JPH0374361B2 - - Google Patents

Info

Publication number
JPH0374361B2
JPH0374361B2 JP57212638A JP21263882A JPH0374361B2 JP H0374361 B2 JPH0374361 B2 JP H0374361B2 JP 57212638 A JP57212638 A JP 57212638A JP 21263882 A JP21263882 A JP 21263882A JP H0374361 B2 JPH0374361 B2 JP H0374361B2
Authority
JP
Japan
Prior art keywords
refractive index
film
organic
index film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57212638A
Other languages
Japanese (ja)
Other versions
JPS59102201A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57212638A priority Critical patent/JPS59102201A/en
Publication of JPS59102201A publication Critical patent/JPS59102201A/en
Publication of JPH0374361B2 publication Critical patent/JPH0374361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • G02B1/105

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光学的多層干渉膜(以下、単に「多層
膜」と称す。)に係り、さらに詳しくは、基板上
に光の高屈折率膜と低屈折率膜とを交互に積層し
て得られる高耐久性の光反射増加を目的とする多
層膜の製造方法に関する。 光の干渉を利用する多層膜は、光反射増加、光
反射防止、コールドミラー、コールドフイルター
等に使用されている。多層膜を構成する高屈折率
膜として通常、屈折率(n)の高い酸化チタン膜
(TiO2,n≒2.0〜2.4)が、一方、低屈折率膜と
して、通常、化学的安定性、硬度等に優れた酸化
珪素膜(SiO2,n≒1.421.50)を用いるのが一般
的である。 このような多層膜において、高反射率の光反射
増加膜を得る場合高屈折率膜を最外層として最外
層から数えて奇数番目に高屈折率膜を、偶数番目
に低屈折率膜を用いる。たとえばガラスを基板と
する光反射増加膜として、ガラス/TiO2
SiO2/TiO2の3層構造、ガラス/TiO2/SiO2
TiO2/SiO2/TiO2の5層構造等が採用されてお
り、光反射率は、ガラス/TiO2の単層構造の場
合約30%であるのに対し、3層構造の場合約65
%、5層構造の場合80%以上が得られる。しかし
ながら、このように異種材料の膜を組み合せると
材料間の物性の違いのため耐久性の点で種々の不
都合を生ずる。たとえば基板と薄膜または各薄膜
間の熱膨張差に基づくヒビ割れや剥離、ピンホー
ルによる基板または、より内側の膜の化学的侵蝕
が発生する。特に多層膜系中の酸化珪素膜は通常
の使用環境においては他の構成の酸化物膜と同様
に安定であるが、海岸地域の如く直接塩水がかか
つたり、塩分や飛砂等の多い環境においては酸化
珪素膜に起因する点状剥離や微細なクラツクが発
生し、また最外層の酸化チタン膜は、ゴミ、砂等
の固体粒子による表面磨擦により極めて容易にキ
ズがついたり、磨耗による反射率の減少がみられ
る。酸化珪素膜の対塩耐久性を改良する方法とし
て酸化珪素膜中に酸化錫または酸化ジルコニウム
を添加する方法が特開昭57−124301に提案されて
いる。たしかに、該方法により対塩耐久性が向上
することが認められるが、最外層に用いる高屈折
率膜の耐磨耗性は改善されていない。 本発明は、塩水や高温高湿の雰囲気において優
れた耐久性を有し、かつ、耐磨耗性を有する多層
膜およびその製造方法を提供することをその目的
とする。 本発明者等は前記目的を達成すべく鋭意研究し
た結果、多層膜の最外層を酸化タンタル膜の単独
または酸化タンタルと酸化チタンとの複合膜とす
ることおよび、塗布法により多層膜を製造するに
当り低屈折率膜形成用の塗布液として五酸化リン
を添加した有機珪素化合物溶液を用いることによ
り、耐塩水性および耐磨耗性が著しく向上するこ
とを見出し本発明を完成した。 本発明の多層膜は最外層にTiO2/Ta2O2比が
95/5〜0/100の酸化タンタルの単独膜または
酸化タンタルと酸化チタンとの複合膜からなる高
屈折率膜を有し、最外層から数えて奇数番目に酸
化チタンの単独膜、または酸化チタンと酸化タン
タルとの複合膜からなる高屈折率膜を、また偶数
番目に酸化ケイ素膜からなる低屈折率膜を交互に
基板上に積層した光干渉を利用する光反射増加膜
である。たとえばガラスを基板とする多層膜とし
て、ガラス/TiO2/SiO2/Ta2O5、ガラス/
TiO2/SiO2/TiO2・Ta2O5、ガラス/TiO2
Ta2O5/SiO2/TiO2・Ta2O5、ガラス/TiO2
Ta2O5/SiO2/Ta2O5等の3層膜、ガラス/
TiO2/SiO2/TiO2/SiO2/TiO2・Ta2O5、ガラ
ス/TiO2/SiO2/TiO2/SiO2/Ta2O5等の5層
膜等が挙げられる。本発明において、最外層の高
屈折率膜のTiO2/Ta2O5比が小さくなるに従い
耐塩水性、耐磨耗性が向上するが、若干光反射率
が減少する。特にTiO2/Ta2O5比が95/5以下
における耐久性の向上が著しい。したがつて、耐
磨耗性が要求される場合、酸化タンタルの単独膜
とすることが好ましく、逆に耐磨耗性があまり要
求されない場合、光の高反射率が得られるので
TiO2/Ta2O5比の大きい酸化タンタルと酸化チ
タンとの複合膜とすることが好ましい。また、場
合によつては酸化チタンの単独膜とすることもで
きる。 本発明において、有機チタン化合物溶液または
有機チタン化合物と有機タンタルとの混合溶液を
高屈折率膜形成用塗布液として基板上または低屈
折率膜上に塗布、加熱処理して高屈折率膜を形成
し、該高屈折率膜上に五酸化リンを含有する有機
珪素化合物溶液を低屈折率膜形成用塗布液として
塗布、加熱処理して低屈折率膜を形成し、さら
に、有機タンタル化合物溶液または有機タンタル
化合物と有機チタン化合物との混合溶液を最上層
の高屈折率膜形成用塗布液として次層の低屈折率
膜上に塗布し、加熱処理して最上層の高屈折率膜
を形成することにより多層膜が製造される。 高屈折率膜形成用および最上層の高屈折率膜形
成用の塗布液に用いる有機チタン化合物は、有機
溶剤可溶性であり、その有機溶剤溶液を基板上ま
たは酸化珪素(SiO2)膜上に塗布し加熱処理す
ることにより酸化チタン(TiO2)膜を形成し得
るものであればいずれをも使用することができ
る。たとえば、下記一般式(1) Ti(Cl)x(OR)(4-x) …(1) (ここに、Rは、炭素数1〜18、好ましくは2
〜4のアルキル基を表し、xは、0および1〜3
の整数である。) で表わされる有機チタン化合物、および一般式(1)
中のxが0であるテトラアルコキシチタンを水を
用いて重合させて得られる一分子中にTi原子を
2〜20含有するポリマーが好ましく用いられる。
また、有機タンタル化合物も有機溶剤可溶性であ
りその有機溶剤溶液を基板上または酸化珪素
(SiO2)膜上に塗布し、加熱処理することにより
酸化タンタル(Ta2O5)膜を形成し得るものであ
ればいずれをも使用できるが、好ましくは下記一
般式(2) Ta(OR)5 …(2) (ここに、Rは前記と同じ意味を表す。) で表わされるペンタアルコキシタンタル、および
ペンタアルコキシタンタルを水で重合させて得ら
れる一分子中にTa原子2〜20を含有するポリマ
ーが使用される。前記有機チタン化合物、有機タ
ンタル化合物または有機チタン化合物と有機タン
タル化合物との混合物を、当該有機金属化合物を
酸化して生成する金属酸化物(TiO2、Ta2O5
たはTiO2+Ta2O5)に換算した濃度で1〜10重
量%含有し、かつ、安定化剤を前記金属酸化物に
換算した有機金属化合物に対して1〜10倍モル、
好ましくは1.5〜5倍モル添加した有機溶剤溶液
を高屈折率膜形成用の塗布液とする。有機溶剤と
して炭素数8以下のアルコール類、エステル類、
炭化水素類、ハロゲン化炭化水素類を用いること
ができる。安定化剤としては、アセチルアセト
ン、ベンゾイルアセトン等のβ−ジケトン類、ア
セト酢酸、プロピオニル酪酸、ベンゾイルギ酸等
のケトン酸類、該ケトン酸類のエステル類、乳
酸、グリコール酸、α−オキシ酪酸、サリチル酸
等のオキシ酸類、該オキシ酸類のエステル類、ジ
アセトンアルコール、アセトイン等のオキシケト
ン類、グリシン、アラニン等のα−アミノ酸類、
アミノエチルアルコール等のアミノアルコール
類、および酢酸等の有機カルボン酸類からなる群
より選ばれた1種または2種以上を用いる。また
必要に応じて五酸化リンを金属酸化物基準で0.5
〜3.0重量%添加してもよい。前記塗布液を基板
上または低屈折率膜上に塗布する場合、該塗布液
中の有機金属化合物濃度が1%未満では充分な塗
膜の膜厚が得られにくく、また10%を越えると塗
膜が厚くなり過ぎ加熱処理に際してクラツクが入
る可能性があり好ましくない。安定化剤を添加し
た塗布液は、安定性に優れ基板上または低屈折率
膜上に塗布した塗膜の白濁防止に優れた効果を有
している。有機チタン化合物と有機タンタル化合
物との混合溶液からなる塗布液は、有機チタン化
合物と、有機タンタル化合物とを所望の比率で混
合した後有機溶剤に溶解してもよく、また、別個
に調製した有機チタン化合物溶液と有機タンタル
化合物溶液とを所望の比率で混合してもよい。 低屈折率膜形成用の塗布液に使用する有機珪素
化合物としては、その有機溶剤溶液を高屈折率膜
上に塗布して加熱処理することにより酸化珪素
(SiO2)膜を形成し得るものであればよく、下記
一般式(3) Si(OR)4 …(3) (ここに、Rは、メチル基またはエチル基を表
す。) で表わされるテトラアルコキシシランを、メタノ
ールまたはエタノールと酢酸とからなる反応系中
において微量の鉱酸を触媒として重合させて得ら
れるシロキサン化合物が好ましく用いられる。低
屈折率膜形成用塗布液は、前記有機珪素化合物を
酸化珪素(SiO2)に換算して、1〜12重量%含
有し、かつ、五酸化リンをSiO2量を基準として
0.5〜3重量%を添加した有機溶剤溶液である。
有機溶剤としては前記した高屈折率膜形成用塗布
液に用いた有機溶剤と同種類の有機溶剤が使用で
きる。低屈折率膜形成用塗布液中の有機珪素化合
物濃度が前記範囲より小さいと高屈折率膜上に塗
布した際の塗膜の厚さが不充分となり、また前記
範囲より大きいと塗膜が厚くなり過ぎ、加熱処理
した際にクラツクが発生する可能性が大きくなる
ので好ましくない。低屈折率膜形成用塗布液に添
加する五酸化リンは、塗膜を加熱処理して得られ
る酸化珪素膜の耐蝕性を向上させると共に高屈折
率膜との密着性を向上させる効果を有する。 本発明において、前記した有機チタン化合物溶
液または有機チタン化合物と有機タンタル化合物
の混合溶液からなる高屈折率膜形成用塗布液を基
板上に塗布、加熱処理して高屈折率膜を形成し、
次いで、該高屈折率膜上に有機珪素化合物溶液か
らなる低屈折率膜形成用塗布液を塗布して加熱処
理して高屈折率膜上に低屈折率膜を形成し、以下
順次高屈折率膜および低屈折率膜とを交互に積層
して形成した最上層に有機タンタル化合物溶液ま
たは有機タンタル化合物と有機チタン化合物との
混合溶液からなる最外層の高屈折率膜形成用塗布
液を塗布、加熱処理することにより、目的とする
最外層に酸化タンタルの単独膜または酸化タンタ
ルと酸化チタンとの複合膜を有する高耐久性多層
膜が得られる。高屈折率膜形成用および低屈折率
膜用の塗布液の基板上および高または低屈折率膜
上への塗布法は特に限定はなく、浸漬引上げ法、
スピンナー法、スプレー法等公知の方法によるこ
とができるが、塗膜厚さのコントロールが容易で
あり、かつ、均一な膜厚の得られる浸漬引上げ法
が好ましい。また塗膜の加熱処理は、高屈折率
膜、および低屈折率膜共に当該有機金属化合物を
酸化して当該金属の酸化物を生成する温度以上、
すくなくとも350℃以上の温度で行う。さらに好
ましくは、あらかじめ、所定の温度に加熱した炉
中に塗布液を塗布した基板を投入することにより
行う。加熱処理の時間および加熱温度の上限は、
使用する基板の耐熱温度に依存し、特に制限はな
い。また、加熱温度が350未満、特に300℃以下で
は徴密な膜が得られにくく耐久性の向上が望めな
い。 本発明において用いる基板は、ガラス、セラミ
ツクス、金属等、加熱処理に耐え得る耐熱性を有
するものであればいずれをも用いることができ
る。 本発明の多層膜は、高耐久性および高い光反射
率を有するので反射鏡、装飾用色ガラス、鏡、光
フイルター等に使用される。 本発明は耐塩水性、および耐磨耗性を有し、か
つ高反射率を有する高耐久性多層膜およびその製
造方法を提供するものでありその産業的意義は極
めて大きい。 以下、本発明を実施例を挙げてさらに詳細に説
明する。ただし本発明の範囲は下記実施例により
限定されるものではない。 実施例 塗布液の調製 〔−1〕 有機チタン化合物溶液 エタノール65重量部、酢酸ブチル25重量部およ
びアセチルアセトン15重量部からなる混合溶剤
に、下記一般式 (ここにBuはノルマルブチル基を表す。) で表わされる平均構造を有する有機チタン化合物
をTiO2換算濃度で5重量%となるよう溶解し高
屈折率膜形成用塗布液:Aを調製した。 また、上記高屈折率膜形成用塗布液:Aに
TiO2に換算した有機チタン化合物重量に対して
2重量%に相当する五酸化リン(P2O5)を添加
溶解し、高屈折率膜形成用塗布液:Bを調製し
た。 〔−2〕 有機タンタル化合物溶液 ペンタエトキシタンタル110重量部に試薬特級
乳酸100重量部を加え、さらにTa2O5換算濃度で
5重量%となる如くイソプロパノールを加え70〜
80℃の温度に2時間加熱混合し、高屈折率膜形成
用塗布液:Cを調製した。 〔−3〕 有機珪素化合物溶液 テトラエトキシシラン219重量部、エタノール
643重量部、酢酸206重量部に塩酸0.3重量部を加
えて混合し、還流下45時間反応させてSiO2換算
濃度5.9重量%の有機珪素化合物溶液からなる低
屈折率膜形成用塗布液:Dを調製した。 また、上記低屈折率膜形成用塗布液:Dに
SiO2に換算した有機珪素化合物重量に対して2.5
重量%の五酸化リン(P2O5)を添加して、低屈
折率膜形成用塗布液:Eを調製した。 多層膜の製造 120mm×60mm×2mmのソーダガラスを洗剤を用
いて充分に洗浄した後、水洗乾燥し基板とした。
該基板を高屈折率膜形成用塗布液AまたはBに浸
漬し光学的膜厚(nt)が1200Åとなる速度で引上
げ室温乾燥し、次いで電気炉内で30分間加熱処理
し、高屈折率膜を形成した。次いで低屈折率膜形
成用塗布液DまたはEに浸漬し、光学的膜厚
(nt)が1200Åとなる速度で引上げ電気炉内で30
分間加熱処理して、高屈折率膜上に低屈折率膜を
形成した。さらに引続いて高屈折率膜形成用塗布
液A、B、CまたはBとCとの混合液に浸漬し、
光学的膜厚(nt)が1200Åとなる速度で引上げ、
電気炉内で30分間加熱処理し低屈折率膜上に高屈
折率膜を形成し、両面3層からなる光反射増加鏡
を製造した。各層に用いた塗布液の種類、および
各層の加熱処理温度を後記する試験結果と共に第
1表中に示す。 耐久性試験方法 〔−1〕 塩水煮沸試験:a 5重量%のNaCl水溶液を90℃に加熱した中に
で得られた多層膜を1時間浸漬した後引上げ、
室温中で1時間放置後、再び前記NaCl水溶中に
1時間浸漬し、乾燥して、点状欠陥や微細なクラ
ツクの発生の有無を目視観察した。 〔−2〕 塩水煮沸試験:b 5重量%のNaCl水溶液を103〜104℃に加熱し
た中に前記で製造した多層膜を浸漬し、点状欠
陥または微細なクラツクの発生するまでの時間を
測定した。 〔−3〕 塩水噴霧試験 JIB Z2371に規定の方法で200時間の塩水噴霧
試験を行い、点状欠陥や微細クラツクの発生の有
無を目視観察した。またJIS D5705による反射
率:RJを測定した。 〔−4〕 磨耗試験 200メツシユ以下のCr2O3粉末を蒸留水中に分
散した固形分20%の研磨液を30mm×30mmのフラン
ネル布に含浸させ、荷重80g/cm2をかけて前記
で製造した多層膜表面を60回研磨し、研磨前後の
光学的膜厚(nt)の減少率、およびJIB D5705に
規定の反射率:RJの減少率を測定した。 以上の試験結果を第1表中に示す。
The present invention relates to an optical multilayer interference film (hereinafter simply referred to as "multilayer film"), and more specifically, the present invention relates to an optical multilayer interference film (hereinafter simply referred to as "multilayer film"), and more specifically, it is obtained by alternately laminating a high refractive index film and a low refractive index film on a substrate. The present invention relates to a method for producing a multilayer film with the purpose of increasing light reflection with high durability. Multilayer films that utilize light interference are used to increase light reflection, prevent light reflection, cold mirrors, cold filters, etc. A titanium oxide film (TiO 2 , n≒2.0-2.4) with a high refractive index (n) is usually used as a high refractive index film constituting a multilayer film. It is common to use a silicon oxide film (SiO 2 , n≈1.421.50) which has excellent properties such as: In such a multilayer film, when obtaining a light reflection increasing film with a high reflectance, a high refractive index film is used as the outermost layer, and a high refractive index film is used in an odd numbered layer counting from the outermost layer, and a low refractive index film is used in an even numbered layer. For example, as a light reflection increasing film using glass as a substrate, glass/TiO 2 /
Three-layer structure of SiO 2 /TiO 2 , glass / TiO 2 /SiO 2 /
A five-layer structure such as TiO 2 /SiO 2 /TiO 2 is adopted, and the light reflectance is about 30% for a single-layer structure of glass/TiO 2 , while it is about 65% for a three-layer structure.
%, and in the case of a five-layer structure, more than 80% can be obtained. However, when films made of different materials are combined in this way, various problems arise in terms of durability due to differences in physical properties between the materials. For example, cracking or peeling due to the thermal expansion difference between the substrate and the thin film or each thin film, and chemical erosion of the substrate or inner film due to pinholes occur. In particular, the silicon oxide film in the multilayer film system is as stable as other oxide films in the normal usage environment, but it is not suitable for environments such as coastal areas where it is directly exposed to salt water or where there is a lot of salt or flying sand. On the other hand, point peeling and fine cracks occur due to the silicon oxide film, and the outermost titanium oxide film is extremely easily scratched due to surface abrasion caused by solid particles such as dust and sand, and reflections due to abrasion occur. There is a decrease in the rate. As a method of improving the salt resistance of a silicon oxide film, a method of adding tin oxide or zirconium oxide to a silicon oxide film has been proposed in Japanese Patent Laid-Open No. 124301/1983. It is certainly recognized that the salt resistance is improved by this method, but the abrasion resistance of the high refractive index film used as the outermost layer is not improved. An object of the present invention is to provide a multilayer film that has excellent durability and abrasion resistance in salt water and high temperature and high humidity environments, and a method for manufacturing the same. As a result of intensive research to achieve the above object, the present inventors have found that the outermost layer of the multilayer film is a tantalum oxide film alone or a composite film of tantalum oxide and titanium oxide, and that the multilayer film is manufactured by a coating method. The present invention was completed based on the discovery that salt water resistance and abrasion resistance can be significantly improved by using an organic silicon compound solution to which phosphorus pentoxide is added as a coating solution for forming a low refractive index film. The multilayer film of the present invention has a TiO 2 /Ta 2 O 2 ratio in the outermost layer.
It has a high refractive index film consisting of a single film of tantalum oxide or a composite film of tantalum oxide and titanium oxide of 95/5 to 0/100, and the single film of titanium oxide or titanium oxide is placed in the odd numbered layer counting from the outermost layer. This is a light reflection increasing film that utilizes optical interference, in which high refractive index films made of a composite film of tantalum oxide and tantalum oxide are alternately laminated on a substrate, and low refractive index films made of even-numbered silicon oxide films are alternately laminated on a substrate. For example, as a multilayer film using glass as a substrate, glass/TiO 2 /SiO 2 /Ta 2 O 5 , glass/TiO 2 /SiO 2 /Ta 2 O 5
TiO 2 /SiO 2 /TiO 2・Ta 2 O 5 , Glass/TiO 2
Ta 2 O 5 /SiO 2 /TiO 2・Ta 2 O 5 , Glass/TiO 2
Three-layer film such as Ta 2 O 5 /SiO 2 /Ta 2 O 5 , glass /
Examples include five-layer films such as TiO 2 / SiO 2 / TiO 2 /SiO 2 /TiO 2 ·Ta 2 O 5 and glass/TiO 2 /SiO 2 /TiO 2 / SiO 2 / Ta 2 O 5 . In the present invention, as the TiO 2 /Ta 2 O 5 ratio of the high refractive index film of the outermost layer decreases, salt water resistance and abrasion resistance improve, but light reflectance slightly decreases. In particular, the durability is significantly improved when the TiO 2 /Ta 2 O 5 ratio is 95/5 or less. Therefore, if abrasion resistance is required, it is preferable to use tantalum oxide as a single film; conversely, if abrasion resistance is not required, a high reflectance of light can be obtained.
It is preferable to use a composite film of tantalum oxide and titanium oxide with a large TiO 2 /Ta 2 O 5 ratio. Further, depending on the case, a single film of titanium oxide may be used. In the present invention, an organic titanium compound solution or a mixed solution of an organic titanium compound and an organic tantalum is applied as a coating solution for forming a high refractive index film onto a substrate or a low refractive index film, and then heated to form a high refractive index film. Then, an organic silicon compound solution containing phosphorus pentoxide is applied as a coating liquid for forming a low refractive index film on the high refractive index film, and a low refractive index film is formed by heat treatment, and an organic tantalum compound solution or A mixed solution of an organic tantalum compound and an organic titanium compound is applied as a coating solution for forming the top layer of high refractive index film onto the next layer of low refractive index film, and then heated to form the top layer of high refractive index film. A multilayer film is thereby produced. The organic titanium compound used in the coating solution for forming the high refractive index film and the top layer high refractive index film is soluble in organic solvents, and the organic solvent solution is applied onto the substrate or silicon oxide (SiO 2 ) film. Any material that can form a titanium oxide (TiO 2 ) film by heat treatment can be used. For example, the following general formula (1) Ti(Cl) x (OR) (4-x) ...(1)
~4 alkyl group, x is 0 and 1-3
is an integer. ) Organotitanium compounds represented by and general formula (1)
A polymer containing 2 to 20 Ti atoms in one molecule obtained by polymerizing tetraalkoxytitanium in which x is 0 using water is preferably used.
In addition, organic tantalum compounds are also soluble in organic solvents, and a tantalum oxide (Ta 2 O 5 ) film can be formed by coating the organic solvent solution on a substrate or silicon oxide (SiO 2 ) film and heat-treating it. Any of these can be used, but preferably pentaalkoxytantalum represented by the following general formula (2) Ta(OR) 5 ...(2) (wherein R represents the same meaning as above), and pentaalkoxytantalum A polymer containing 2 to 20 Ta atoms in one molecule obtained by polymerizing alkoxy tantalum with water is used. A metal oxide (TiO 2 , Ta 2 O 5 or TiO 2 +Ta 2 O 5 ) produced by oxidizing the organic titanium compound, organic tantalum compound, or a mixture of an organic titanium compound and an organic tantalum compound. Contains 1 to 10% by weight in terms of a concentration converted to
Preferably, an organic solvent solution to which 1.5 to 5 times the mole is added is used as a coating liquid for forming a high refractive index film. Alcohols and esters having 8 or less carbon atoms as organic solvents;
Hydrocarbons and halogenated hydrocarbons can be used. Stabilizers include β-diketones such as acetylacetone and benzoylacetone, ketonic acids such as acetoacetic acid, propionylbutyric acid, and benzoylformic acid, esters of these ketonic acids, lactic acid, glycolic acid, α-oxybutyric acid, salicylic acid, etc. Oxyacids, esters of oxyacids, oxyketones such as diacetone alcohol and acetoin, α-amino acids such as glycine and alanine,
One or more selected from the group consisting of amino alcohols such as aminoethyl alcohol and organic carboxylic acids such as acetic acid are used. Also, if necessary, add phosphorus pentoxide to 0.5% based on metal oxides.
~3.0% by weight may be added. When coating the coating liquid on a substrate or a low refractive index film, if the concentration of the organometallic compound in the coating liquid is less than 1%, it is difficult to obtain a sufficient coating film thickness, and if it exceeds 10%, the coating will be difficult to obtain. This is not preferable because the film becomes too thick and cracks may occur during heat treatment. A coating liquid to which a stabilizer is added has excellent stability and has an excellent effect of preventing clouding of a coating film applied on a substrate or a low refractive index film. A coating solution consisting of a mixed solution of an organic titanium compound and an organic tantalum compound may be prepared by mixing the organic titanium compound and the organic tantalum compound in a desired ratio and then dissolving the mixture in an organic solvent. The titanium compound solution and the organic tantalum compound solution may be mixed in a desired ratio. The organic silicon compound used in the coating solution for forming a low refractive index film is one that can form a silicon oxide (SiO 2 ) film by applying its organic solvent solution onto a high refractive index film and heat treating it. If necessary, a tetraalkoxysilane represented by the following general formula (3) Si(OR) 4 ...(3) (where R represents a methyl group or an ethyl group) is prepared from methanol or ethanol and acetic acid. A siloxane compound obtained by polymerizing a trace amount of mineral acid as a catalyst in a reaction system is preferably used. The coating liquid for forming a low refractive index film contains 1 to 12% by weight of the organosilicon compound in terms of silicon oxide (SiO 2 ), and phosphorus pentoxide based on the amount of SiO 2 .
It is an organic solvent solution to which 0.5 to 3% by weight is added.
As the organic solvent, the same type of organic solvent as used in the above-mentioned coating liquid for forming a high refractive index film can be used. If the concentration of the organosilicon compound in the coating solution for forming a low refractive index film is lower than the above range, the thickness of the coating will be insufficient when applied onto a high refractive index film, and if it is higher than the above range, the coating will be thick. This is not preferable because it increases the possibility that cracks will occur during heat treatment. Phosphorus pentoxide added to the coating solution for forming a low refractive index film has the effect of improving the corrosion resistance of the silicon oxide film obtained by heat-treating the coating film and improving the adhesion with the high refractive index film. In the present invention, a coating liquid for forming a high refractive index film consisting of the above-described organic titanium compound solution or a mixed solution of an organic titanium compound and an organic tantalum compound is applied onto a substrate and heat-treated to form a high refractive index film,
Next, a coating solution for forming a low refractive index film made of an organic silicon compound solution is applied onto the high refractive index film and heat-treated to form a low refractive index film on the high refractive index film. Applying a coating liquid for forming an outermost high refractive index film made of an organic tantalum compound solution or a mixed solution of an organic tantalum compound and an organic titanium compound to the uppermost layer formed by alternately laminating the film and the low refractive index film, By heat treatment, a highly durable multilayer film having a single film of tantalum oxide or a composite film of tantalum oxide and titanium oxide as the outermost layer can be obtained. There are no particular limitations on the method of applying the coating liquid for forming a high refractive index film and a low refractive index film onto the substrate and the high or low refractive index film, including the dipping and pulling up method,
Although known methods such as a spinner method and a spray method can be used, the dipping and pulling method is preferred because it allows easy control of the coating film thickness and provides a uniform film thickness. In addition, the heat treatment of the coating film is performed at a temperature higher than the temperature at which the organometallic compound is oxidized and an oxide of the metal is generated for both the high refractive index film and the low refractive index film.
Perform at a temperature of at least 350℃ or higher. More preferably, this is carried out by placing the substrate coated with the coating liquid into a furnace that has been heated to a predetermined temperature in advance. The upper limits of heat treatment time and heating temperature are as follows:
It depends on the allowable temperature limit of the substrate used, and there is no particular restriction. Further, if the heating temperature is lower than 350°C, particularly 300°C or lower, it is difficult to obtain a dense film and no improvement in durability can be expected. The substrate used in the present invention can be made of glass, ceramics, metal, etc., as long as it has heat resistance that can withstand heat treatment. Since the multilayer film of the present invention has high durability and high light reflectance, it can be used for reflective mirrors, decorative colored glass, mirrors, optical filters, and the like. The present invention provides a highly durable multilayer film having salt water resistance, abrasion resistance, and high reflectance, and a method for manufacturing the same, and has extremely great industrial significance. Hereinafter, the present invention will be explained in more detail by giving examples. However, the scope of the present invention is not limited by the following examples. Example Preparation of coating solution [-1] Organic titanium compound solution The following general formula was added to a mixed solvent consisting of 65 parts by weight of ethanol, 25 parts by weight of butyl acetate, and 15 parts by weight of acetylacetone. (Here, Bu represents a normal butyl group.) An organic titanium compound having an average structure represented by the following was dissolved to a concentration of 5% by weight in terms of TiO 2 to prepare a coating liquid for forming a high refractive index film: A. In addition, the above coating liquid for forming a high refractive index film: A
A coating liquid for forming a high refractive index film: B was prepared by adding and dissolving phosphorus pentoxide (P 2 O 5 ) corresponding to 2% by weight based on the weight of the organic titanium compound in terms of TiO 2 . [-2] Organic tantalum compound solution Add 100 parts by weight of reagent special grade lactic acid to 110 parts by weight of pentaethoxy tantalum, and further add isopropanol to give a concentration of 5% by weight in terms of Ta 2 O 5 .
The mixture was heated and mixed at a temperature of 80° C. for 2 hours to prepare a coating liquid for forming a high refractive index film: C. [-3] Organosilicon compound solution 219 parts by weight of tetraethoxysilane, ethanol
643 parts by weight of acetic acid, 0.3 parts by weight of hydrochloric acid was added to 206 parts by weight of acetic acid, mixed, and reacted under reflux for 45 hours to obtain a coating solution for forming a low refractive index film consisting of an organosilicon compound solution with a SiO 2 equivalent concentration of 5.9% by weight: D was prepared. In addition, the above coating liquid for forming a low refractive index film: D
2.5 per organosilicon compound weight converted to SiO 2
A coating liquid for forming a low refractive index film: E was prepared by adding phosphorus pentoxide (P 2 O 5 ) in an amount of % by weight. Manufacture of multilayer film A soda glass measuring 120 mm x 60 mm x 2 mm was thoroughly washed with detergent, washed with water and dried to form a substrate.
The substrate was immersed in coating solution A or B for forming a high refractive index film, pulled up at a rate such that the optical film thickness (nt) was 1200 Å, dried at room temperature, and then heat-treated in an electric furnace for 30 minutes to form a high refractive index film. was formed. Next, it was immersed in coating solution D or E for forming a low refractive index film, pulled up at a speed such that the optical film thickness (nt) was 1200 Å, and heated in an electric furnace for 30 min.
A heat treatment was performed for a minute to form a low refractive index film on the high refractive index film. Furthermore, it is subsequently immersed in a coating solution A, B, C or a mixed solution of B and C for forming a high refractive index film,
Pulled at a speed to achieve an optical film thickness (nt) of 1200 Å,
A high refractive index film was formed on the low refractive index film by heat treatment in an electric furnace for 30 minutes, and a light reflection increasing mirror consisting of three layers on both sides was manufactured. The type of coating liquid used for each layer and the heat treatment temperature for each layer are shown in Table 1 along with the test results described below. Durability test method [-1] Salt water boiling test: a The multilayer film obtained in a 5% by weight NaCl aqueous solution heated to 90°C was immersed for 1 hour and then pulled up.
After being left at room temperature for 1 hour, it was immersed again in the NaCl aqueous solution for 1 hour, dried, and visually observed for the presence or absence of point defects and fine cracks. [-2] Salt water boiling test: b The multilayer film produced above was immersed in a 5% by weight NaCl aqueous solution heated to 103 to 104°C, and the time until point defects or minute cracks appeared was measured. did. [-3] Salt water spray test A salt water spray test was conducted for 200 hours according to the method specified in JIB Z2371, and the presence or absence of point defects and microcracks was visually observed. In addition, the reflectance: RJ was measured according to JIS D5705. [-4] Abrasion test A 30 mm x 30 mm flannel cloth was impregnated with a polishing liquid with a solid content of 20% in which Cr 2 O 3 powder of 200 mesh or less was dispersed in distilled water, and a load of 80 g/cm 2 was applied. The multilayer film surface was polished 60 times, and the reduction rate of optical film thickness (nt) before and after polishing and the reduction rate of reflectance: R J specified in JIB D5705 were measured. The above test results are shown in Table 1.

【表】 但し、最大反射時の波長λmax〓480nm
*2 磨耗試験前の光学的膜厚:noto
60回磨耗試験後の光学的膜厚:nt
光学的膜厚減少率=〓(noto−nt)/noto
〓×100(%)
*3 磨耗試験前の反射率:Ro
60回磨耗試験前の反射率:R
反射率の減少率=〓(Ro−R)/Ro
〓×100(%)
試験結果の考察 第1表に示す試験結果から明らかな如く、低屈
折率膜形成用塗布液中への五酸化リンの添加は、
耐塩水性を向上させる(No.1とNo.3、No.2とNo.4
との比較)ことがわかる。 また、第1層および第2層の加熱温度が高温で
ある程耐塩水性が向上する。(No.1とNo.2、およ
びNo.3とNo.4との比較) さらに、最上層へのタンタルの添加により、耐
塩水性はさらに向上し、また耐磨耗性も向上す
る。最上層のTiO2/Ta2O5比が小なる程反射率
は低下するが耐塩水性耐磨耗性が大きい。
[Table] However, the wavelength at maximum reflection λmax = 480nm
*2 Optical film thickness before abrasion test: noto
Optical film thickness after 60 times abrasion test: nt
Optical thickness reduction rate = 〓(noto−nt)/noto
〓×100(%)
*3 Reflectance before abrasion test: R J o
Reflectance before 60 times abrasion test: R J
Decrease rate of reflectance=〓(R J o−R J )/R J o
〓×100(%)
Discussion of test results As is clear from the test results shown in Table 1, the addition of phosphorus pentoxide to the coating solution for forming a low refractive index film
Improve salt water resistance (No. 1 and No. 3, No. 2 and No. 4)
(comparison with). Furthermore, the higher the heating temperature of the first layer and the second layer, the better the salt water resistance. (Comparison between No. 1 and No. 2, and No. 3 and No. 4) Furthermore, by adding tantalum to the top layer, salt water resistance is further improved, and abrasion resistance is also improved. The smaller the TiO 2 /Ta 2 O 5 ratio of the top layer, the lower the reflectance, but the greater the salt water resistance and abrasion resistance.

Claims (1)

【特許請求の範囲】 1 基板上に高屈折率の金属酸化物薄膜と、低屈
折率の金属酸化物薄膜とを交互に積層せしめた光
学的多層膜干渉膜の製造方法において、有機チタ
ン化合物溶液または有機チタン化合物と有機タン
タル化合物との混合溶液を高屈折率膜形成用塗布
液として基板上または低屈折率膜上に塗布、加熱
処理して高屈折率膜を形成し、該高屈折率膜上に
五酸化リンを含有する有機珪素化合物溶液を低屈
折率膜形成用塗布液として塗布、加熱処理して低
屈折率膜を形成し、さらに、有機タンタル化合物
溶液または有機タンタル化合物と有機チタン化合
物との混合溶液を高屈折率膜形成用塗布液として
低屈折率膜上に塗布し、加熱処理して最外層の高
屈折率膜を形成することを特徴とする高耐久性多
層膜の製造方法。 2 最外層が、TiO2/Ta2O5比95/5〜5/95
である酸化タンタルと酸化チタンとの複合膜であ
る特許請求の範囲第1項記載の高耐久性多層膜の
製造方法。 3 各層の加熱処理温度が少なくとも350℃以上
である特許請求の範囲第1項記載の高耐久性多層
膜の製造方法。 4 有機チタン化合物溶液が、下記一般式(1) Ti(Cl)x(OR)(4-x) …(1) (ここにRは、炭素数1〜18のアルキル基を表
し、xは、0または1〜3の整数である。) で表される有機チタン化合物またはテトラアルコ
キシチタンの加水重合物のβ−ジケトン類、ケト
ン酸類、ケトン酸エステル類、オキシ酸類または
有機カルボン酸類よりなる群から選ばれた1種ま
たは2種以上の安定化剤を含む有機溶剤溶液であ
る特許請求の範囲第1項記載の高耐久性多層膜の
製造方法。 5 有機タンタル化合物溶液が下記一般式(2) Ta(OR)5 …(2) (ここにRは炭素数1〜18のアルキル基を表
す。)で表されるペンタアルコキシタンタルまた
はペンタアルコキシタンタルの加水重合物のβ−
ジケトン類、ケトン酸類、ケトン酸エステル類、
オキシ酸類または有機カルボン酸類よりなる群か
ら選ばれた1種または2種以上の安定剤を含む有
機溶剤溶液である特許請求の範囲第1項記載の高
耐久性多層膜の製造方法。 6 低屈折率膜形成用塗布液が、下記一般式(3) Si(OR)4 …(3) (ここにRはメチル基またはエチル基を表す。) で表されるテトラアルコキシシランをメタノール
またはエタノールと酢酸とからなる反応系中にお
いて鉱酸を触媒として重合させて得られるシロキ
サン化合物の有機溶剤溶液に五酸化リンを添加し
たものである特許請求の範囲第1項記載の高耐久
性多層膜の製造方法。
[Scope of Claims] 1. A method for producing an optical multilayer interference film in which metal oxide thin films with a high refractive index and metal oxide thin films with a low refractive index are alternately laminated on a substrate, wherein an organic titanium compound solution is used. Alternatively, a mixed solution of an organic titanium compound and an organic tantalum compound is applied as a coating solution for forming a high refractive index film onto a substrate or a low refractive index film, and a high refractive index film is formed by heat treatment. An organic silicon compound solution containing phosphorus pentoxide is applied thereon as a coating solution for forming a low refractive index film, and heat treated to form a low refractive index film, and then an organic tantalum compound solution or an organic tantalum compound and an organic titanium compound are applied. A method for producing a highly durable multilayer film, characterized in that a mixed solution of the above is applied as a coating solution for forming a high refractive index film on a low refractive index film, and then heated to form a high refractive index film as the outermost layer. . 2 The outermost layer has a TiO 2 /Ta 2 O 5 ratio of 95/5 to 5/95
A method for producing a highly durable multilayer film according to claim 1, which is a composite film of tantalum oxide and titanium oxide. 3. The method for producing a highly durable multilayer film according to claim 1, wherein the heat treatment temperature of each layer is at least 350°C or higher. 4 The organic titanium compound solution has the following general formula (1) Ti(Cl) x (OR) (4-x) ...(1) (where R represents an alkyl group having 1 to 18 carbon atoms, and x is 0 or an integer from 1 to 3.) From the group consisting of β-diketones, ketonic acids, ketonic acid esters, oxyacids, or organic carboxylic acids of organic titanium compounds or hydropolymerized tetraalkoxytitanium represented by The method for producing a highly durable multilayer film according to claim 1, which is an organic solvent solution containing one or more selected stabilizers. 5 The organic tantalum compound solution is pentaalkoxytantalum or pentaalkoxytantalum represented by the following general formula (2) Ta (OR) 5 ... (2) (where R represents an alkyl group having 1 to 18 carbon atoms). β- of hydropolymer
diketones, ketonic acids, ketonic acid esters,
The method for producing a highly durable multilayer film according to claim 1, which is an organic solvent solution containing one or more stabilizers selected from the group consisting of oxyacids and organic carboxylic acids. 6 The coating solution for forming a low refractive index film is a tetraalkoxysilane represented by the following general formula (3) Si(OR) 4 ...(3) (where R represents a methyl group or an ethyl group) in methanol or The highly durable multilayer film according to claim 1, which is obtained by adding phosphorus pentoxide to an organic solvent solution of a siloxane compound obtained by polymerizing using a mineral acid as a catalyst in a reaction system consisting of ethanol and acetic acid. manufacturing method.
JP57212638A 1982-12-06 1982-12-06 Multilayered film having high durability and its production Granted JPS59102201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212638A JPS59102201A (en) 1982-12-06 1982-12-06 Multilayered film having high durability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212638A JPS59102201A (en) 1982-12-06 1982-12-06 Multilayered film having high durability and its production

Publications (2)

Publication Number Publication Date
JPS59102201A JPS59102201A (en) 1984-06-13
JPH0374361B2 true JPH0374361B2 (en) 1991-11-26

Family

ID=16625955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212638A Granted JPS59102201A (en) 1982-12-06 1982-12-06 Multilayered film having high durability and its production

Country Status (1)

Country Link
JP (1) JPS59102201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643540A2 (en) 2004-09-30 2006-04-05 Harison Toshiba Lighting Corporation Lamp type heater and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287242A (en) * 1985-05-29 1987-04-21 Nippon Shokubai Kagaku Kogyo Co Ltd Stable metal oxide sol composition
JPH0627328B2 (en) * 1985-07-16 1994-04-13 ソニー株式会社 High dielectric constant thin film
FR2713624A1 (en) * 1993-12-09 1995-06-16 Saint Gobain Vitrage Anti-reflective transparent prod.
JP4033286B2 (en) * 2001-03-19 2008-01-16 日本板硝子株式会社 High refractive index dielectric film and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643540A2 (en) 2004-09-30 2006-04-05 Harison Toshiba Lighting Corporation Lamp type heater and manufacturing method thereof

Also Published As

Publication number Publication date
JPS59102201A (en) 1984-06-13

Similar Documents

Publication Publication Date Title
JP3781888B2 (en) Hydrophilic substrate and method for producing the same
JP2874391B2 (en) Manufacturing method of water-repellent glass
EP0782015B1 (en) Non-fogging antireflection film and optical member, and production process thereof
JP3384284B2 (en) Hydrophilic coating, hydrophilic substrate provided with the same, and methods for producing them
JP2716302B2 (en) Oxide thin film having micropit-like surface layer, multilayer film using the thin film, and method for forming the same
JP2002505349A (en) Substrate having photocatalytic coating
JPH11512337A (en) Substrate with photocatalytic coating
EP0890556B1 (en) Thin film for optics, composition for the formation thereof, and ultraviolet-absorbing and heat-reflecting glass made by using the same
JPH0374361B2 (en)
JPH05330856A (en) Low-reflecting glass
EP0818561B1 (en) Protection coatings produced by sol-gel on silver reflectors
JPH0260397B2 (en)
JP2946569B2 (en) Composition for forming high heat resistant high refractive index composite oxide thin film
JPH10236847A (en) Optical thin film, its forming composition and ultraviolet-absorbing and heat ray-reflecting glass using the composition
JP3678043B2 (en) Low reflection glass articles for automobiles
JP2964513B2 (en) High heat resistant high refractive index composite oxide thin film, composition for forming the same, and incandescent lamp
JPS6153365A (en) Composition for forming thin film of silicon oxide
JPS63162549A (en) Glass having optical thin film formed thereon
JPH09169546A (en) Coating solution for forming oxide coating film, formation of oxide coating film and multilayered film
JPS62177501A (en) Composition for forming composite oxide thin film having high refractive index
JP2938106B2 (en) High heat resistant high refractive index composite oxide thin film
JP3988240B2 (en) Oxide film forming coating solution, oxide film forming method, and article with oxide film
JPH02317B2 (en)
JP3385159B2 (en) Sol-gel film and method for forming the same
JP3183806B2 (en) Sol-gel film and method for forming the same