JPH0375530A - Radiation thermometer - Google Patents
Radiation thermometerInfo
- Publication number
- JPH0375530A JPH0375530A JP1212460A JP21246089A JPH0375530A JP H0375530 A JPH0375530 A JP H0375530A JP 1212460 A JP1212460 A JP 1212460A JP 21246089 A JP21246089 A JP 21246089A JP H0375530 A JPH0375530 A JP H0375530A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- insulating member
- heat insulating
- thermopile
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims description 29
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 22
- 239000007799 cork Substances 0.000 claims abstract description 6
- 239000006260 foam Substances 0.000 claims description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 239000000523 sample Substances 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 6
- 230000002463 transducing effect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、赤外線センサを用いて、たとえば人体等の温
度を測定する放射温度計に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radiation thermometer that measures the temperature of, for example, a human body using an infrared sensor.
赤外線センサを用いた放射温度計は、測温時間が短く、
また被測定物に非接触で、その温度を測定することがで
きるので、広く各種の温度測定に用いられている。Radiation thermometers using infrared sensors have a short temperature measurement time.
Furthermore, since the temperature of the object to be measured can be measured without contacting it, it is widely used for various temperature measurements.
第5図は従来の放射温度計の外形図である。放射温度計
のケース51の左側先端部には、被測定物、たとえば人
体の耳に挿入するプローブ52が設けられている。ケー
ス51の内部には、被測定物である人体の耳から放射さ
れる赤外線を集光する凹面[53や集光された赤外線を
起電力に変換するサーモバイル54等が設けられている
。ケース51の中央部には測温結果を表示する液晶表示
(LCD)55が設けられている。FIG. 5 is an outline drawing of a conventional radiation thermometer. A probe 52 to be inserted into an object to be measured, such as a human ear, is provided at the left end of a case 51 of the radiation thermometer. Inside the case 51, there are provided a concave surface [53 that collects infrared rays emitted from the ear of a human body, which is an object to be measured, a thermomobile 54 that converts the collected infrared rays into electromotive force, and the like. A liquid crystal display (LCD) 55 is provided in the center of the case 51 to display temperature measurement results.
測定者はケース51の中央部を握って電源スイツチ56
をONとし、プローブ52を被測定物である人体の耳に
挿入する。耳から放射された赤外線がプローブ52を介
して凹面鏡53に入射し、凹面鏡53によって反射・集
光されてサーモパイル54に入射する0次に、ホールド
スイッチ57を押圧するとサーモパイル54の起電力と
側温素子58の信号を処理して得られる被測定物の温度
を液晶表示55上に保持するので、被測定物からプロー
ブ52を外しても被測定物の温度を読み取る事ができる
。The person taking the measurement grasps the center of the case 51 and turns on the power switch 56.
is turned ON, and the probe 52 is inserted into the human ear that is the object to be measured. Infrared rays emitted from the ear enter the concave mirror 53 via the probe 52, are reflected and focused by the concave mirror 53, and enter the thermopile 54.Next, when the hold switch 57 is pressed, the electromotive force and side temperature of the thermopile 54 are reduced. Since the temperature of the object to be measured obtained by processing the signal from the element 58 is held on the liquid crystal display 55, the temperature of the object to be measured can be read even if the probe 52 is removed from the object.
ところで、赤外線センサとして用いるサーモパイル等は
、被測定物からの赤外線が温接点′に入射することによ
って生ずる温接点と冷接点との温度差が熱起電力となり
、その温度差に応じた起電力を出力する。この起電力に
基づいて被測定物の温度を測温する。かかるサーモパイ
ル54により、正確な出力を得るために、冷接点の温度
(室温)をサーミスタ、ダイオード又はトランジスタ等
の測温素子58によって測定し、この測定結果に基づい
て、サーモパイル54の出力値を補正している。By the way, in thermopiles and the like used as infrared sensors, the temperature difference between the hot junction and the cold junction that occurs when infrared rays from the object to be measured enter the hot junction becomes a thermoelectromotive force, and the electromotive force corresponding to the temperature difference is generated. Output. The temperature of the object to be measured is measured based on this electromotive force. In order to obtain accurate output from such a thermopile 54, the temperature of the cold junction (room temperature) is measured by a temperature measuring element 58 such as a thermistor, diode, or transistor, and the output value of the thermopile 54 is corrected based on this measurement result. are doing.
しかしながら、サーモパイル54は非常に高感度のセン
サであり、測温の際に温接点と冷接点との間に約1/1
0000”Cの温度勾配があるだけで、検出可能な出力
電圧が現れる。このため、従来の放射温度計では、測温
時間が短いときには、何ら問題は生しないが、たとえば
大勢の体温を測温したり、連続して各部位の温度を測定
したりする場合のように測温時間が長いときには、放射
体温計のケース51の温度が測定者の手の温度によって
上昇し、これによりサーモパイル54の温接点と冷接点
との間に不用な温度勾配が生したり、サーモパイル54
の冷接点と側温素子5日の間に温度差が生じたりするた
め、測定結果に誤差が生ずるという欠点がある。However, the thermopile 54 is a very sensitive sensor, and when measuring temperature, there is a gap of about 1/1 between the hot junction and the cold junction.
A detectable output voltage appears even if there is a temperature gradient of 0,000"C.For this reason, with conventional radiation thermometers, there is no problem when the temperature measurement time is short, but it is difficult to measure the body temperature of a large number of people, for example. When the temperature measurement time is long, such as when measuring the temperature of each part continuously, the temperature of the case 51 of the radiation thermometer rises due to the temperature of the measurer's hand, and the temperature of the thermopile 54 increases. An unnecessary temperature gradient may occur between the contact and the cold junction, or the thermopile 54 may
Since there is a temperature difference between the cold junction and the side heating element, there is a drawback that errors occur in the measurement results.
一方、特開昭61−117422号のように、赤外線セ
ンサであるサーモパイル54を一定の温度に保って測定
を行うことによって、外気による熱的外乱や測定者の手
からの伝熱を防いで正確な測温を行うことができる。し
かしながら、この方法は、技術的には優れた方法である
が、サーモパイル54の温度を一定に保たなければない
ので、構成が複雑になり、高価になるという欠点がある
。On the other hand, as in JP-A No. 61-117422, by keeping the thermopile 54, which is an infrared sensor, at a constant temperature during measurement, thermal disturbances caused by outside air and heat transfer from the hands of the person being measured are prevented, resulting in accurate measurements. Temperature measurement can be performed. However, although this method is technically excellent, it has the disadvantage that the temperature of the thermopile 54 must be kept constant, making the structure complicated and expensive.
本発明は、上記事情に基づいてなされたものであり、簡
易な構成によって、測温時における外気による熱的外乱
や測定者の手からの伝熱を防ぐことができる放射温度計
を提供することを目的とするものである。The present invention has been made based on the above circumstances, and provides a radiation thermometer that has a simple configuration and can prevent thermal disturbances caused by outside air and heat transfer from the hands of the person measuring the temperature during temperature measurement. The purpose is to
上記目的を達成するための本発明は、被測定物から放射
される赤外線を集光する光学系と、該光学系によって集
光された赤外線を電気信号に変換する赤外線センサと、
該赤外線センサの周囲温度を測定する測温素子とを有し
、該測温素子の信号に基づいて、前記赤外線センサの出
力信号を補正する放射温度計において、少なくとも前記
赤外線センサと前記測温素子とを断熱部材によって包囲
したことを特徴とするものである。To achieve the above object, the present invention includes: an optical system that collects infrared rays emitted from an object to be measured; an infrared sensor that converts the infrared rays collected by the optical system into an electrical signal;
A radiation thermometer comprising a temperature measuring element that measures the ambient temperature of the infrared sensor, and correcting an output signal of the infrared sensor based on a signal of the temperature measuring element, the radiation thermometer comprising at least the infrared sensor and the temperature measuring element. and are surrounded by a heat insulating member.
そして、前記断熱部材はコルク又は発泡ウレタンを用い
るのが望ましい。Preferably, the heat insulating member is made of cork or urethane foam.
また、前記断熱部材を筺体内に点接触により支持するの
が望ましい。Further, it is preferable that the heat insulating member is supported within the housing by point contact.
(作用〕
本発明は前記の構成によって、少なくとも赤外線センサ
と測温素子とが断熱部材で包囲されているので、測温時
における外気による熱的外乱を受は難く、また、たとえ
ば長時間の測温を行う場合でも、赤外線センサは筐体を
握る測定者の手の温度による温度変化の影響を受は難く
、赤外線センサの温接点と冷接点の不用な温度勾配と、
冷接点・補償用測温素子間の温度差を小さく抑えること
ができる。(Function) According to the present invention, with the above-described configuration, at least the infrared sensor and the temperature measuring element are surrounded by a heat insulating member, so that they are not easily affected by thermal disturbances caused by outside air during temperature measurement. Even when measuring temperature, infrared sensors are not easily affected by temperature changes due to the temperature of the person's hand holding the housing, and unnecessary temperature gradients between the hot and cold junctions of the infrared sensor,
The temperature difference between the cold junction and the compensation temperature measuring element can be kept small.
そして、断熱部材にコルク又は発泡ウレタンを用いるこ
とにより、測温時における外気による熱的外乱を効率よ
く防止することができる。By using cork or urethane foam for the heat insulating member, thermal disturbances caused by outside air during temperature measurement can be efficiently prevented.
また、断熱部材を筺体内に点接触により支持することに
よって、測温時における外気による熱的外乱をより確実
に防止することができる。Furthermore, by supporting the heat insulating member within the housing through point contact, it is possible to more reliably prevent thermal disturbances caused by outside air during temperature measurement.
以下に本発明の1実施例を第1図乃至第4図を参照して
説明する。第1図は本発明の1実施例である放射温度計
のセンサ部の概略斜視図、第2図はその放射温度計の概
略斜視図、第3図はその放射温度計の概略構成図である
。本実施例である放射温度計は、センサ部10と、本体
部20とからなる。An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Fig. 1 is a schematic perspective view of a sensor section of a radiation thermometer that is an embodiment of the present invention, Fig. 2 is a schematic perspective view of the radiation thermometer, and Fig. 3 is a schematic configuration diagram of the radiation thermometer. . The radiation thermometer according to this embodiment includes a sensor section 10 and a main body section 20.
センサ部10は被測定物からの赤外線を取り込むプロー
ブ11と、被測定物からの赤外線を反射・集光する凹面
、t!12と、集光された赤外線を受けてその赤外線を
起電力に変換するサーモパイル13と、サーモパイル1
3の冷接点の温度(室温にほぼ等しい〉を測定する測温
素子14と、プローブ11の一部と凹面鏡12とサーモ
パイル13と測温素子14とを包囲する断熱部材15と
を含むものである。断熱部材15は熱伝導率が小さく、
熱容量が大きいもの、たとえばコルク材を用いるのが望
ましい、また、断熱部材15は、ケース(N体)la内
に点接触により支持されている。The sensor section 10 includes a probe 11 that captures infrared rays from the object to be measured, a concave surface that reflects and focuses the infrared rays from the object, and t! 12, a thermopile 13 that receives the focused infrared rays and converts the infrared rays into an electromotive force, and a thermopile 1
3, and a heat insulating member 15 that surrounds a part of the probe 11, a concave mirror 12, a thermopile 13, and the temperature sensor 14. The member 15 has a low thermal conductivity,
It is desirable to use a material with a large heat capacity, such as cork material, and the heat insulating member 15 is supported within the case (N body) la by point contact.
これにより、測温時における外気による熱的外乱や測定
者の手からの伝熱を受けにくい構造となる。This results in a structure that is less susceptible to thermal disturbances caused by outside air and heat transfer from the hands of the person measuring the temperature during temperature measurement.
また、プローブ11の内面は、測温中にプローブ11の
温度が上がっても、プローブ11の内面から放射される
赤外線の変化を小さく抑えるために、鏡面加工されてい
る。Further, the inner surface of the probe 11 is mirror-finished in order to suppress changes in infrared rays emitted from the inner surface of the probe 11 to a small level even if the temperature of the probe 11 rises during temperature measurement.
本体部20は、ati温した結果を表示するLCD21
と、電源スイツチ22と、測温の開始又はリセットを指
示するスイッチ23と、サーモパイル13からの電気信
号を増幅したり、測温素子14らの電気信号に基づいて
サーモパイル13からの電気信号を補正するための回路
とマイコン(図示しない、〉等が配置されている基板2
4を含むものである。尚1bは本体部20を収納するケ
ースである。The main body 20 has an LCD 21 that displays the temperature results.
, a power switch 22 , a switch 23 for instructing the start or reset of temperature measurement, and amplifying the electrical signal from the thermopile 13 or correcting the electrical signal from the thermopile 13 based on the electrical signal from the temperature measurement element 14 . Board 2 on which circuits and microcontrollers (not shown), etc. for
4. Note that 1b is a case that houses the main body portion 20.
測定者は本体部20を握ってt′aスイッチ22をON
にし、プローブ11を被測定物である、たとえば人体の
耳に挿入する。耳からの赤外線はプローブ11を介して
取り込まれ、凹面g!12によって反射・集光されて、
サーモパイル13に入射する。サーモパイル13はその
赤外線の入射量に応じた電気信号を出力する。また、測
温素子14により室温(サーモパイル13の冷接点の温
度)を測定し、その結果に基づいて、サーモパイル13
の出力信号を補正する。補正した結果はLCD21に表
示される。スイッチ23を押圧するとLCDの表示値が
保持されるので、プローブ11を被測定物から外しても
測定値を読み取る事ができる。The person taking the measurement holds the main body 20 and turns on the t'a switch 22.
Then, the probe 11 is inserted into the object to be measured, for example, the ear of a human body. Infrared rays from the ear are taken in through the probe 11, and the concave surface g! The light is reflected and focused by 12,
It enters the thermopile 13. The thermopile 13 outputs an electric signal according to the amount of infrared rays incident thereon. Also, the room temperature (the temperature of the cold junction of the thermopile 13) is measured by the temperature measuring element 14, and based on the result, the temperature of the thermopile 13 is measured.
Correct the output signal of. The corrected results are displayed on the LCD 21. Since the displayed value on the LCD is held when the switch 23 is pressed, the measured value can be read even if the probe 11 is removed from the object to be measured.
上記の構成の本実施例によれば、放射温度計を把持して
長時間連続して測温しても、プローブ11の一部、凹面
鏡12、サーモパイル13及び測温素子14が熱伝導率
が小さく、熱容量が大きい断熱部材15で包囲され、し
かもその断熱部材15は第1図に示すように点接触によ
りケースla内に収納されているので、放射温度針を把
持する測定者の手からの伝熱を防ぎ、サーモパイル13
の温接点と冷接点とに不用な温度勾配が生じたり、冷接
点と側温素子14の間に温度差が生ずるのを抑えること
ができる。According to this embodiment with the above configuration, even if the radiation thermometer is held and temperature is measured continuously for a long time, a part of the probe 11, the concave mirror 12, the thermopile 13, and the temperature measurement element 14 have low thermal conductivity. It is surrounded by a heat insulating member 15 that is small and has a large heat capacity, and the heat insulating member 15 is housed in the case la by point contact as shown in FIG. Prevents heat transfer, thermopile 13
It is possible to suppress the occurrence of an unnecessary temperature gradient between the hot junction and the cold junction, and the occurrence of a temperature difference between the cold junction and the side heating element 14.
第4図は発明者等が356Cの黒体炉を30分間連続し
て、測温したときの結果を示す図である。FIG. 4 is a diagram showing the results when the inventors measured the temperature of a 356C blackbody furnace continuously for 30 minutes.
同図において、○印は本実施例である放射温度計で測定
した結果であり、x印は従来の放射温度計で測定した結
果である。同図から明らかなように、従来の放射温度計
で連続測温した場合には、測定を開始してから約7分後
には、LCDに表示された指示値が+0.53C上昇し
たのに対して、本実施例の放射温度計で連続測温した場
合には、測定を開始して30分経過しても、その指示値
は本放射温度計の分解能である0、1’C上昇しただけ
であり、これは量子化誤差の範囲内おさまっている。In the figure, the ◯ marks are the results measured with the radiation thermometer of this embodiment, and the x marks are the results measured with the conventional radiation thermometer. As is clear from the figure, when temperature was measured continuously using a conventional radiation thermometer, the indicated value displayed on the LCD rose by +0.53C approximately 7 minutes after the start of measurement. Therefore, when temperature is measured continuously with the radiation thermometer of this example, even after 30 minutes have passed from the start of measurement, the indicated value has increased by only 0.1'C, which is the resolution of this radiation thermometer. This is within the range of quantization error.
上記の本実施例によれば、測定者が手で放射温度計を握
って測温する際に、手からの伝熱により、サーモパイル
13の温接点と冷接点とに温度勾配が生じ、測定結果に
誤差が生ずるのを防止することがきる。尚、測定時にお
ける外気による非平衡現象である熱的外乱の場合も同様
に、サーモパイル13の温接点と冷接点とに不用な温度
勾配が生じる事による測定結果の誤差が生ずるのを防止
することがきる。According to the above-mentioned embodiment, when the measurer holds the radiation thermometer in his hand to measure the temperature, a temperature gradient is generated between the hot junction and the cold junction of the thermopile 13 due to heat transfer from the hand, and the measurement result is It is possible to prevent errors from occurring. Similarly, in the case of thermal disturbance, which is a non-equilibrium phenomenon caused by the outside air during measurement, it is necessary to prevent errors in measurement results due to unnecessary temperature gradients occurring between the hot and cold junctions of the thermopile 13. I'm struggling.
また、上記の本実施例によれば、人体の体温を連続して
測温することは勿論、人体以外の温度を連続して測温す
る場合にも好適である。Further, according to the present embodiment described above, it is suitable not only for continuously measuring the body temperature of a human body but also for continuously measuring the temperature of a body other than the human body.
尚、上記の本実施例では、断熱部材としてコルクを使用
したが、これは熱伝動率が小さく、熱容量が大きいもの
であれば他の材料、たとえば発泡ウレタンや発泡スチロ
ール等であってもよい。In this embodiment, cork is used as the heat insulating member, but other materials may be used as long as they have a low thermal conductivity and a large heat capacity, such as urethane foam or styrene foam.
また、上記の実施例では、プローブ11の一部と、凹面
鏡12と、サーモパイル13と、測温素子14とを断熱
部材15で包囲した場合について説明したが、本体部2
0も、基板24等を断熱部材15で包囲してもよいし、
またサーモパイル13と測温素子14のみを断熱部材1
5で包囲するようにしてもよい。Furthermore, in the above embodiment, a case has been described in which a part of the probe 11, the concave mirror 12, the thermopile 13, and the temperature measuring element 14 are surrounded by the heat insulating member 15.
0 may also surround the substrate 24 etc. with the heat insulating member 15,
In addition, only the thermopile 13 and the temperature measuring element 14 are connected to the heat insulating member 1.
It may be surrounded by 5.
更に、上記の実施例では、断熱部材15をケースla内
に点接触で支持した場合について説明したが、要求され
る測温精度によっては、面接触により支持してもよい。Further, in the above embodiment, the case has been described in which the heat insulating member 15 is supported in the case la by point contact, but depending on the required temperature measurement accuracy, it may be supported by surface contact.
以上説明したように本発明によれば、少なくとも、赤外
線センサと測温素子とを断熱部材で包囲することにより
、簡易な構成によって、測温時における外気による熱的
外乱や測定者の手からの伝熱を抑えて正確な測温をする
ことができる放射温度計を提供することができる。As explained above, according to the present invention, by surrounding at least the infrared sensor and the temperature measuring element with a heat insulating member, thermal disturbances caused by outside air and from the hands of the measurer during temperature measurement can be avoided with a simple configuration. A radiation thermometer that can accurately measure temperature while suppressing heat transfer can be provided.
第1図は本発明の1実施例である放射温度計のセンサ部
の概略斜視図、第2図はその放射温度計の概略斜視図、
第3図はその放射温度計の概略構成図、第4図は測温結
果を示す図、第5図は従来の放射温度計の外形図である
。
la、lb・・・ケース
10・・・センサ部、11・・・プローブ、12・・・
凹面鏡、13・・・サーモパイル、14・・・測温素子
、15・・・断熱部材、20・・・本体部、21・・・
LCD。FIG. 1 is a schematic perspective view of a sensor section of a radiation thermometer according to an embodiment of the present invention, FIG. 2 is a schematic perspective view of the radiation thermometer,
FIG. 3 is a schematic configuration diagram of the radiation thermometer, FIG. 4 is a diagram showing the temperature measurement results, and FIG. 5 is an outline diagram of the conventional radiation thermometer. la, lb...Case 10...Sensor part, 11...Probe, 12...
Concave mirror, 13... Thermopile, 14... Temperature measuring element, 15... Heat insulating member, 20... Main body, 21...
LCD.
Claims (3)
と、該光学系によって集光された赤外線を電気信号に変
換する赤外線センサと、該赤外線センサの周囲温度を測
定する測温素子とを有し、該測温素子の信号に基づいて
、前記赤外線センサの出力信号を補正する放射温度計に
おいて、少なくとも前記赤外線センサと前記測温素子と
を断熱部材によって包囲したことを特徴とする放射温度
計。(1) An optical system that collects infrared rays emitted from an object to be measured, an infrared sensor that converts the infrared rays collected by the optical system into an electrical signal, and a temperature measuring element that measures the ambient temperature of the infrared sensor. and corrects the output signal of the infrared sensor based on the signal of the temperature measurement element, characterized in that at least the infrared sensor and the temperature measurement element are surrounded by a heat insulating member. Radiation thermometer.
求項1記載の放射温度計。(2) The radiation thermometer according to claim 1, wherein the heat insulating member is cork or urethane foam.
いる請求項1又は2記載の放射温度計。(3) The radiation thermometer according to claim 1 or 2, wherein the heat insulating member is supported within the housing by point contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1212460A JPH06103227B2 (en) | 1989-08-18 | 1989-08-18 | Radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1212460A JPH06103227B2 (en) | 1989-08-18 | 1989-08-18 | Radiation thermometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0375530A true JPH0375530A (en) | 1991-03-29 |
JPH06103227B2 JPH06103227B2 (en) | 1994-12-14 |
Family
ID=16623001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1212460A Expired - Lifetime JPH06103227B2 (en) | 1989-08-18 | 1989-08-18 | Radiation thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06103227B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015163901A (en) * | 2011-11-01 | 2015-09-10 | パナソニックヘルスケアホールディングス株式会社 | Biological sample measurement device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59172343U (en) * | 1983-05-02 | 1984-11-17 | 新日本無線株式会社 | radiation thermometer |
JPS6255529A (en) * | 1985-09-04 | 1987-03-11 | Kiiensu:Kk | Radiation thermometer |
JPS6435326A (en) * | 1987-07-31 | 1989-02-06 | Chino Corp | Temperature detector |
-
1989
- 1989-08-18 JP JP1212460A patent/JPH06103227B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59172343U (en) * | 1983-05-02 | 1984-11-17 | 新日本無線株式会社 | radiation thermometer |
JPS6255529A (en) * | 1985-09-04 | 1987-03-11 | Kiiensu:Kk | Radiation thermometer |
JPS6435326A (en) * | 1987-07-31 | 1989-02-06 | Chino Corp | Temperature detector |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015163901A (en) * | 2011-11-01 | 2015-09-10 | パナソニックヘルスケアホールディングス株式会社 | Biological sample measurement device |
US9823214B2 (en) | 2011-11-01 | 2017-11-21 | Panasonic Healthcare Holdings Co., Ltd. | Biological sample measuring apparatus |
US11187667B2 (en) | 2011-11-01 | 2021-11-30 | Phc Holdings Corporation | Biological sample measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH06103227B2 (en) | 1994-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6751497B2 (en) | Infrared thermometer | |
US5017018A (en) | Clinical thermometer | |
RU2118116C1 (en) | Thermometer for measuring the temperature of body and method of measuring the patient's body temperature (variants) | |
JP2826337B2 (en) | Radiation thermometer | |
JPH0741026B2 (en) | Thermometer | |
JPH03501820A (en) | infrared thermometer | |
JPH04504367A (en) | ear temperature detection device | |
JP2008145133A (en) | Radiation thermometer | |
US5246292A (en) | Temperature measurement apparatus | |
Betta et al. | An assessment of infrared tympanic thermometers for body temperature measurement | |
JPH0375530A (en) | Radiation thermometer | |
JPS63286729A (en) | Thermopile detector | |
JP2003294526A (en) | Laser power detection device | |
JP2671946B2 (en) | Eardrum temperature measuring device | |
US3447376A (en) | High accuracy temperature measuring devices | |
CN111595465A (en) | Active fixed-distance non-contact high-precision medical thermometer and temperature measuring method thereof | |
JP2993106B2 (en) | Non-contact oral thermometer | |
JPH039724A (en) | Body temperature measuring apparatus | |
JP2813331B2 (en) | Radiation thermometer | |
JPH0271124A (en) | Optical thermometer | |
JPH08278203A (en) | Infrared ray radiation thermometer | |
JPS60107117A (en) | Thermostatic device | |
JPH0536056B2 (en) | ||
JPH03251729A (en) | Thermometric device | |
EP0999437A1 (en) | Apparatus for measuring internal body temperature utilizing infrared emissions |