibration, it is necessary to attach the sensor to the bearing so that the flat surface of the flat link 12 is orthogonal to the direction of vibration.
さらに、軸受の温度が極めて徐々にではあるが
継続的に上昇し、危険温度に達する場合には、前
記温度変化率では異常を発見できないので、直列
熱電対の一対のみを基準接点を室温ないしは零度
として温度に比例する信号を取出し、その温度が
ある閾値を超えた場合には、警報を発するとか、
負荷を軽減する等の処置をとらせることができ
る。 Furthermore, if the temperature of the bearing increases very gradually but continuously and reaches a dangerous temperature, it is impossible to detect an abnormality based on the temperature change rate, so only one series thermocouple is used to set the reference junction to room temperature or zero temperature. A signal proportional to temperature is extracted as a signal, and if the temperature exceeds a certain threshold, an alarm is issued.
It is possible to take measures such as reducing the load.
[発明の効果]
以上に詳述した本発明の軸受故障検知用複合セ
ンサーによれば、ヘツドとテイルの温度差をヘツ
ドの温度の時間的変化率として測定可能な温度変
化率センサーを利用し、それに若干の改変を加え
ることによつて、振動や温度をも検知可能にし、
軸受の故障の早期発見を行うことができる。[Effects of the Invention] According to the composite sensor for bearing failure detection of the present invention described in detail above, a temperature change rate sensor capable of measuring the temperature difference between the head and the tail as a temporal rate of change in the head temperature is used. By making some modifications to it, it is now possible to detect vibrations and temperature as well.
Bearing failures can be detected early.
第1図は本発明の軸受故障検知用複合センサー
の実施例を示す側断面図、第2図は同平断面図、
第3図は上記実施例におけるリンクの断面図、第
4図は上記リンクに取付けた熱電対群の回路構成
を示す説明図、第5図は公知の温度変化率センサ
ーの構成を示す断面図である。
11……ヘツド、12……リンク、13……テ
イル、14……カバー、15a〜15d……熱電
対群。
FIG. 1 is a side sectional view showing an embodiment of the composite sensor for detecting bearing failure of the present invention, FIG. 2 is a plan sectional view thereof,
FIG. 3 is a sectional view of the link in the above embodiment, FIG. 4 is an explanatory diagram showing the circuit configuration of a thermocouple group attached to the link, and FIG. 5 is a sectional view showing the configuration of a known temperature change rate sensor. be. 11...Head, 12...Link, 13...Tail, 14...Cover, 15a to 15d...Thermocouple group.
Claims (1)
を設けたリンクを片持ち梁状に取付け、上記リン
ク及びテイルは、振動を検出するための振動子を
構成するばね及び質量として、それらをカバーに
より熱的に外部と遮断し、ヘツドとテイルの温度
差を測定すると同時に金属細線歪ゲージとして機
能する熱電対群を上記リンクの表面に取付け、且
つその熱電対群の一部を温度検出に使用可能にし
たことを特徴とする軸受故障検知用複合センサ
ー。1 A link with a tail at the tip is attached in a cantilevered manner to the head that touches the object to be measured, and the link and tail are used as a spring and mass that constitute a vibrator for detecting vibrations, and are covered with a cover. A thermocouple group that is thermally isolated from the outside and functions as a thin metal wire strain gauge while measuring the temperature difference between the head and tail can be attached to the surface of the link above, and a part of the thermocouple group can be used for temperature detection. A composite sensor for bearing failure detection characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63048429A JPH01221633A (en) | 1988-03-01 | 1988-03-01 | Composite sensor for bearing fault detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63048429A JPH01221633A (en) | 1988-03-01 | 1988-03-01 | Composite sensor for bearing fault detection |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01221633A JPH01221633A (en) | 1989-09-05 |
JPH0375816B2 true JPH0375816B2 (en) | 1991-12-03 |
Family
ID=12803102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63048429A Granted JPH01221633A (en) | 1988-03-01 | 1988-03-01 | Composite sensor for bearing fault detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01221633A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5381692A (en) * | 1992-12-09 | 1995-01-17 | United Technologies Corporation | Bearing assembly monitoring system |
US7860663B2 (en) | 2004-09-13 | 2010-12-28 | Nsk Ltd. | Abnormality diagnosing apparatus and abnormality diagnosing method |
JP2006077938A (en) * | 2004-09-13 | 2006-03-23 | Nsk Ltd | Abnormality diagnosing device |
JP2011089786A (en) * | 2009-10-20 | 2011-05-06 | Toyota Motor Corp | Lubrication system |
CN114646467B (en) * | 2020-12-21 | 2023-08-18 | 宇通客车股份有限公司 | Driving motor bearing detection method suitable for whole vehicle environment |
-
1988
- 1988-03-01 JP JP63048429A patent/JPH01221633A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01221633A (en) | 1989-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2783059B2 (en) | Process state detection device, semiconductor sensor and its status display device | |
EP0029736B1 (en) | Method of diagnosis of operating conditions of bearing and apparatus therefor | |
US5887978A (en) | Self-verifying temperature sensor | |
US5072190A (en) | Pressure sensing device having fill fluid contamination detector | |
CN100374824C (en) | Temperature-pressure sensor | |
JPH01206113A (en) | Rolling bearing with sensor | |
JP2797880B2 (en) | Process state detector | |
KR100878545B1 (en) | Sensor assembly and sensor system for combined bearing load sensing and bearing health monitoring | |
JPH0375816B2 (en) | ||
CN111238361A (en) | Graphene temperature strain sensor | |
JPH1194787A (en) | Measuring apparatus | |
JP3227403B2 (en) | Sensor, state determination device and state determination method for machine tool | |
WO2018111135A1 (en) | Deformation sensor | |
KR200144765Y1 (en) | Vibration and Temperature Online Measurement System | |
CN205426213U (en) | Rotating machinery many reference amounts monitor sensor | |
CN213397008U (en) | Automatic on-line monitoring device and system for cable clamp slippage | |
CN211346684U (en) | Graphene temperature strain sensor | |
JP3150500B2 (en) | Multi-function pressure sensor | |
JPS6346242B2 (en) | ||
CN207472571U (en) | Diesel engine fault detection device | |
JPH0512655B2 (en) | ||
JPH11258022A (en) | Gas meter | |
JPS62835A (en) | Nonitoring device for creep fatigue and life of turbine rotor | |
JPH02142313A (en) | Temperature monitoring method at joint of bus duct conductor | |
WO1998015809A1 (en) | Semiconductor sensor having diagnostic function and diagnostic method for semiconductor sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |