JPH0375626B2 - - Google Patents

Info

Publication number
JPH0375626B2
JPH0375626B2 JP57200312A JP20031282A JPH0375626B2 JP H0375626 B2 JPH0375626 B2 JP H0375626B2 JP 57200312 A JP57200312 A JP 57200312A JP 20031282 A JP20031282 A JP 20031282A JP H0375626 B2 JPH0375626 B2 JP H0375626B2
Authority
JP
Japan
Prior art keywords
cladding tube
manufacturing
reactor fuel
zirconium
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57200312A
Other languages
Japanese (ja)
Other versions
JPS5993861A (en
Inventor
Hajime Umehara
Junjiro Nakajima
Masatoshi Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57200312A priority Critical patent/JPS5993861A/en
Publication of JPS5993861A publication Critical patent/JPS5993861A/en
Publication of JPH0375626B2 publication Critical patent/JPH0375626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子炉燃料用被覆管の製造法に係り、
特に被覆管外表面の耐食性を向上させた、ジルコ
ニウム基合金よりなる原子炉燃料用被覆管に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a cladding tube for nuclear reactor fuel,
In particular, the present invention relates to a nuclear reactor fuel cladding tube made of a zirconium-based alloy that has improved corrosion resistance on the outer surface of the cladding tube.

〔従来技術〕[Prior art]

ジルコニウム合金は、優れた耐食性と小さい中
性子吸収断面積とを有しているため、原子力プラ
ント炉内構造部材である燃料棒被覆管、燃料集合
体チヤンネルボツクス等に使用される。前記用途
に使用されるジルコニウム合金は、ジルカロイ−
2(ジルコニウムにSn:約1.5%、Cr:約0.1%、
Fe:約0.1%、Ni:約0.05%を添加したもの)及
びジルカロイ−4(ジルコニウムにSn:約1.5%、
Fe:約0.2%、Cr:約0.1%を添加したもの)の2
種類である。しかし、耐食性の優れたジルコニウ
ム合金においても、炉内で長時間にわたり高温高
圧の水あるいは水蒸気にさらされると、厚膜化し
た酸化被膜のために熱伝達係数が低下したり、局
所的過熱を生じたりして、時には原子炉の運転に
支障をきたす場合がある。かかる事故を防止する
ために、熱処理により耐食性を向上させる方法は
従来公知である。
Since zirconium alloy has excellent corrosion resistance and a small neutron absorption cross section, it is used for fuel rod cladding tubes, fuel assembly channel boxes, etc., which are internal structural members of nuclear power plants. The zirconium alloy used for the above purpose is Zircaloy-
2 (Sn in zirconium: approx. 1.5%, Cr: approx. 0.1%,
Fe: approx. 0.1%, Ni: approx. 0.05%) and Zircaloy-4 (Sn: approx. 1.5% added to zirconium)
Added Fe: approx. 0.2%, Cr: approx. 0.1%) 2
It is a kind. However, even with zirconium alloys that have excellent corrosion resistance, if they are exposed to high-temperature, high-pressure water or steam in a furnace for a long time, the heat transfer coefficient decreases due to the thick oxide film, and local overheating occurs. This can sometimes cause problems with reactor operation. In order to prevent such accidents, methods of improving corrosion resistance by heat treatment are conventionally known.

純ジルコニウムは、約860℃以下では稠密六方
晶(α相)の結晶構造を有し、それ以上の温度で
は体心立方晶(β相)の結晶構造を有する。ジル
コニウム合金においては、一般に、α相安定化元
素であるSn及びβ相安定化元素であるFe、Cr、
NiあるいはNbが添加されているため、α相とβ
相とが共存する温度範囲(以後〔α+β〕相温度
範囲と記す)がある。ジルカロイ−2あるいはジ
ルカロイ−4においては、前記〔α+β〕相温度
範囲は、ほぼ830℃〜960℃である。約960℃以上
では、β相単位(以後、β相温度範囲と記す)と
なる。〔α+β〕相温度範囲あるいはβ相温度範
囲から急冷されたジルコニウム合金は、マルテン
サイト状組織を有し、合金添加元素の一部あるい
は大部分はジルコニウムマトリツクス中に過飽和
に固溶している。しかし、冷却速度が遅いと、主
としてFe、Crは冷却過程でジルコニウムとの金
属間化合物として析出し粗大化する。
Pure zirconium has a close-packed hexagonal (α phase) crystal structure at temperatures below about 860°C, and a body-centered cubic (β phase) crystal structure at temperatures above that temperature. Zirconium alloys generally contain Sn, which is an α-phase stabilizing element, and Fe, Cr, and β-phase stabilizing elements.
Since Ni or Nb is added, the α phase and β
There is a temperature range (hereinafter referred to as the [α+β] phase temperature range) in which the phase coexists with the phase. In Zircaloy-2 or Zircaloy-4, the [α+β] phase temperature range is approximately 830°C to 960°C. At temperatures above about 960°C, the temperature becomes a β phase unit (hereinafter referred to as β phase temperature range). Zirconium alloys rapidly cooled from the [α+β] phase temperature range or the β phase temperature range have a martensitic structure, and some or most of the alloying elements are supersaturated in solid solution in the zirconium matrix. However, if the cooling rate is slow, Fe and Cr mainly precipitate as intermetallic compounds with zirconium during the cooling process and become coarse.

かかるジルコニウム合金の性質を利用し、従来
〔α+β〕相温度範囲あるいはβ相温度範囲から
急冷させてジルコニウム合金部材の金属組織を改
善することにより耐食性を向上させる熱処理が公
知である。前者は、〔α+β〕クエンチ、後者は、
βクエンチと称されている。
A heat treatment is known that takes advantage of the properties of zirconium alloy and improves the corrosion resistance of the zirconium alloy member by rapidly cooling it from the [α+β] phase temperature range or β phase temperature range to improve the metal structure of the zirconium alloy member. The former is [α+β] quench, and the latter is
It is called β quench.

しかしながら、冷間圧延工程により被覆管を製
造する場合、この冷間圧延工程前に上述のような
表面焼入れを行なう方法では、冷えば960℃以上
に加熱された後急冷されたマルテンサイト状表層
は硬化しているため、圧延中に表面割れが生じる
可能性があり、また表面硬化層が内部に巻き込ま
れて表層傷の原因になるという欠点があつた。
However, when manufacturing a cladding tube by a cold rolling process, the martensitic surface layer that is heated to 960°C or higher and then rapidly cooled is Because it is hardened, there is a possibility that surface cracks may occur during rolling, and the hardened surface layer may be rolled up inside, causing surface scratches.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の如き欠点を解消し、ジ
ルコニウム基合金からなる被覆管の耐食性の向上
のための熱処理に際し、焼入後の圧延性を確保す
るために、焼入れにより高温度領域から急冷され
てマルテンサイト状に変態した、硬度の高い表層
を除去し、耐食性及び圧延性ともに良好である
〔α+β〕相温度範囲から急冷された領域を表層
に残す、原子炉燃料用被覆管の製造法を提供する
ことにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and to provide rapid cooling from a high temperature region by quenching in order to ensure rollability after quenching during heat treatment for improving the corrosion resistance of cladding tubes made of zirconium-based alloys. A method for producing a cladding tube for nuclear reactor fuel, which removes a highly hard surface layer that has been transformed into a martensitic state and leaves a region on the surface layer that has been quenched from the [α+β] phase temperature range and has good corrosion resistance and rollability. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、ジルコニウム基合金を熱間押出した
後冷間圧延を施すことにより、ジルコニウム基合
金よりなる原子炉燃料用被覆管を製造する方法に
おいて、熱間押出後表面焼入れを施し、焼入れに
より硬化した表層を除去した後、冷間圧延を施す
ことを特徴とする原子炉燃料用被覆管の製造法、
を要旨とするものである。
The present invention is a method for manufacturing a cladding tube for a nuclear reactor fuel made of a zirconium-based alloy by hot-extruding the zirconium-based alloy and then cold-rolling the zirconium-based alloy. A method for manufacturing a reactor fuel cladding tube, which comprises cold rolling after removing the surface layer.
The main points are as follows.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明の原子炉燃料用被覆管の製造法は、熱間
押出後表面焼入れ及び表層の除去を行なつた後、
冷間圧延を行なうことに特徴を有し、この表面焼
入れと表層の除去以外は、通常の製造法と同様に
行なわれる。
The method for manufacturing a nuclear reactor fuel cladding tube of the present invention includes hot extrusion, surface quenching, and removal of the surface layer.
It is characterized by cold rolling, and except for surface quenching and removal of the surface layer, it is carried out in the same manner as a normal manufacturing method.

表面焼入れは最終の熱間押出後であればよく、
その後冷間圧延を数回行なう場合には、これらの
圧延のうちいずれの冷間圧延の間に行なつても、
同様の効果が得られる。
Surface hardening can be done after the final hot extrusion.
If cold rolling is performed several times after that, no matter which cold rolling is performed during any of these rollings,
A similar effect can be obtained.

表面焼入れは表面の温度が930℃以上となるよ
うに行なうのが、後述の実施例の結果から、好ま
しく、またこのような表面焼入れにより硬化する
表層の厚さは、通常0.01〜1.0mm程度である。焼
入れはレーザ照射、高周波加熱、火炎等、通常の
手段が採用される。
From the results of the examples described later, it is preferable to perform surface hardening so that the surface temperature is 930°C or higher, and the thickness of the surface layer hardened by such surface hardening is usually about 0.01 to 1.0 mm. be. For hardening, conventional means such as laser irradiation, high-frequency heating, flame, etc. are used.

表面焼入れにより硬化した表層の除去は、
HNO3及びHFの混合溶液による酸洗等の化学的
方法又はサンドブラスト等による機械的研磨等の
機械的方法、あるいはこれらの組合せにより行な
うことができる。
Removal of the surface layer hardened by surface quenching is
This can be carried out by a chemical method such as pickling with a mixed solution of HNO 3 and HF, a mechanical method such as mechanical polishing by sandblasting, or a combination thereof.

本発明においては、このような表面焼入れ後又
は硬化表面の除去後、400〜640℃程度の温度範囲
で焼なましを施してもよい。
In the present invention, after such surface hardening or after removal of the hardened surface, annealing may be performed at a temperature range of about 400 to 640°C.

表面焼入れ及び硬化表層の除去を行なつた管
は、通常の方法により冷間圧延を施し、場合によ
り表面処理を行なつて製品とされる。
The tube that has undergone surface hardening and removal of the hardened surface layer is cold rolled by a conventional method, and optionally subjected to surface treatment to be made into a product.

本発明はジルコニウム基合金によつて構成され
るチヤンネルボツクス、燃料スペーサなどの部材
の製造プロセスにも適用可能であり、又、ジルコ
ニウム基合金よりなる被覆管が、内面に他の元素
あるいは純度の高いジルコニウムあるいは組成の
異なるジルコニウム基合金を配することを特徴と
する多重層管であつても、本発明は十分適用可能
である。
The present invention can also be applied to the manufacturing process of components such as channel boxes and fuel spacers made of zirconium-based alloys, and can also be applied to the manufacturing process of parts such as channel boxes and fuel spacers made of zirconium-based alloys. The present invention is fully applicable to multilayer tubes characterized by disposing zirconium or zirconium-based alloys having different compositions.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例により更に具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例により限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 第1図に示す如く、燃料被覆管用ジルカロイ管
の冷間圧延工程の中で、第2回目の冷間圧延後
に、レーザ照射による表面焼入れを行なつた。
Example 1 As shown in FIG. 1, during the cold rolling process of a Zircaloy tube for a fuel cladding tube, surface hardening was performed by laser irradiation after the second cold rolling.

一般に、熱間押出後焼なましを施した、外径約
60mm、肉厚約10mmのジルカロイ管を、押出系管と
称するが、その後、通常3回の冷間圧延を行な
い、外径12mm、肉厚0.9mmの被覆管に成形する。
本実施例においては、このうち2回目の冷間圧延
後に、表面焼入れを行なつた。
Typically hot extruded and then annealed, with an outer diameter of approx.
A Zircaloy tube with a diameter of 60 mm and a wall thickness of approximately 10 mm is referred to as an extruded tube, and is then usually cold rolled three times to form a cladding tube with an outer diameter of 12 mm and a wall thickness of 0.9 mm.
In this example, surface hardening was performed after the second cold rolling.

第2図に表面焼入れによる表面の到達温度と耐
食性及び硬度の関係を示す。これによれば到達温
度が930℃以下の温度では、α相焼なまし材の硬
度とほぼ同等であり、かつ耐食性が改善されてい
る。(なお、耐食性は、500℃、105Kg/cm2の水蒸
気中に60時間保持した後の腐食増量で評価した。)
硬化が著しい到達温度範囲を硬化温度範囲と称す
る。硬化温度下限値930℃はβ相温度下限値960℃
より低く、〔α+β〕相温度範囲ですでに硬化が
開始していることが第2図のデータより明らかで
ある。これは930℃以上では、α相が残存してい
るものの、大部分β相に変態しているため、焼入
れにより硬化するためである。
Figure 2 shows the relationship between the temperature reached by surface hardening, corrosion resistance, and hardness. According to this, when the temperature reached is 930°C or lower, the hardness is almost the same as that of α-phase annealed material, and the corrosion resistance is improved. (Corrosion resistance was evaluated by the increase in corrosion weight after being kept in steam at 500°C and 105 kg/cm 2 for 60 hours.)
The temperature range in which curing is significant is referred to as the curing temperature range. The lower limit of curing temperature is 930℃, which is the lower limit of β phase temperature of 960℃.
It is clear from the data in FIG. 2 that curing has already started in the [α+β] phase temperature range. This is because at temperatures above 930°C, although the α phase remains, most of it transforms into the β phase, which is hardened by quenching.

第3図に、第2圧延後のジルカロイ管(外径約
25mm、肉厚約3mm)にレーザ照射による表面焼入
れを施した場合の管肉厚方向の加熱時到達最高温
度を示す。表面から0.1mmまでの領域が930℃以上
に到達し急冷され、0.1mmから0.2mmまでの領域が
930℃以下でかつ〔α+β〕相温度に到達し急冷
されていることがわかる。
Figure 3 shows the Zircaloy tube after the second rolling (outer diameter approx.
This shows the maximum temperature reached when heating the tube in the thickness direction when surface hardening is performed by laser irradiation on a tube (25 mm, wall thickness approximately 3 mm). The area from the surface to 0.1mm reaches 930℃ or higher and is rapidly cooled, and the area from 0.1mm to 0.2mm
It can be seen that the temperature is below 930°C and the [α+β] phase temperature is reached, resulting in rapid cooling.

表面焼入れの処理にあたつては、ジルキロイ管
はレーザ光の照射を受けながら進行方向に所定の
速度で移動するように設置されており、クエンチ
部はレーザ光の照射を受けた加熱部がレーザ光照
射位置を通過した後、管自身の熱伝導により冷却
されて、連続的に形成される。第3図の値は、ビ
ーム出力2KW、管材の移動速度0.6m/minのク
エンチ条件で得られたものである。ここにおい
て、ビーム出力、移動速度、ビームのしぼりが異
なれば、加熱及びクエンチ条件が異なつてくるこ
とは言うまでもない。
During the surface hardening process, the Zircheloy tube is installed so that it moves at a predetermined speed in the direction of travel while being irradiated with laser light. After passing through the light irradiation position, the tube is cooled by its own heat conduction and is continuously formed. The values shown in Figure 3 were obtained under the quench conditions of a beam output of 2 KW and a tube moving speed of 0.6 m/min. Here, it goes without saying that heating and quenching conditions will vary if the beam output, moving speed, and beam aperture are different.

表面焼入れ後、930℃以上に加熱された、硬度
の高い領域を除去する(第1図における「外
削」)。外削後は、表面焼入れを行なわない従来の
場合と同条件で冷間圧延を行なうことが可能であ
る。
After surface hardening, the hard areas heated to 930°C or higher are removed ("outer cutting" in Figure 1). After external milling, cold rolling can be performed under the same conditions as in the conventional case without surface hardening.

得られた被覆管は、表面割れや表面硬化層の巻
き込みによる表面傷等の不具合が発生せず、極め
て耐久性に富むものである。
The obtained cladding tube is extremely durable without any defects such as surface cracks or surface scratches due to entrainment of the surface hardened layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐食性及び圧延性ともに良好
な〔α+β〕相温度範囲から急冷された領域を表
層に残すことができるので、その後の圧延が可能
になり、得られる被覆管の耐食性も改善される効
果がある。
According to the present invention, a region rapidly cooled from the [α+β] phase temperature range, which has good corrosion resistance and rollability, can be left on the surface layer, making subsequent rolling possible and improving the corrosion resistance of the resulting cladding. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における被覆管製造の
工程を示すブロツク図、第2図は実施例の表面焼
入れによる表面の最高到達温度と硬度及び腐食試
験による腐食増量との関係を示すグラフ、第3図
はジルコニウム基合金材料の肉厚方向における最
高到達温度の変化を示すグラフである。
FIG. 1 is a block diagram showing the process of manufacturing a cladding tube in an example of the present invention, and FIG. 2 is a graph showing the relationship between the maximum temperature reached on the surface by surface quenching and the increase in corrosion by hardness and corrosion tests in the example. FIG. 3 is a graph showing the change in maximum temperature in the thickness direction of the zirconium-based alloy material.

Claims (1)

【特許請求の範囲】 1 ジルコニウム基合金を熱間押出した後冷間圧
延を施すことにより、ジルコニウム基合金よりな
る原子炉燃料用被覆管を製造する方法において、
熱間押出後表面焼入れを施し、焼入れにより硬化
した表層を除去した後、冷間圧延を施すことを特
徴とする原子炉燃料用被覆管の製造法。 2 表面焼入れは表面温度が930℃以上となるよ
うに行なうことを特徴とする特許請求の範囲第1
項に記載の原子炉燃料用被覆管の製造法。 3 冷間圧延を2回以上施すことを特徴とする特
許請求の範囲第1項又は第2項に記載の原子炉燃
料用被覆管の製造法。 4 表面焼入れを冷間圧延の間に行なうことを特
徴とする特許請求の範囲第3項に記載の原子炉燃
料用被覆管の製造法。 5 硬化した表層の厚さが0.01〜1.0mmであるこ
とを特徴とする特許請求の範囲第1項ないし第4
項のいずれか1項に記載の原子炉燃料用被覆管の
製造法。 6 表面焼入れはレーザ照射、高周波加熱又は火
炎により行なうことを特徴とする特許請求の範囲
第1項ないし第5項のいずれか1項に記載の原子
炉燃料用被覆管の製造法。 7 硬化した表層を化学的又は機械的に除去する
ことを特徴とする特許請求の範囲第1項ないし第
6項のいずれか1項に記載の原子炉燃料用被覆管
の製造法。 8 硬化した表層を酸洗により除去することを特
徴とする特許請求の範囲第7項に記載の原子炉燃
料用被覆管の製造法。
[Scope of Claims] 1. A method for manufacturing a reactor fuel cladding tube made of a zirconium-based alloy by hot extruding the zirconium-based alloy and then cold rolling the zirconium-based alloy,
1. A method for producing a cladding tube for nuclear reactor fuel, which comprises performing surface quenching after hot extrusion, removing a surface layer hardened by quenching, and then performing cold rolling. 2. Claim 1, characterized in that the surface hardening is performed so that the surface temperature is 930°C or higher.
A method for manufacturing a cladding tube for nuclear reactor fuel as described in 2. 3. The method for manufacturing a reactor fuel cladding tube according to claim 1 or 2, characterized in that cold rolling is performed two or more times. 4. The method for manufacturing a nuclear reactor fuel cladding tube according to claim 3, characterized in that surface hardening is performed during cold rolling. 5. Claims 1 to 4, characterized in that the thickness of the hardened surface layer is 0.01 to 1.0 mm.
A method for manufacturing a reactor fuel cladding tube according to any one of paragraphs. 6. The method for manufacturing a nuclear reactor fuel cladding tube according to any one of claims 1 to 5, wherein the surface hardening is performed by laser irradiation, high-frequency heating, or flame. 7. The method for manufacturing a reactor fuel cladding tube according to any one of claims 1 to 6, characterized in that the hardened surface layer is removed chemically or mechanically. 8. The method for manufacturing a reactor fuel cladding tube according to claim 7, characterized in that the hardened surface layer is removed by pickling.
JP57200312A 1982-11-17 1982-11-17 Manufacture of sheath pipe for fuel for nuclear reactor Granted JPS5993861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200312A JPS5993861A (en) 1982-11-17 1982-11-17 Manufacture of sheath pipe for fuel for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200312A JPS5993861A (en) 1982-11-17 1982-11-17 Manufacture of sheath pipe for fuel for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS5993861A JPS5993861A (en) 1984-05-30
JPH0375626B2 true JPH0375626B2 (en) 1991-12-02

Family

ID=16422213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200312A Granted JPS5993861A (en) 1982-11-17 1982-11-17 Manufacture of sheath pipe for fuel for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS5993861A (en)

Also Published As

Publication number Publication date
JPS5993861A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
EP0488027B1 (en) Zirconium based alloy member of low irradiation growth, method of manufacturing the same, fuel channel box and assembly, and use of the same
US4938921A (en) Method of manufacturing a zirconium-based alloy tube for a nuclear fuel element sheath and tube thereof
JP2638351B2 (en) Fuel assembly
JP2976992B2 (en) Method for producing strip-shaped Zircaloy 4
JPH0344275B2 (en)
EP1111623A1 (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JPS6145699B2 (en)
JPS6234095A (en) Nuclear fuel coated tube
JPS60211389A (en) Coated pipe for nuclear fuel element
US5361282A (en) Dimensionally stable and corrosion-resistant fuel channels and related method of manufacture
JP2007192814A (en) Lwr flow channel whose deformability and control blade coherence are lowered when it is exposed to neutron radiation and corrosion field
JPS6050869B2 (en) Method for manufacturing zirconium alloy structural members for boiling water reactors
JPH0375626B2 (en)
JP3955097B2 (en) Fuel box and method of manufacturing the fuel box
JPS6358223B2 (en)
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPS5822366A (en) Preparation of zirconium base alloy
JP2814981B2 (en) Fuel assembly
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JPS6067648A (en) Nuclear fuel covering pipe and its preparation
EP0626465A1 (en) Dimensionally stable and corrosion-resistant fuel channels and related method of manufacture
US20060081313A1 (en) Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof
JP2001262259A (en) Highly corrosion resistant zirconium alloy, structural material for nuclear reactor core and its producing method
JPH0422982B2 (en)
JPH059688A (en) Manufacture of zr alloy rolled stock excellent in workability