JPH0375447A - Temperature control apparatus for compressor - Google Patents

Temperature control apparatus for compressor

Info

Publication number
JPH0375447A
JPH0375447A JP20916589A JP20916589A JPH0375447A JP H0375447 A JPH0375447 A JP H0375447A JP 20916589 A JP20916589 A JP 20916589A JP 20916589 A JP20916589 A JP 20916589A JP H0375447 A JPH0375447 A JP H0375447A
Authority
JP
Japan
Prior art keywords
temperature
compressor
upper limit
flow rate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20916589A
Other languages
Japanese (ja)
Inventor
Akiyoshi Sugiyama
明由 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20916589A priority Critical patent/JPH0375447A/en
Publication of JPH0375447A publication Critical patent/JPH0375447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the temperature of a compressor at a given value by measuring a time period from a time at which the temperature of the compressor reaches a given set value below a predetermined upper limit value and returning the opening of a refrigerant flow rate controller to a normal opening at a time when the measured time period has elapsed by a predetermined amount. CONSTITUTION:Such control signals as a release control signal depending on a set upper limit temperature To1 and another release control signal depending on a set time period from a set temperature, for example To3, between the set upper limit temperature To1 and a set lower limit temperature To2 are fed to a refrigerant flow rate controller. That is, when the temperature of a compressor exceeds the set upper limit temperature To1, a solenoid valve 19 is opened and the cooling operation of the compressor is conducted. Thus, when the temperature of the compressor fall to the set intermediate temperature To3, a time period from then is measured. When the measured time period exceeds a set value, the solenoid valve 19 is controlled to be closed regardless of the set lower limit temperature To2 and a refrigeration cycle is returned to a normal operation. Thus, the temperature control of the compressor can be surely performed and the air control of an air for keeping comfortable temperature can be executed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は圧縮機の温度制御装置に係り、特に空気調和機
等を快適制御するようにした範囲内で圧縮機の温度を適
確に制御するようにした圧縮機の温度制御装置に関する
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a temperature control device for a compressor, and in particular, the present invention relates to a temperature control device for a compressor. The present invention relates to a compressor temperature control device that accurately controls the temperature of a compressor.

(従来の技術) 一般に空気調和機は、第4図に示すようなヒートポンプ
タイプの冷凍サイクルを有する。このヒートポンプタイ
プの冷凍サイクルを使用した空気調和機を冷房機として
運転する場合について説明する。前記冷凍サイクルは、
圧縮機10によって圧縮された冷媒を吐出管11、四方
弁12、凝縮器13、絞り弁14、室内器に設けた蒸発
器15、前記四方弁12を介して前記圧縮機10に戻す
ように流し、蒸発器15によって室内空気を冷却し、室
内の空気調和が行なわれる。
(Prior Art) Generally, an air conditioner has a heat pump type refrigeration cycle as shown in FIG. A case will be described in which an air conditioner using this heat pump type refrigeration cycle is operated as a cooler. The refrigeration cycle is
The refrigerant compressed by the compressor 10 is returned to the compressor 10 through the discharge pipe 11, the four-way valve 12, the condenser 13, the throttle valve 14, the evaporator 15 provided in the indoor unit, and the four-way valve 12. , indoor air is cooled by the evaporator 15, and indoor air conditioning is performed.

このような冷凍サイクルを有する空気調和機において、
空気調和中、種々の要因により圧縮機10が高温度で運
転されることがある。この高温度運転が継続すると、圧
縮機10の電動機巻線、潤滑油等が劣化させられ、圧縮
機10すなわち空気調和機が運転することができなくな
ることがある。
In an air conditioner with such a refrigeration cycle,
During air conditioning, the compressor 10 may be operated at high temperatures due to various factors. If this high temperature operation continues, the motor windings, lubricating oil, etc. of the compressor 10 may deteriorate, and the compressor 10, that is, the air conditioner, may become unable to operate.

そこで圧縮機10の吐出管11には温度検出器16が設
けられ、この圧縮機10の吐出管11から吐出される冷
媒温度が検出される。そこで、この温度検出器16が所
定上限設定温度Tolを検出すると、この温度検出信号
が温度制御部17に送られる。そして、この温度制御部
17から制御信号が発生させられ、前記絞り弁14に並
列に設けられたキャピラリチューブ18と電磁弁19と
のバイパス管20の電磁弁19すなわち冷媒流量制御部
に前記制御信号が人力されて上記冷媒流量制御部が開か
れる。
Therefore, a temperature detector 16 is provided in the discharge pipe 11 of the compressor 10, and the temperature of the refrigerant discharged from the discharge pipe 11 of the compressor 10 is detected. Therefore, when this temperature detector 16 detects the predetermined upper limit set temperature Tol, this temperature detection signal is sent to the temperature control section 17. A control signal is generated from the temperature control section 17, and the control signal is sent to the solenoid valve 19 of the bypass pipe 20, that is, the refrigerant flow rate control section, between the capillary tube 18 and the solenoid valve 19, which are provided in parallel with the throttle valve 14. is manually opened to open the refrigerant flow control section.

そのため、冷凍サイクルの凝縮器13から蒸発器15を
経て圧縮機10に流れる冷媒流量が増量させられ、これ
によって蒸発器15の冷房能力が低下されるとともに、
圧縮機10の温度が低下される。
Therefore, the flow rate of refrigerant flowing from the condenser 13 of the refrigeration cycle to the compressor 10 via the evaporator 15 is increased, thereby reducing the cooling capacity of the evaporator 15, and
The temperature of compressor 10 is reduced.

第5図は、縦軸を圧縮機10から吐出される吐出冷媒の
温度Tとし、横軸を圧縮機10の運転時間tとした温度
特性曲線である。ここで圧縮機10が運転されると、時
間が経過するとともに吐出冷媒温度Tが上昇し高くなる
。この上昇温度は時間がtoになると最高の温度Too
になる。その後は、空気調和条件により最高の温度To
oを維持するかあるいは第5図に示すような降下現象を
呈する。
FIG. 5 is a temperature characteristic curve with the vertical axis representing the temperature T of the refrigerant discharged from the compressor 10 and the horizontal axis representing the operating time t of the compressor 10. When the compressor 10 is operated here, the discharge refrigerant temperature T rises and becomes higher as time passes. This rising temperature reaches the maximum temperature Too when the time reaches to.
become. After that, depending on the air conditioning conditions, the maximum temperature To
o, or exhibits a downward phenomenon as shown in FIG.

このような温度特性曲線を有する圧縮機101;おいて
、圧縮機10が約100℃以上の所定上限設定温度にな
ると、その温度により電動機巻線、潤滑油等が劣化させ
られる可能性がある。
In the compressor 101 having such a temperature characteristic curve, when the compressor 10 reaches a predetermined upper limit setting temperature of approximately 100° C. or higher, the motor windings, lubricating oil, etc. may deteriorate due to the temperature.

そこで圧縮機10から吐出される吐出冷媒温度が所定上
限設定温度To1以上になると、その温度が温度検出器
16により検出され、その温度f、、i号が温度制御部
17に送られる。温度制御部17がこの温度信号を受け
ると、この温度制御部17から冷媒流量制御部である電
磁弁19に制御信号が送られ電磁弁19が開かれる。こ
れにより冷凍サイクルの凝縮器13から蒸発器15を経
て圧縮機10等に送られる冷媒流量が増量されされる。
Therefore, when the discharge refrigerant temperature discharged from the compressor 10 exceeds the predetermined upper limit setting temperature To1, the temperature is detected by the temperature detector 16, and the temperatures f, , i are sent to the temperature control section 17. When the temperature control section 17 receives this temperature signal, a control signal is sent from the temperature control section 17 to the solenoid valve 19, which is a refrigerant flow rate control section, and the solenoid valve 19 is opened. As a result, the flow rate of refrigerant sent from the condenser 13 of the refrigeration cycle to the compressor 10 and the like via the evaporator 15 is increased.

そのため、蒸発器15の冷却能力が低下されるとともに
圧縮機10の温度が低下させられる。この圧縮機10の
温度が低下させられると、圧縮機10から吐出される冷
媒温度も低下させられる。
Therefore, the cooling capacity of the evaporator 15 is reduced, and the temperature of the compressor 10 is also reduced. When the temperature of the compressor 10 is lowered, the temperature of the refrigerant discharged from the compressor 10 is also lowered.

このようにして、圧縮機10の温度が低下され、吐出冷
媒温度が例えば80℃の通常運転させられる所定下限設
定温度Ta2になると、この温度信号が温度制御部17
を介して電磁弁19に送られ、この電磁弁1つが閉めら
れる。
In this way, when the temperature of the compressor 10 is lowered and the discharge refrigerant temperature reaches the predetermined lower limit set temperature Ta2 of 80° C. for normal operation, this temperature signal is transmitted to the temperature controller 17.
is sent to the solenoid valve 19 via the solenoid valve 19, and one of the solenoid valves is closed.

そのため、蒸発器15、圧縮機10に送られていた冷媒
流量の増量分が解除され、蒸発器15の冷房機能が通常
状態に復帰され、冷凍サイクルが通常運転に戻される。
Therefore, the increase in the refrigerant flow rate that had been sent to the evaporator 15 and the compressor 10 is canceled, the cooling function of the evaporator 15 is returned to the normal state, and the refrigeration cycle is returned to normal operation.

このように冷媒流量の増量制御を行うことにより、圧縮
機10が上限設定温度Tolの温度以下で運転され、圧
縮機10の電動機巻線、潤滑油等の劣化が防止される。
By controlling the refrigerant flow rate to increase in this manner, the compressor 10 is operated at a temperature below the upper limit set temperature Tol, and deterioration of the motor windings, lubricating oil, etc. of the compressor 10 is prevented.

ここで前記第5図に示した温度特性曲線において、圧縮
機の温度が上限設定温度To1以上になり冷媒流量制御
部を開いて冷媒流量を増量し、圧縮機の温度を上限設定
温度Tolから下限設定温度Ta2まで低下させている
温度制御範囲をAゾーンということにする。また、上限
設定温度Tolと下限設定温度Ta2までの温度範囲で
冷凍サイクルが通常運転される温度範囲をBゾーンとい
うことにする。
Here, in the temperature characteristic curve shown in FIG. 5, when the temperature of the compressor exceeds the upper limit set temperature To1, the refrigerant flow rate control section is opened to increase the refrigerant flow rate, and the temperature of the compressor is changed from the upper limit set temperature Tol to the lower limit. The temperature control range in which the temperature is lowered to the set temperature Ta2 will be referred to as the A zone. Moreover, the temperature range in which the refrigeration cycle is normally operated in the temperature range from the upper limit set temperature Tol to the lower limit set temperature Ta2 is referred to as the B zone.

(発明が解決しようちする課題) かかる冷凍サイクルを有する空気調和機において、圧縮
機が吐出する冷媒の温度を制御するための電磁弁1つの
開閉制御する下限設定温度TO2と上限設定温度Tol
の範囲で制御する場合、この温度を正確に制御するため
に例えば95℃から85℃の狭い温度範囲にすると、電
磁弁の開閉操作が頻繁に行われ、この頻繁な操作により
、冷凍サイクルを流れる冷媒が不安定になり、室温の変
動をきたし快適な空気調和制御ができなくなるという問
題がある。
(Problems to be Solved by the Invention) In an air conditioner having such a refrigeration cycle, the lower limit temperature TO2 and the upper limit temperature Tol are controlled to open and close one solenoid valve for controlling the temperature of the refrigerant discharged by the compressor.
When controlling the temperature within a narrow range of, for example, 95°C to 85°C in order to accurately control the temperature, the solenoid valve will be opened and closed frequently, and this frequent operation will cause the flow in the refrigeration cycle to decrease. There is a problem in that the refrigerant becomes unstable, causing fluctuations in room temperature and making it impossible to control comfortable air conditioning.

また、上限設定温度および下限設定温度間を広い温度範
囲にすると、−単電磁弁が開放されるとなかなか元の状
態に戻らないので、空気調和機の冷房能力が不足し適切
な空気調和ができなくなるという問題がる。
In addition, if a wide temperature range is set between the upper and lower set temperatures, - once the single solenoid valve is opened, it will be difficult to return to the original state, resulting in insufficient cooling capacity of the air conditioner and proper air conditioning. There is a problem with it disappearing.

本発明は上記問題を解決するために圧縮機の温度制御範
囲が狭すぎることがなく、しかも長時間にわたって正常
運転に戻ることがない空気調和機を適正に制御するとと
もに圧縮機の温度を所定に維持するようにした圧縮機の
温度制御装置を得ることを目的とするものである。
In order to solve the above-mentioned problems, the present invention appropriately controls the air conditioner so that the temperature control range of the compressor is not too narrow and does not return to normal operation for a long time, and the temperature of the compressor is maintained at a predetermined level. The object of the present invention is to obtain a temperature control device for a compressor that maintains the temperature of a compressor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、圧縮機の吐出管に設けられ圧縮機から吐出さ
れる吐出冷媒温度を検出する温度検出器と、この温度検
出器の温度信号を受け前記圧縮機の吐出冷媒温度が所定
上限設定温度に達したときに冷媒流量制御部の開度を大
きくする制御信号を送る温度制御部と、この温度制御部
に設けられ前記所定上限設定温度以下の任意設定温度に
なったとさから時間をけいそくし、この計測時間が所定
時間経過したときに前記冷媒流量制御部の開度を通常開
度に戻す時間制御部を設けたものである。
(Means for Solving the Problems) The present invention includes a temperature detector provided in a discharge pipe of a compressor to detect the temperature of the discharged refrigerant discharged from the compressor, and a temperature sensor for receiving a temperature signal from the temperature detector. a temperature control section that sends a control signal to increase the opening degree of the refrigerant flow rate control section when the discharge refrigerant temperature reaches a predetermined upper limit setting temperature, and an arbitrary set temperature that is provided in the temperature control section and is below the predetermined upper limit setting temperature. The refrigerant flow rate control section is provided with a time control section that controls the time from the time when the refrigerant flow rate control section is reached, and returns the opening degree of the refrigerant flow rate control section to the normal opening degree when the measured time period has elapsed for a predetermined period of time.

(作 用) 圧縮機の吐出冷媒温度が高温になり、前記圧縮機の電動
機巻線、潤滑油等の劣化することを防ぐ上限設定温度T
olに達すると、この吐出冷媒温度が温度検出器により
検出される。この温度検出器の温度信号は温度制御部を
介して冷媒流量側御部に送られてこの冷媒流量制御部の
開度が大きくされ、凝縮器から蒸発器、圧縮機に流れる
冷媒流量が増量される。この冷媒流量の増量制御により
蒸発器の冷房能力が低下されるとともに圧縮機の温度が
低下され、圧縮機の電動機巻線、謂滑油専の劣化が防止
される。
(Function) Upper limit set temperature T to prevent the refrigerant temperature discharged from the compressor from becoming high and deteriorating the motor windings, lubricating oil, etc. of the compressor.
When the temperature of the discharged refrigerant reaches ol, the temperature detector detects the temperature of the discharged refrigerant. The temperature signal from this temperature sensor is sent to the refrigerant flow rate control unit via the temperature control unit, and the opening degree of this refrigerant flow rate control unit is increased, increasing the flow rate of refrigerant flowing from the condenser to the evaporator and compressor. Ru. This control to increase the refrigerant flow rate reduces the cooling capacity of the evaporator and lowers the temperature of the compressor, thereby preventing deterioration of the motor windings of the compressor, the so-called lubricant.

かかる圧縮機の冷却制御において、圧縮機の吐出冷媒温
度が上限設定温度To1以下の任意の設定温度Ta2に
なり、この設定温度Ta2になってから所定の時間経過
すると前記冷媒流量制御部の冷媒流量増量制御が解除さ
れ、凝縮器から蒸発器、圧縮機等に送られる冷媒流量が
通常状態にされ、冷凍サイクルが通常運転に復帰される
。この冷媒流量の時間制御により、空気調和機の快適な
空気調和制御と圧縮機の適確な温度制御が行われる。
In the cooling control of the compressor, the temperature of the refrigerant discharged from the compressor reaches an arbitrary set temperature Ta2 that is lower than the upper limit set temperature To1, and when a predetermined period of time has elapsed after reaching this set temperature Ta2, the refrigerant flow rate of the refrigerant flow rate controller is increased. The increase control is canceled, the flow rate of refrigerant sent from the condenser to the evaporator, compressor, etc. is brought to a normal state, and the refrigeration cycle is returned to normal operation. This time control of the refrigerant flow rate provides comfortable air conditioning control of the air conditioner and accurate temperature control of the compressor.

(実施例) 以下本発明圧縮機の温度制御装置の一実施例を添附図面
について説明する。なお、第4図および第5図と同一部
分は同一符号を付しその詳細な説明は省略する。
(Embodiment) An embodiment of the temperature control device for a compressor according to the present invention will be described below with reference to the accompanying drawings. Note that the same parts as in FIGS. 4 and 5 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第1図の冷凍サイクルは従来の冷凍サイクルと同様であ
る。この冷凍サイクルのバイパス管20の電磁弁19は
温度制御部17の流量制御信号により制御される。
The refrigeration cycle of FIG. 1 is similar to a conventional refrigeration cycle. The solenoid valve 19 of the bypass pipe 20 of this refrigeration cycle is controlled by a flow rate control signal from the temperature control section 17.

本発明における制御信号は上限設定温度Tolによる解
放制御信号および上限設定温度Tolと下限設定温度T
a2の中間の設定温度例えばTa2(Tol≧To3>
Ta2)からの設定時間による解除制御信号が冷媒流量
制御部に送られる。
The control signals in the present invention are a release control signal based on the upper limit set temperature Tol, the upper limit set temperature Tol, and the lower limit set temperature T.
Set temperature in the middle of a2, for example, Ta2 (Tol≧To3>
A release control signal based on the set time from Ta2) is sent to the refrigerant flow rate control section.

すなわち、圧縮機の温度が御装置の上限設定温度To1
以上になると、電磁弁1つが開かれ、従来装置と同様に
して圧縮機の冷却作用が行われる。
In other words, the temperature of the compressor is the upper limit setting temperature To1 of the control device.
At this point, one solenoid valve is opened and the compressor is cooled in the same manner as in the conventional system.

このようにして、圧縮機の温度が低下し、上記中間の設
定温度Ta2になると、その温度になってからの時間が
計測され、その時間が設定時間以上になると、下限設定
温度Ta2に関係なく電磁弁19が閉制御されて冷凍サ
イクルが通常の運転に戻される。
In this way, when the temperature of the compressor decreases and reaches the above-mentioned intermediate set temperature Ta2, the time elapsed after reaching that temperature is measured, and if that time exceeds the set time, regardless of the lower limit set temperature Ta2, The solenoid valve 19 is controlled to close, and the refrigeration cycle is returned to normal operation.

これらの冷媒流量制御を第3図に示すフローチャートに
従って説明する。このフローチャートの説明上、圧縮機
の上限設定温度To1以上の温度から中間設定温度Ta
2の間における冷媒流量を増量し圧縮機10等の低温制
御を行っている温度制御範囲をAoゾーンといい、中間
設定温度Ta2から下限設定温度Ta2までの冷媒流量
の増量による圧縮機10等の低温制御が行われるでいる
とともに温度制御部17の制御信号を時間的に計測する
温度制御範囲をCゾーンといい、下限設定温度Ta2か
ら上限設定温度Tolまでの温量制御を行わない通常の
運転が行われている範囲をBゾーンということにする(
第3図参照)。
These refrigerant flow rate controls will be explained according to the flowchart shown in FIG. For the purpose of explaining this flowchart, from the temperature above the upper limit setting temperature To1 of the compressor to the intermediate setting temperature Ta
The temperature control range in which the compressor 10, etc. is controlled at a low temperature by increasing the refrigerant flow rate between 2 and 2 is called the Ao zone. The temperature control range in which low temperature control is performed and the control signal of the temperature control unit 17 is measured over time is called the C zone, and is normal operation without temperature control from the lower limit set temperature Ta2 to the upper limit set temperature Tol. The area where this is done is called the B zone (
(See Figure 3).

ここで、圧縮機10が運転され空気調和作用が行なわれ
ると、圧縮機10の吐出冷媒温度が温度検出器16によ
り検出される。この検出温度信号が温度制御部17に送
られと、この検出温度信号がBゾーンの温度範囲にある
か否かが判断される(Sl)。Bゾーンの温度範囲にあ
ると、温度制御部17から電磁弁19には制御信号が送
られず閉じたままとなる(S2)。また、時間的制御も
クリアされ、そのまま圧縮8110が運転される(S3
)。
Here, when the compressor 10 is operated and air conditioning is performed, the temperature of the refrigerant discharged from the compressor 10 is detected by the temperature detector 16. When this detected temperature signal is sent to the temperature control section 17, it is determined whether or not this detected temperature signal is within the temperature range of zone B (Sl). When the temperature is within the B zone temperature range, the temperature control section 17 does not send a control signal to the solenoid valve 19 and it remains closed (S2). In addition, the temporal control is also cleared, and the compression 8110 continues to operate (S3
).

前記圧縮機10の運転により、温度検出器16の温度が
上限設定温度To1以上になると、この温度信号が温度
制御部17に送られ、まず、Bゾーンの温度範囲にある
か否かが判断される(Sl)。この場合、温度信号はB
ゾーンの温度範囲ではないので、次にAOゾーンの温度
範囲であるか否かが判断される(S4)。このAOゾー
ンの温度範囲であると、温度制御部17から電磁弁1つ
に制御信号が送られ電磁弁19が開かれる(S5)。こ
の電磁弁19が開かれると、凝縮器13から蒸発器15
に送られる冷媒流量が増量され、蒸発器15の冷房能力
が低下させられ、また、圧縮機10が低温にさせられ、
巻線等の劣化が防止される。
When the temperature of the temperature detector 16 becomes equal to or higher than the upper limit temperature To1 due to the operation of the compressor 10, this temperature signal is sent to the temperature control section 17, which first determines whether or not the temperature is within the B zone temperature range. (Sl). In this case, the temperature signal is B
Since the temperature is not within the zone temperature range, it is then determined whether the temperature is within the AO zone temperature range (S4). When the temperature is within this AO zone temperature range, a control signal is sent from the temperature control section 17 to one solenoid valve, and the solenoid valve 19 is opened (S5). When this electromagnetic valve 19 is opened, the flow from the condenser 13 to the evaporator 15 is reduced.
The flow rate of refrigerant sent to is increased, the cooling capacity of the evaporator 15 is reduced, and the compressor 10 is lowered to a lower temperature,
Deterioration of the windings etc. is prevented.

この低温制御により圧縮機10の吐出冷媒が中間設定温
度To3以下になり、Cゾーンに移行し、Cゾーンであ
ることが確認されると(51、S4)、この確認信号を
受けて温度制御部17から冷媒流量制御部に送られる制
御信号の時間計測が開始される(S6)。
Due to this low temperature control, the refrigerant discharged from the compressor 10 becomes lower than the intermediate set temperature To3, moves to the C zone, and when it is confirmed that it is in the C zone (51, S4), upon receiving this confirmation signal, the temperature control section 17, time measurement of the control signal sent to the refrigerant flow rate control section is started (S6).

この時間計測制御は、上限設定温度Tolから中間設定
温度Ta2までの温度制御範囲が狭い場合例えば95℃
から85℃の温度範囲においては、空気調和機の冷媒が
不安定にならない長い時間tm例えば10分が計数され
る。また、上限設定温度以下lから中間設定温度Ta2
までの温度制御範囲が広い場合例えば100℃から80
℃の温度範囲において、空気調和機の冷房能力が不足し
ない短い時間tn例えば3分が計数される。この時間t
mあるいはtnは空気調和機等により予め設定した設定
した時間tc例えば5分にしてもよい。
This time measurement control is performed when the temperature control range from the upper limit set temperature Tol to the intermediate set temperature Ta2 is narrow, e.g. 95°C.
In the temperature range from 85° C. to 85° C., a long period of time tm, for example 10 minutes, is counted during which the refrigerant of the air conditioner does not become unstable. In addition, from the upper limit setting temperature l to the intermediate setting temperature Ta2
For example, if the temperature control range is wide from 100℃ to 80℃
In the temperature range of .degree. C., a short time tn, for example, 3 minutes, during which the cooling capacity of the air conditioner is not insufficient is counted. This time t
m or tn may be a preset time tc set in advance by an air conditioner or the like, for example, 5 minutes.

そこで計数時間がtc以下であると、Cゾーンでの冷却
と時間の計測が続けられる。また、前記tcの時間計測
が行われると(87)、温度制御範囲が強制的にCゾー
ンからBゾーンに移される(S8)。このゾーンの移送
により前記電磁弁19が閉じられ、冷媒流量の増量が解
除され前記のように冷凍サイクルが通常状態の運転に戻
される。
Therefore, if the counting time is less than tc, cooling and time measurement in the C zone continues. Furthermore, when the tc time is measured (87), the temperature control range is forcibly moved from the C zone to the B zone (S8). This zone transfer closes the electromagnetic valve 19, cancels the increase in the refrigerant flow rate, and returns the refrigeration cycle to normal operation as described above.

このような圧縮機の冷媒温度制御により、圧縮機10は
その電動機巻線、潤滑油等を劣化しない温度にされると
ともに空気調和機が極端に短時間で冷媒の増量運転され
たり、また極端に長時間で運転されることがない。その
ため、空気調和機の冷媒が不安定な状態で運転されるこ
とがないし、冷房能力を不足するようなことがないので
、快適な空気調和が行われる。
By controlling the refrigerant temperature of the compressor in this manner, the compressor 10 is brought to a temperature that does not deteriorate its motor windings, lubricating oil, etc., and the air conditioner is operated with an increased amount of refrigerant in an extremely short period of time. It is never driven for long periods of time. Therefore, the air conditioner is not operated with an unstable refrigerant, and the cooling capacity is not insufficient, so that comfortable air conditioning is achieved.

なお、上記実施例では冷媒の流量の制御を電磁弁19の
開閉制御により行ったが、絞り弁14の開度を直接に開
閉制御するようにしたものであってもよい。
In the above embodiment, the flow rate of the refrigerant was controlled by controlling the opening and closing of the electromagnetic valve 19, but the opening degree of the throttle valve 14 may be controlled directly.

また、空気調和機を冷房機として運転したものについて
説明したが、冷凍サイクルを切替えて暖房機として運転
する場合にもほぼ同様に制御することができる。
Moreover, although the description has been given of an air conditioner operated as a cooler, almost the same control can be performed when the air conditioner is operated as a heater by switching the refrigeration cycle.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように圧縮機から吐出される冷媒温度を
温度検出器により検出し、この温度検出器の検出温度に
より温度制御部を介して冷媒流量制御部を制御し、圧縮
機の温度を制御するようにしたものにおいて、圧縮機か
ら吐出される冷媒温度が上限設定温度以下の設定温度に
なったときから温度制御部の制御信号を時間制御し冷媒
流量制御部の開度を通常開度に戻すようにしたから、冷
媒流量制御部の開閉動作が頻繁に繰返されたり、長時間
元に戻らないようなことがなくなり、圧縮機の温度制御
が適確に行われるとともに空気調和機の快適な空調制御
を行うことができる。
As described above, the present invention detects the temperature of the refrigerant discharged from the compressor using a temperature detector, and controls the refrigerant flow rate controller via the temperature controller based on the temperature detected by the temperature detector, thereby controlling the temperature of the compressor. When the temperature of the refrigerant discharged from the compressor reaches the set temperature below the upper limit set temperature, the control signal of the temperature control section is time-controlled and the opening degree of the refrigerant flow rate control section is changed to the normal opening degree. This prevents the refrigerant flow control unit from opening and closing frequently or from not returning to its original state for a long period of time, ensuring accurate compressor temperature control and improving the comfort of the air conditioner. air conditioning control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明圧縮機の温度制御装置に用いられてい
る冷凍サイクル、第2図は、第1図の冷凍サイクルに用
いられる圧縮機の温度特性曲線図、第3図は、第1図の
温度制御部の制御動作を説明するフローチャート、第4
図は、一般に使用されている従来の冷凍サイクル、第5
図は、第4図の冷凍サイクルに用いられる圧縮機の温度
特性曲線図である。 10・・・圧縮機、11・・・吐出管、12・・・四方
弁、13・・・凝縮器、14・・・絞り弁、15・・・
蒸発器、16・・・温度検出器、17・・・温度制御部
、18・・・キャピラリチューブ、19・・・電磁弁、
20・・・バイパス管。
FIG. 1 is a refrigeration cycle used in the temperature control device for the compressor of the present invention, FIG. 2 is a temperature characteristic curve diagram of the compressor used in the refrigeration cycle of FIG. 1, and FIG. Flowchart explaining the control operation of the temperature control unit shown in FIG.
The figure shows a commonly used conventional refrigeration cycle,
The figure is a temperature characteristic curve diagram of the compressor used in the refrigeration cycle of FIG. 4. DESCRIPTION OF SYMBOLS 10... Compressor, 11... Discharge pipe, 12... Four-way valve, 13... Condenser, 14... Throttle valve, 15...
Evaporator, 16... Temperature detector, 17... Temperature control unit, 18... Capillary tube, 19... Solenoid valve,
20... Bypass pipe.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機の吐出管に設けられ圧縮機から吐出される吐出冷
媒温度を検出する温度検出器と、この温度検出器の温度
信号を受け前記圧縮機の吐出冷媒温度が所定上限設定温
度に達したときに冷媒流量制御部の開度を大きくする制
御信号を送る温度制御部と、この温度制御部に設けられ
前記所定上限設定温度以下の間の任意設定温度になった
ときから時間を計測し、この計測時間が所定時間経過し
たときに前記冷媒流量制御部の開度を通常開度に戻す時
間制御部とを具備する圧縮機の温度制御装置。
a temperature detector installed in the discharge pipe of the compressor to detect the temperature of the discharged refrigerant discharged from the compressor; and when receiving a temperature signal from the temperature detector, the temperature of the discharged refrigerant of the compressor reaches a predetermined upper limit setting temperature. a temperature control section that sends a control signal to increase the opening degree of the refrigerant flow control section; A temperature control device for a compressor, comprising: a time control section that returns the opening degree of the refrigerant flow rate control section to the normal opening degree when a predetermined measurement time has elapsed.
JP20916589A 1989-08-11 1989-08-11 Temperature control apparatus for compressor Pending JPH0375447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20916589A JPH0375447A (en) 1989-08-11 1989-08-11 Temperature control apparatus for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20916589A JPH0375447A (en) 1989-08-11 1989-08-11 Temperature control apparatus for compressor

Publications (1)

Publication Number Publication Date
JPH0375447A true JPH0375447A (en) 1991-03-29

Family

ID=16568405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20916589A Pending JPH0375447A (en) 1989-08-11 1989-08-11 Temperature control apparatus for compressor

Country Status (1)

Country Link
JP (1) JPH0375447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095045A (en) * 2014-11-12 2016-05-26 パナソニックIpマネジメント株式会社 Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095045A (en) * 2014-11-12 2016-05-26 パナソニックIpマネジメント株式会社 Air conditioning device

Similar Documents

Publication Publication Date Title
US4698981A (en) Air conditioner having a temperature dependent control device
US4850200A (en) Refrigerating circuit device for air conditioning apparatus and control method thereof
EP2075519B1 (en) Air Conditoning system
US4517812A (en) Load control device for a heat-pump type air conditioning apparatus
JPH0375447A (en) Temperature control apparatus for compressor
JPH07158935A (en) Fan coil unit
JP2504997Y2 (en) Air conditioner
JP2625556B2 (en) Operation control device for air conditioner
JPS59183255A (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH04327770A (en) Defrosting device in multi-chamber type air conditioner
JPH05118625A (en) Air conditioner
JPS63201470A (en) Refrigerator
JPH06159822A (en) Device for controlling motor-operated expansion valve for air conditioner
JP2513384B2 (en) Defrost controller for refrigeration equipment
JP2531332B2 (en) Dehumidifying operation method of air conditioner
JPS6256425B2 (en)
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPH0510183Y2 (en)
JPH087314Y2 (en) refrigerator
JPH05240520A (en) Air conditioning apparatus
JPH0719575A (en) Air conditioner
JPH01222165A (en) Refrigerating device
JPS62158955A (en) Air conditioner
JPH0777361A (en) Electrical expansion valve control device