JPH0379395B2 - - Google Patents

Info

Publication number
JPH0379395B2
JPH0379395B2 JP58106638A JP10663883A JPH0379395B2 JP H0379395 B2 JPH0379395 B2 JP H0379395B2 JP 58106638 A JP58106638 A JP 58106638A JP 10663883 A JP10663883 A JP 10663883A JP H0379395 B2 JPH0379395 B2 JP H0379395B2
Authority
JP
Japan
Prior art keywords
heat storage
weight
parts
heat
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58106638A
Other languages
Japanese (ja)
Other versions
JPS59232164A (en
Inventor
Toshio Kobayashi
Katsutoshi Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP58106638A priority Critical patent/JPS59232164A/en
Publication of JPS59232164A publication Critical patent/JPS59232164A/en
Publication of JPH0379395B2 publication Critical patent/JPH0379395B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は潜熱型蓄熱材に関する。更に詳しくは
超高分子ポリエチレンと高密度ポリエチレンとか
らなる形状安定性に優れた潜熱型蓄熱材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a latent heat type heat storage material. More specifically, the present invention relates to a latent heat type heat storage material having excellent shape stability and made of ultra-high molecular weight polyethylene and high-density polyethylene.

蓄熱材には、物質の熱容量を利用する顕熱型蓄
熱材と物質の融解、凝固あるいは結晶転移などの
潜熱を利用する潜熱型蓄熱材とがある。蓄熱型蓄
熱材は単位体積当たりの蓄熱容量が顕熱型に比べ
て大きいので、蓄熱器の容量を小型化出来る利点
があり、太陽熱利用を目的として主として無機塩
水和物を用いた蓄熱システムの開発が検討されて
いる。しかしながら無機塩水和物は、溶融状態か
ら次第に降温された時に、本来の相変化温度を過
ぎても固化(結晶化)せず、放熱しないという過
冷却現象を生じ、同時に不溶性物質の晶出が融解
時に起こり、融解−固化のヒートサイクルを繰り
返すことにより不溶性物質が増加し続け延いて
は、相分離現象を呈すなどの問題が生じる。この
ため、蓄熱しても長時間に亙り所定の温度で安定
して熱を取り出すことができないという実用上の
不都合を生じさせている。
Heat storage materials include sensible heat storage materials that utilize the heat capacity of substances and latent heat storage materials that utilize latent heat such as melting, solidification, or crystal transition of substances. Since thermal storage materials have a larger heat storage capacity per unit volume than sensible heat storage materials, they have the advantage of being able to reduce the size of the heat storage device.Development of thermal storage systems mainly using inorganic salt hydrates for the purpose of solar heat utilization is being considered. However, when the temperature of an inorganic salt hydrate is gradually lowered from the molten state, it does not solidify (crystallize) even after the original phase change temperature and does not release heat, which causes a supercooling phenomenon, and at the same time, the crystallization of insoluble substances melts. This sometimes occurs, and as the heat cycle of melting and solidification is repeated, the amount of insoluble substances continues to increase, and as a result, problems such as phase separation occur. For this reason, even if heat is stored, the heat cannot be extracted stably at a predetermined temperature for a long period of time, which is a practical disadvantage.

一方、無機塩水和物に変わる相分離現象を呈し
ない蓄熱型蓄熱材として低分子量結晶性ポリオレ
フイン(特開昭50−146577号公報)あるいは結晶
性ポリオレフインを使用することが提案されてい
る。これらは、熱的に安定で、腐蝕性や毒性もな
く、潜熱も比較的大きいが、融解時の粘度が高
く、通常の液体のように対流による流動が起こら
ず、また熱伝導率も低いので、大きなブロツクと
しては使用できない欠点がある。これらの欠点を
なくすには、ペレツト、ストランド、フイルム等
の形状で使用することが望ましいが、そのままで
は溶融時に形状が保持できない。そこで形状を保
持する方法として、結晶性ポリオレフインを架橋
処理する方法が提案されているが、架橋処理によ
り、結晶性が低下するので、蓄熱材としての特性
が低下するという欠点がある。
On the other hand, it has been proposed to use low molecular weight crystalline polyolefin (Japanese Patent Application Laid-open No. 146577/1982) or crystalline polyolefin as a heat storage material that does not exhibit the phase separation phenomenon that occurs when inorganic salt hydrates do. These are thermally stable, non-corrosive, non-toxic, and have a relatively large latent heat, but they have a high viscosity when melted, do not flow by convection like normal liquids, and have low thermal conductivity. However, it has the disadvantage that it cannot be used as a large block. In order to eliminate these drawbacks, it is desirable to use it in the form of pellets, strands, films, etc., but the shape cannot be maintained when melted as is. Therefore, a method of crosslinking crystalline polyolefin has been proposed as a method for maintaining the shape, but the crosslinking treatment lowers the crystallinity, resulting in a disadvantage that the properties as a heat storage material deteriorate.

かかる状況に鑑み、本発明者らは、蓄熱性に優
れ、しかも溶融時の形状安定性にも優れた潜熱型
蓄熱材の開発について種々検討した結果、超高分
子量ポリエチレンと高密度ポリエチレンとからな
る組成物が好適なことが分かり本発明に到達し
た。
In view of this situation, the present inventors conducted various studies on the development of a latent heat type heat storage material that has excellent heat storage properties and also has excellent shape stability when melted. It was found that the composition was suitable, and the present invention was achieved.

すなわち本発明は、少なくとも極限粘度〔η〕
が5dl/g以上の超高分子量ポリエチレン(A):50
ないし15重量部と、少なくとも密度(ASTM
D1505)が0.950g/cm3以上及びメルトフローレ
ート(MFR ASTM D 1238、E)が500ない
し0.1g/10minの高密度ポリエチレン(B):50な
いし85重量部とからなり、且つ均一に分散された
ことを特徴とする蓄熱性及び溶融時の形状安定性
に優れた潜熱型蓄熱材を提供するものである。
That is, the present invention provides at least the intrinsic viscosity [η]
Ultra-high molecular weight polyethylene (A) with 5 dl/g or more: 50
or 15 parts by weight and at least density (ASTM
D1505) of 0.950 g/cm 3 or more and a melt flow rate (MFR ASTM D 1238, E) of 500 to 0.1 g/10 min: 50 to 85 parts by weight of high-density polyethylene (B), and uniformly dispersed. The present invention provides a latent heat type heat storage material having excellent heat storage properties and shape stability when melted.

本発明に用いる超高分子量ポリエチレン(A)と
は、デカリン溶媒135℃における極限粘度〔η〕
が少なくとも5dl/g以上、好ましくは15ないし
30dl/gの範囲、また好ましくは密度が0.930
g/cm3以上のものである。〔η〕が5dl/g未満
のものは溶融粘度が低く、高密度ポリエチレン(B)
が融解した際に、その形状を保持できなくなる虞
れがある。前記超高分子量ポリエチレン(A)は、エ
チレンあるいはエチレンと少量のα−オレフイ
ン、例えばプロピレン、1−ブテン、4−メチル
−1−ペンテンとを所謂チーグラー重合により重
合することにより得られるポリエチレンの中では
るかに分子量の高いものである。
The ultra-high molecular weight polyethylene (A) used in the present invention has an intrinsic viscosity [η] of decalin solvent at 135°C.
is at least 5 dl/g, preferably 15 to
in the range of 30 dl/g, and preferably with a density of 0.930
g/cm 3 or more. If [η] is less than 5 dl/g, the melt viscosity is low and high density polyethylene (B)
When it melts, there is a risk that it will not be able to maintain its shape. The ultra-high molecular weight polyethylene (A) is a polyethylene obtained by polymerizing ethylene or ethylene with a small amount of α-olefin, such as propylene, 1-butene, 4-methyl-1-pentene, by so-called Ziegler polymerization. It has a much higher molecular weight.

本発明に用いる高密度ポリエチレン(B)とは、少
なくとも密度が0.950g/cm3以上、好ましくは
0.960g/cm3以上、更に好ましくは0.965g/cm3
上、MFRが500ないし0.1g/10min、好ましくは
50ないし0.1g/10min、更に好ましくは10ない
し0.1g/10minの範囲のものである。密度が
0.950g/cm3未満のものは、蓄熱材としての熱容
量が低いので蓄熱量が小さい。またMFRが0.1
g/10min以下のものは、通常、密度が0.950
g/cm3未満となるので、熱容量に劣る。
The high-density polyethylene (B) used in the present invention has a density of at least 0.950 g/cm 3 or more, preferably
0.960g/cm 3 or more, more preferably 0.965g/cm 3 or more, MFR 500 to 0.1g/10min, preferably
It is in the range of 50 to 0.1 g/10 min, more preferably 10 to 0.1 g/10 min. density is
If it is less than 0.950 g/cm 3 , the heat capacity as a heat storage material is low, so the amount of heat storage is small. Also, MFR is 0.1
The density of g/10min or less is usually 0.950.
Since it is less than g/cm 3 , it is inferior in heat capacity.

本発明の潜熱型蓄熱材は、前記超高分子量ポリ
エチレン(A):50ないし15重量部、好ましくは40な
いし20重量部と高密度ポリエチレン(B):50ないし
85重量部、好ましくは60ないし80重量部とからな
り、且つ均一に分散されている。超高分子量ポリ
エチレン(A)が15重量部未満では、溶融時に溶融し
た高密度ポリエチレン(B)を支持することができ
ず、一方50重量部を越えると、融解熱量が低くな
り蓄熱材としての効率が低下する。
The latent heat type heat storage material of the present invention includes the ultra-high molecular weight polyethylene (A): 50 to 15 parts by weight, preferably 40 to 20 parts by weight, and the high-density polyethylene (B): 50 to 15 parts by weight.
It consists of 85 parts by weight, preferably 60 to 80 parts by weight, and is uniformly dispersed. If the ultra-high molecular weight polyethylene (A) is less than 15 parts by weight, it will not be able to support the molten high-density polyethylene (B) during melting, while if it exceeds 50 parts by weight, the heat of fusion will be low and the efficiency as a heat storage material will be reduced. decreases.

本発明の蓄熱型蓄熱材は、超高分子量ポリエチ
レン(A)と高密度ポリエチレン(B)とを前記範囲で均
一に混合後、押出機等で溶融混練してペレツト、
ストランド、フイルム、シート、ネツト状に押出
成形あるいは混合後射出成形、圧縮成形すること
により、ストランド、シート状に成形加工して用
いられる。
The thermal storage material of the present invention is produced by uniformly mixing ultra-high molecular weight polyethylene (A) and high-density polyethylene (B) within the above-mentioned range, and then melt-kneading the mixture using an extruder or the like to form pellets.
It is used after being formed into a strand, film, sheet, or net by extrusion molding, or by injection molding or compression molding after mixing.

本発明の潜熱型蓄熱材は、溶融時にもその形状
が変化しないので、繰り返し使用しても熱効率が
低下せず、また高密度ポリエチレン(B)の融解−結
晶化の温度範囲が140ないし110℃であるので、
水、エチレングリコール、シリコンオイル、プロ
ピレングリコール等と組み合わせて、太陽熱蓄熱
装置等として好適に使用される。
The latent heat type heat storage material of the present invention does not change its shape even when melted, so its thermal efficiency does not decrease even if it is repeatedly used, and the melting-crystallization temperature range of high-density polyethylene (B) is 140 to 110°C. So,
In combination with water, ethylene glycol, silicone oil, propylene glycol, etc., it is suitably used as a solar thermal storage device.

実施例 1 三井石油化学工業(株)製、超高分子量ポリエチレ
ン〔商品名ハイゼツクス ミリオン34OM、〔η〕
=22dl/g、密度D=0.933g/cm3〕30重量部と
三井石油化学工業(株)製高密度ポリエチレンハイゼ
ツクス 2200J(MFR=6.0g/10min、D=0.968
g/cm3、〔η〕=1.5dl/g)70重量部とを2軸押
出機にて溶融混合し、3mmφ径のストランドを作
つた。次いで該ストランドを30cmの長さで多数揃
え、140℃のエチレングリコールを入れた蓄熱槽
に入れ、該ストランド(蓄熱材)の溶融状態を調
べた。その結果、ストランド同志の融着はみられ
ず、又その形状は全く変わらず、重量の減少も認
められなかつた。尚、該ストランドの結晶化熱を
ASTM D3417に準拠して示差走査型熱量計
(DSC)で測定した結果、50cal/gと高く、満足
できる値であつた。
Example 1 Ultra-high molecular weight polyethylene manufactured by Mitsui Petrochemical Industries, Ltd. [Product name: Hi-Zex Million 34OM, [η]
= 22 dl/g, density D = 0.933 g/cm 3 ] 30 parts by weight and Mitsui Petrochemical Industries, Ltd. high-density polyethylene Hi-Zex 2200J (MFR = 6.0 g/10 min, D = 0.968
g/cm 3 , [η]=1.5 dl/g) and 70 parts by weight were melt-mixed in a twin-screw extruder to form a strand with a diameter of 3 mm. Next, a large number of the strands with a length of 30 cm were placed in a heat storage tank containing ethylene glycol at 140° C., and the melting state of the strands (heat storage material) was examined. As a result, no fusion of the strands was observed, the shape did not change at all, and no decrease in weight was observed. In addition, the heat of crystallization of the strand is
As a result of measurement using a differential scanning calorimeter (DSC) in accordance with ASTM D3417, the value was as high as 50 cal/g, which was a satisfactory value.

比較例 1 ハイゼツクス ミリオン340M 70重量部とハイ
ゼツクス 2200J 30重量部とを2軸押出機にて溶
融混合し、ストランドを成形したが、混合原料の
粘度が極めて大きい為に、ストランドの成形性が
悪く、得られたストランドは肌荒れの激しいもの
であつた。該ストランドを140℃の蓄熱槽に入れ、
溶融状態を調べた結果、その後の変形・融着、重
量減少は認められなかつたが、結晶化熱は
42cal/g低いものであつた。
Comparative Example 1 70 parts by weight of Hi-Zex Million 340M and 30 parts by weight of Hi-Zex 2200J were melt-mixed in a twin-screw extruder to form a strand, but the viscosity of the mixed raw materials was extremely high, so the formability of the strand was poor. The resulting strand had a severely rough skin. Place the strand in a heat storage tank at 140℃,
As a result of examining the molten state, no subsequent deformation, fusion, or weight loss was observed, but the heat of crystallization was
It was 42 cal/g low.

比較例 2 ハイゼツクス ミリオン340M 10重量部とハイ
ゼツクス 2200J 90重量部とを2軸押出機にて溶
融混合しストランドを成形した。該ストランドを
140℃の蓄熱槽に入れ、溶融状態を調べたところ、
ストランド同志の融着及び変形が大きくその形状
を保持できなかつた。
Comparative Example 2 10 parts by weight of Hi-Zex Million 340M and 90 parts by weight of Hi-Zex 2200J were melt-mixed in a twin-screw extruder to form a strand. the strand
When we put it in a heat storage tank at 140℃ and checked the melting state, we found that
The strands were so fused together and deformed that their shape could not be maintained.

Claims (1)

【特許請求の範囲】 1 少なくとも極限粘度〔η〕が5dl/g以上の
超高分子量ポリエチレン(A):50ないし15重量部
と、少なくとも密度が0.950g/cm3以上及びメル
トフローレートが500ないし0.1g/10minの高密
度ポリエチレン(B):50ないし85重量部とからな
り、且つ均一に分散されたことを特徴とする潜熱
型蓄熱材。
[Claims] 1. Ultra-high molecular weight polyethylene (A) having an intrinsic viscosity [η] of at least 5 dl/g or more: 50 to 15 parts by weight, a density of at least 0.950 g/cm 3 or more, and a melt flow rate of 500 to 150%. A latent heat type heat storage material comprising 50 to 85 parts by weight of 0.1g/10min high-density polyethylene (B) and uniformly dispersed.
JP58106638A 1983-06-16 1983-06-16 Latent heat type thermal energy storage material Granted JPS59232164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58106638A JPS59232164A (en) 1983-06-16 1983-06-16 Latent heat type thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58106638A JPS59232164A (en) 1983-06-16 1983-06-16 Latent heat type thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS59232164A JPS59232164A (en) 1984-12-26
JPH0379395B2 true JPH0379395B2 (en) 1991-12-18

Family

ID=14438654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58106638A Granted JPS59232164A (en) 1983-06-16 1983-06-16 Latent heat type thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS59232164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116692A1 (en) 2009-04-07 2010-10-14 三好化成株式会社 Easily-dispersible powder, the surface of which has undergone lipophilization treatment, and cosmetic blended therewith

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908166A (en) * 1985-11-22 1990-03-13 University Of Dayton Method for preparing polyolefin composites containing a phase change material
US5053446A (en) * 1985-11-22 1991-10-01 University Of Dayton Polyolefin composites containing a phase change material
US4711813A (en) * 1985-11-22 1987-12-08 University Of Dayton Polyethylene composites containing a phase change material having a C14 straight chain hydrocarbon
US5106520A (en) * 1985-11-22 1992-04-21 The University Of Dayton Dry powder mixes comprising phase change materials
US5254380A (en) * 1985-11-22 1993-10-19 University Of Dayton Dry powder mixes comprising phase change materials
US5477917A (en) * 1990-01-09 1995-12-26 The University Of Dayton Dry powder mixes comprising phase change materials
US5211949A (en) * 1990-01-09 1993-05-18 University Of Dayton Dry powder mixes comprising phase change materials
DE19727981A1 (en) * 1997-07-01 1999-01-07 Buna Sow Leuna Olefinverb Gmbh Molding compound based on ultra high molecular weight polyethylene and process for its production
US6652771B2 (en) 2001-07-11 2003-11-25 Ronald M. Carn Phase change material blend, method for making, and devices using same
DE102013204690A1 (en) * 2013-03-18 2014-09-18 Siemens Aktiengesellschaft Composite material for a thermal energy storage and method for producing a composite material for a thermal energy storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116692A1 (en) 2009-04-07 2010-10-14 三好化成株式会社 Easily-dispersible powder, the surface of which has undergone lipophilization treatment, and cosmetic blended therewith

Also Published As

Publication number Publication date
JPS59232164A (en) 1984-12-26

Similar Documents

Publication Publication Date Title
US3975455A (en) Altering gas permeabilities of polymeric material
EP1385901B1 (en) Microporous materials and methods of making the same
JP2904903B2 (en) Polyethylene film
CN1105135C (en) High density polyethylene films with improved barrier
JPH0379395B2 (en)
Bashir Thermoreversible gelation and plasticization of polyacrylonitrile
JP5807388B2 (en) Porous polypropylene film
CN101208379A (en) Method for producing polyolefin microporous membrane
CN101313018A (en) Polyolefin microporous film and its manufacture method, and spacer for battery and battery
JPH0373596B2 (en)
PL190910B1 (en) Polymeric film
JPS59142276A (en) Latent heat type multi-layer heat storage material
JP2000246785A (en) Manufacture of polypropylene sheet
KR102129411B1 (en) Pellet comprising resin and oil
DE102007028309A1 (en) Licocene performance polymers as phase change material (PCM) for use as latent heat storage
JPH05311081A (en) Semicrystalline polymer blend composition with enhanced interspherulitic and interlamellar strength
JP5924263B2 (en) Porous polypropylene film and method for producing the same
JPS6340455B2 (en)
JP2018127533A (en) Master batch
D'orazio et al. Morphology, crystallization, and thermal behavior of isotactic polypropylene/polystyrene blends: Effects of the addition of a graft copolymer of propylene with styrene
US11578244B2 (en) Thermoplastic shape-stable polymer compositions for storing thermal energy
JPS6144097B2 (en)
JP3045365B2 (en) Soft polyolefin resin granules and method for producing the same
Yang et al. Melting and solidification behavior of blends of high density polyethylene with poly (butylene terephthalate)
JP3053055B2 (en) Amorphous polyolefin resin granules and method for producing the same