JPH0373596B2 - - Google Patents

Info

Publication number
JPH0373596B2
JPH0373596B2 JP58044479A JP4447983A JPH0373596B2 JP H0373596 B2 JPH0373596 B2 JP H0373596B2 JP 58044479 A JP58044479 A JP 58044479A JP 4447983 A JP4447983 A JP 4447983A JP H0373596 B2 JPH0373596 B2 JP H0373596B2
Authority
JP
Japan
Prior art keywords
heat storage
molecular weight
weight
parts
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58044479A
Other languages
Japanese (ja)
Other versions
JPS59170180A (en
Inventor
Toshio Kobayashi
Fujio Oomae
Kyohiro Naganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP58044479A priority Critical patent/JPS59170180A/en
Publication of JPS59170180A publication Critical patent/JPS59170180A/en
Publication of JPH0373596B2 publication Critical patent/JPH0373596B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は潜熱型蓄熱材に関する。更に詳しくは
超高分子ポリエチレンと分子量300ないし10000の
ポリエチレンワツクスとからなる形状安定性に優
れた潜熱型蓄熱材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a latent heat type heat storage material. More specifically, the present invention relates to a latent heat storage material having excellent shape stability and comprising ultra-high molecular weight polyethylene and polyethylene wax having a molecular weight of 300 to 10,000.

蓄熱材には、物質の熱容量を利用する顕熱型蓄
熱材と物質の融解、凝固あるいは結晶転移などの
潜熱を利用する潜熱型蓄熱材とがある。潜熱型蓄
熱材は単位体積当たりの蓄熱容量が顕熱型に比べ
て大きいので、蓄熱器の容量を小型化出来る利点
があり、太陽熱利用を目的として主として無機塩
水和物を用いた蓄熱システムの開発が検討されて
いる。しかしながら無機塩水和物は、溶融状態か
ら次第に降温させた時に、本来の相変化温度を過
ぎても固化(結晶化)せず、放熱しないという過
冷却現象を生じ、同時に不溶性物質の晶出が融解
時に起こり、融解−固化のヒートサイクルを繰り
返すことにより不溶性物質が増加続け延いては、
相分離現象を呈すなどの問題を生じる。このた
め、蓄熱しても長時間に亙り所定の温度で安定し
て熱を取り出すことができないという実用上の不
都合を生じさせている。
Heat storage materials include sensible heat storage materials that utilize the heat capacity of substances and latent heat storage materials that utilize latent heat such as melting, solidification, or crystal transition of substances. Latent heat type heat storage materials have a larger heat storage capacity per unit volume than sensible heat types, so they have the advantage of being able to downsize the heat storage capacity.Development of heat storage systems mainly using inorganic salt hydrates for the purpose of solar heat utilization. is being considered. However, when inorganic salt hydrates are gradually cooled from a molten state, they do not solidify (crystallize) and do not release heat even after the original phase change temperature, resulting in a supercooling phenomenon. Occasionally, as the heat cycle of melting and solidification is repeated, the amount of insoluble substances continues to increase.
This causes problems such as phase separation phenomenon. For this reason, even if heat is stored, the heat cannot be extracted stably at a predetermined temperature for a long period of time, which is a practical disadvantage.

一方、無機塩水和物に代わる相分離現象を呈し
ない潜熱型蓄熱材として低分子量結晶性ポリオレ
フイン(特開昭50−146577号公報)あるいは結晶
性ポリオレフインを使用することが提案されてい
る。これらは、熱的に安定で、腐蝕性や毒性もな
く、潜熱も比較的大きいが、融解時の粘度が高
く、通常の液体のように対流による流動が起こら
ず、また熱伝導率も低いので、大きなブロツクと
しては使用できない欠点がある。これらの欠点を
なくすには、ペレツト、ストランド、フイルム等
の形状で使用することが望ましいが、そのままで
は溶融時に形状が保持できない。そこで形状を保
持する方法として、結晶性ポリオレフインを架橋
処理する方法が提案されているが、架橋処理によ
り、結晶性が低下するので、蓄熱材としての特性
が低下するという欠点がある。
On the other hand, it has been proposed to use low molecular weight crystalline polyolefin (Japanese Unexamined Patent Publication No. 146577/1982) or crystalline polyolefin as a latent heat type heat storage material that does not exhibit a phase separation phenomenon in place of inorganic salt hydrates. These are thermally stable, non-corrosive, non-toxic, and have a relatively large latent heat, but they have a high viscosity when melted, do not flow by convection like normal liquids, and have low thermal conductivity. However, it has the disadvantage that it cannot be used as a large block. In order to eliminate these drawbacks, it is desirable to use it in the form of pellets, strands, films, etc., but the shape cannot be maintained when melted as is. Therefore, a method of crosslinking crystalline polyolefin has been proposed as a method for maintaining the shape, but the crosslinking treatment lowers the crystallinity, resulting in a disadvantage that the properties as a heat storage material deteriorate.

かかる状況に鑑み、本発明者らは、蓄熱性に優
れ、しかも溶融時の形状安定性にも優れた潜熱型
蓄熱材の開発について種々検討した結果、超高分
子量ポリエチレンとポリエチレンワツクスとから
なる組成物が好適なことが分かり本発明に到達し
た。
In view of this situation, the present inventors conducted various studies on the development of a latent heat type heat storage material that has excellent heat storage properties and also has excellent shape stability when melted. It was found that the composition was suitable, and the present invention was achieved.

すなわち本発明は、少なくとも極限粘度〔η〕
が5dl/g以上の超高分子量ポリエチレン(A):5
ないし60重量部と、分子量が300ないし10000のポ
リエチレンワツクス(B):95ないし40重量部とから
なり、且つ均一に分散されたことを特徴とする蓄
熱性及び溶融時の形状安定性に優れた潜熱型蓄熱
材を提供するものである。
That is, the present invention provides at least the intrinsic viscosity [η]
Ultra-high molecular weight polyethylene (A) with 5 dl/g or more: 5
to 60 parts by weight and 95 to 40 parts by weight of polyethylene wax (B) with a molecular weight of 300 to 10,000, and is characterized by being uniformly dispersed and has excellent heat storage properties and shape stability when melted. The present invention provides a latent heat type heat storage material.

本発明に用いる超高分子量ポリエチレン(A)と
は、デカリン溶媒135℃における極限粘度〔η〕
が少なくとも5dl/g以上、好ましくは7ないし
30dl/gの範囲、また好ましくは密度が0.935
g/cm3以上のものである。〔η〕が5dl/g未満
のものは溶融粘度が低く、ポリエチレンワツクス
(B)が融解した際に、その形状を保持できなくなる
虞れがある。前記超高分子量ポリエチレン(A)は、
エチレンあるいはエチレンと少量のα−オレフイ
ン、例えばプロピレン、1−ブテン、4−メチル
−1−ペンテンとを所謂チーグラー重合により重
合することにより得られるポリエチレンの中でも
特に分子量の高いものである。
The ultra-high molecular weight polyethylene (A) used in the present invention has an intrinsic viscosity [η] of decalin solvent at 135°C.
is at least 5 dl/g or more, preferably 7 or more
in the range of 30 dl/g, and preferably with a density of 0.935
g/cm 3 or more. If [η] is less than 5 dl/g, the melt viscosity is low and polyethylene wax
When (B) melts, there is a risk that it will not be able to maintain its shape. The ultra-high molecular weight polyethylene (A) is
It has a particularly high molecular weight among polyethylenes obtained by polymerizing ethylene or ethylene with a small amount of α-olefin, such as propylene, 1-butene, or 4-methyl-1-pentene, by so-called Ziegler polymerization.

本発明に用いるポリエチレンワツクス(B)とは、
分子量が300ないし10000、好ましくは500ないし
5000、更に好ましくは700ないし2000の範囲及び
好ましくは融点が70ないし135℃の範囲のもので
ある。分子量が300未満のものは、溶融時の粘度
が低過ぎて流れ出す虞れがある。ポリエチレンワ
ツクス(B)の分子量は、GPC法(ゲル・パーミエ
ーシヨン・クロマトグラフイー)により以下の条
件下で測定して得た重量平均分子量である。
The polyethylene wax (B) used in the present invention is
Molecular weight is 300 to 10,000, preferably 500 to 10,000
5000, more preferably 700 to 2000 and preferably a melting point of 70 to 135°C. If the molecular weight is less than 300, the viscosity when melted is too low and there is a risk of it flowing out. The molecular weight of polyethylene wax (B) is the weight average molecular weight measured by GPC method (gel permeation chromatography) under the following conditions.

装置:ウオーターズ社製(米国)150c型 カラム:東洋曹達工業(株)製TSK GMH−6(6mm
φ×600mm) 溶媒:o−ジクロルベンゼン(ODCB) 温度:135℃ 流量:1.0ml/min 注入温度:30mg/20mlODCB(注入量400μ) 尚、東洋曹達工業(株)製及びプレツシヤー・ケミ
カル社製の標準ポリエチレンを用いて、ユニバー
サル法によりカラム溶出体積を較正した。
Equipment: Waters Co., Ltd. (USA) 150c type column: Toyo Soda Kogyo Co., Ltd. TSK GMH-6 (6 mm)
φ×600mm) Solvent: o-dichlorobenzene (ODCB) Temperature: 135°C Flow rate: 1.0ml/min Injection temperature: 30mg/20ml ODCB (injection amount 400μ) Manufactured by Toyo Soda Kogyo Co., Ltd. and Pressure Chemical Co., Ltd. The column elution volume was calibrated by the universal method using standard polyethylene.

また融点はASTM D 3417により示差走査型
熱量計(パーキンエルマ社製)(DSC−型)に
より測定した値である。
Further, the melting point is a value measured using a differential scanning calorimeter (manufactured by PerkinElmer) (DSC-type) according to ASTM D 3417.

本発明の潜熱型蓄熱材は、前記超高分子量ポリ
エチレン(A):5ないし60重量部、好ましくは10な
いし50重量部とポリエチレンワツクス(B):95ない
し40重量部、好ましくは90ないし50重量部とから
なり、且つ均一に分散されている。超高分子量ポ
リエチレン(A)が5重量部未満では、溶融時に溶融
したポリエチレンワツクス(B)を支持することがで
きず、一方60重量部を越えると、融解熱量が低く
なり蓄熱材としての効率が低下する。
The latent heat type heat storage material of the present invention includes the ultra-high molecular weight polyethylene (A): 5 to 60 parts by weight, preferably 10 to 50 parts by weight, and the polyethylene wax (B): 95 to 40 parts by weight, preferably 90 to 50 parts by weight. parts by weight and are uniformly dispersed. If the ultra-high molecular weight polyethylene (A) is less than 5 parts by weight, it will not be able to support the molten polyethylene wax (B) during melting, while if it exceeds 60 parts by weight, the heat of fusion will be low and the efficiency as a heat storage material will be reduced. decreases.

本発明の潜熱型蓄熱材は、超高分子量ポリエチ
レン(A)とポリエチレンワツクス(B)とを前記範囲で
均一に混合後、押出機等で溶融混練してペレツ
ト、ストランド、フイルム、シート、ネツト状に
押出成形あるいは混合後射出成形、圧縮成形する
ことにより、ストランド、シート状に成形加工し
て用いられる。
The latent heat type heat storage material of the present invention is produced by uniformly mixing ultra-high molecular weight polyethylene (A) and polyethylene wax (B) within the above-mentioned range, and then melting and kneading it in an extruder or the like to form pellets, strands, films, sheets, or nets. It is used after being formed into a strand or sheet by extrusion molding, or by injection molding or compression molding after mixing.

本発明の潜熱型蓄熱材は、溶融時にもその形状
が変化しないので、繰り返し使用しても熱効率が
低下せず、またポリエチレンワツクス(B)の融解−
結晶化の温度範囲が40ないし120℃であるので水、
エチレングリコール、シリコンオイル、プロピレ
ングリコール等と組み合わせて、太陽熱蓄熱装置
等として好適に使用される。
The latent heat type heat storage material of the present invention does not change its shape even when melted, so its thermal efficiency does not decrease even if it is repeatedly used.
Since the crystallization temperature range is 40 to 120℃, water,
In combination with ethylene glycol, silicone oil, propylene glycol, etc., it is suitably used as a solar thermal storage device.

実施例 1 超高分子量ポリエチレン〔商品名ハイゼツクス
ミリオン240M、〔η〕=17dl/g、密度0.936
g/cm3、三井石油化学工業(株)製〕20重量部とパラ
フインワツクス(融点=109℃、分子量=900)80
重量部とをヘンシエルミキサーで混合後、設定温
度190℃の20mmφ押出機を用いてオリフイス径が
3mmφのダイより押出して3mmφのストランドを
得た。次いで該ストランドを30cmの長さで多数揃
え120℃のエチレングリコールを入れた蓄熱槽に
入れ、該ストランド(蓄熱材)の溶融状態を調べ
た。その結果、ストランドは溶融せずに、又パラ
フインワツクスの滲み出しもなく、その形状を保
持し、ストランド同志が融着することはなかつ
た。
Example 1 Ultra-high molecular weight polyethylene [trade name Hi-Zex Million 240M, [η] = 17 dl/g, density 0.936
g/cm 3 , manufactured by Mitsui Petrochemical Industries, Ltd.] 20 parts by weight and paraffin wax (melting point = 109°C, molecular weight = 900) 80
After mixing parts by weight in a Henschel mixer, the mixture was extruded through a die with an orifice diameter of 3 mm using a 20 mm φ extruder with a set temperature of 190°C to obtain a 3 mm φ strand. Next, a large number of 30 cm long strands were placed in a heat storage tank containing ethylene glycol at 120° C., and the melting state of the strands (heat storage material) was examined. As a result, the strands did not melt, the paraffin wax did not ooze out, they maintained their shape, and the strands did not fuse together.

実施例 2 超高分子量ポリエチレン〔商品名ハイゼツクス
ミリオン240M、〔η〕=17dl/g、密度0.936
g/g、三井石油化学工業(株)製〕40重量部とパラ
フインワツクス(融点=134℃、分子量=5000)
60重量部とを用いて実施例1と同様な方法で押出
成形し、3mmφのストランドを得た。次いで該ス
トランドを30cmの長さで多数揃え、140℃のエチ
レングリコールを入れた蓄熱槽に入れ、該ストラ
ンド(蓄熱材)の溶融状態を調べた。その結果、
一部ストランド同志が融着する部分はあつたが、
その形状は全く変わらず、パラフインワツクスの
ストランドからの滲み出しはほとんど認められな
かつた。
Example 2 Ultra-high molecular weight polyethylene [trade name Hi-Zex Million 240M, [η] = 17 dl/g, density 0.936
g/g, manufactured by Mitsui Petrochemical Industries, Ltd.] 40 parts by weight and paraffin wax (melting point = 134°C, molecular weight = 5000)
Extrusion molding was carried out in the same manner as in Example 1 using 60 parts by weight to obtain a strand with a diameter of 3 mm. Next, a large number of the strands with a length of 30 cm were placed in a heat storage tank containing ethylene glycol at 140° C., and the melting state of the strands (heat storage material) was examined. the result,
Although there were some parts where the strands were fused together,
The shape did not change at all, and almost no paraffin wax oozed out from the strands.

実施例 3 超高分子量ポリエチレン〔商品名ハイゼツクス
ミリオン240M、〔η〕=17dl/g、密度0.936
g/cm3、三井石油化学工業(株)製〕20重量部とパラ
フインワツクス(融点=93℃、分子量=700)80
重量部とを用いて実施例1と同様の方法で押出成
形し、3mmφのストランドを得た。次いで該スト
ランドを30cmの長さで多数揃え、水を入れた蓄熱
槽に入れた後、蓄熱槽の水温を50〜100℃の間で
昇温−降温の繰返し試験を行つて、該ストランド
(蓄熱材)の溶融状態を調べた。その結果、繰返
し試験においても、ストランドが溶融することな
く、その形状を保持し、ストランド同志が融着す
ることもなく、又パラフインワツクスの滲み出し
も認められなかつた。
Example 3 Ultra-high molecular weight polyethylene [trade name Hi-Zex Million 240M, [η] = 17 dl/g, density 0.936
g/cm 3 , manufactured by Mitsui Petrochemical Industries, Ltd.] 20 parts by weight and paraffin wax (melting point = 93°C, molecular weight = 700) 80
Parts by weight were extrusion-molded in the same manner as in Example 1 to obtain a strand with a diameter of 3 mm. Next, a large number of the strands with a length of 30 cm were placed in a heat storage tank filled with water, and the water temperature in the heat storage tank was repeatedly raised and lowered between 50 and 100°C. The melting state of the material) was investigated. As a result, even in repeated tests, the strands did not melt and maintained their shape, the strands did not fuse together, and no paraffin wax was observed to ooze out.

Claims (1)

【特許請求の範囲】 1 少なくとも極限粘度〔η〕が5dl/g以上の
超高分子量ポリエチレン(A):5ないし60重量部
と、分子量が300ないし10000のポリエチレンワツ
クス(B):95ないし40重量部とからなり、且つ均一
に分散されたことを特徴とする潜熱型蓄熱材。
[Claims] 1. Ultra-high molecular weight polyethylene (A) having an intrinsic viscosity [η] of at least 5 dl/g or more: 5 to 60 parts by weight, and polyethylene wax (B) having a molecular weight of 300 to 10,000: 95 to 40 parts by weight. A latent heat type heat storage material characterized in that it consists of parts by weight and is uniformly dispersed.
JP58044479A 1983-03-18 1983-03-18 Heat accumulative material of latent heat type Granted JPS59170180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044479A JPS59170180A (en) 1983-03-18 1983-03-18 Heat accumulative material of latent heat type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044479A JPS59170180A (en) 1983-03-18 1983-03-18 Heat accumulative material of latent heat type

Publications (2)

Publication Number Publication Date
JPS59170180A JPS59170180A (en) 1984-09-26
JPH0373596B2 true JPH0373596B2 (en) 1991-11-22

Family

ID=12692668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044479A Granted JPS59170180A (en) 1983-03-18 1983-03-18 Heat accumulative material of latent heat type

Country Status (1)

Country Link
JP (1) JPS59170180A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711813A (en) * 1985-11-22 1987-12-08 University Of Dayton Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon
US5106520A (en) * 1985-11-22 1992-04-21 The University Of Dayton Dry powder mixes comprising phase change materials
US5053446A (en) * 1985-11-22 1991-10-01 University Of Dayton Polyolefin composites containing a phase change material
US4908166A (en) * 1985-11-22 1990-03-13 University Of Dayton Method for preparing polyolefin composites containing a phase change material
US5254380A (en) * 1985-11-22 1993-10-19 University Of Dayton Dry powder mixes comprising phase change materials
US5211949A (en) * 1990-01-09 1993-05-18 University Of Dayton Dry powder mixes comprising phase change materials
US6652771B2 (en) 2001-07-11 2003-11-25 Ronald M. Carn Phase change material blend, method for making, and devices using same
JP2006247233A (en) * 2005-03-14 2006-09-21 Futaba Kagaku:Kk Heat storage mat
DE102007028309A1 (en) * 2007-06-20 2008-12-24 Clariant International Limited Licocene performance polymers as phase change material (PCM) for use as latent heat storage
DE102008015782A1 (en) 2008-03-26 2009-10-01 Rubitherm Technologies Gmbh Method of making a phase change material composition
DE102013204690A1 (en) * 2013-03-18 2014-09-18 Siemens Aktiengesellschaft Composite material for a thermal energy storage and method for producing a composite material for a thermal energy storage

Also Published As

Publication number Publication date
JPS59170180A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
US3975455A (en) Altering gas permeabilities of polymeric material
TWI405800B (en) Polyolefins microporous film, spacer for battery using it and battery
US6632850B2 (en) Microporous materials and methods of making the same
Smith et al. Solid solution formation and fractionation in quasi-binary systems of polyethylene fractions
TWI399280B (en) Process for polyolefine microporous film
JP2904903B2 (en) Polyethylene film
JPH0373596B2 (en)
TWI444296B (en) Polyolefins microporous film and the method thereof, spacer useful for battery, and battery
JP4808935B2 (en) Method for producing polyethylene microporous membrane, and microporous membrane and use thereof
EP0977801A1 (en) Temperature-sensitive microporous film
CN101313018A (en) Polyolefin microporous film and its manufacture method, and spacer for battery and battery
JPH05251070A (en) Manufacture of separator for battery
ES2370640T3 (en) POLYMER NETWORKS.
WO2002100153A2 (en) Improved cling film with enhanced polyisobutylene tackifier
JPH0379395B2 (en)
CN104350118B (en) The method preparing flowable amorphous poly alhpa olefin binding agent pellet
JP2005343958A (en) Method for producing polyethylene fine porous film, fine porous film and use of the same
JPH0442437B2 (en)
JP2000246785A (en) Manufacture of polypropylene sheet
JPH0820659A (en) Microporous membrane, its production and separator for non-aqueous electrolyte solution cell
JPS6340455B2 (en)
JPH107816A (en) Propylene-based resin film for shrink package
JPS6054334B2 (en) Method for producing heat-shrinkable cross-linked polyethylene resin film
US11578244B2 (en) Thermoplastic shape-stable polymer compositions for storing thermal energy
JPH0665565A (en) Heat storage composition