JPS6054334B2 - Method for producing heat-shrinkable cross-linked polyethylene resin film - Google Patents

Method for producing heat-shrinkable cross-linked polyethylene resin film

Info

Publication number
JPS6054334B2
JPS6054334B2 JP11512477A JP11512477A JPS6054334B2 JP S6054334 B2 JPS6054334 B2 JP S6054334B2 JP 11512477 A JP11512477 A JP 11512477A JP 11512477 A JP11512477 A JP 11512477A JP S6054334 B2 JPS6054334 B2 JP S6054334B2
Authority
JP
Japan
Prior art keywords
film
shrinkage rate
stretching
heat shrinkage
polyethylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11512477A
Other languages
Japanese (ja)
Other versions
JPS5448864A (en
Inventor
康太 河目
治 水上
順一 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11512477A priority Critical patent/JPS6054334B2/en
Publication of JPS5448864A publication Critical patent/JPS5448864A/en
Publication of JPS6054334B2 publication Critical patent/JPS6054334B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ポリエチレン系樹脂を基材とし、架橋され
、延伸された熱収縮性、特に横方向一軸収縮性に優れた
フィルムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a crosslinked and stretched film having excellent heat shrinkability, particularly uniaxial shrinkability in the transverse direction, using a polyethylene resin as a base material.

〔従来技術ともの問題点〕 従来、ポリエチレン系樹脂
を基材とした架橋延伸フィルムとしては、二軸延伸され
た二軸収縮性フィルムが一般的に知られており、収縮包
装用フィルム等に使用されている。
[Problems with conventional technology] Conventionally, biaxially stretched biaxially shrinkable films are generally known as cross-linked stretched films based on polyethylene resin, and are used for shrink wrapping films, etc. has been done.

また、最近縦方向に延伸された縦方向(フィルムの長
さ方向)一軸収縮性架橋フィルムが開発され、スリーブ
形式の集積収縮包装用フィルムとして使用され始めてい
る。
In addition, a crosslinked film that is uniaxially shrinkable in the machine direction (lengthwise direction of the film) and stretched in the machine direction has recently been developed and is beginning to be used as a film for integrated shrink packaging in the form of a sleeve.

しかしながら、横方向(フィルムの巾方向)の一軸収
縮性フィルムは、塩化ビニル樹脂フィルムのみであり、
キャップシールやシュリンクラベル用フィルムとして使
用されているが、横方向一軸収縮性に優れたポリエチレ
ン系樹脂フィルムは、末だ開発されていないのが現状で
ある。
However, the only uniaxially shrinkable film in the transverse direction (width direction of the film) is vinyl chloride resin film.
Although it is used as a film for cap seals and shrink labels, a polyethylene resin film with excellent uniaxial shrinkability in the transverse direction has not yet been developed.

架橋され、延伸された熱収縮性ポリエチレン系樹脂フ
ィルム及びその製造方法としては、特公昭37−188
93号公報、特公昭48−27904号公報、特開昭5
1−59973号公報等に開示されたものが知られてい
る。
A crosslinked and stretched heat-shrinkable polyethylene resin film and its manufacturing method are disclosed in Japanese Patent Publication No. 37-188
Publication No. 93, Japanese Patent Publication No. 48-27904, Japanese Unexamined Patent Publication No. 5
One disclosed in Japanese Patent No. 1-59973 and the like is known.

特公昭37−18893号公報では、ポリエチレンを
フィルム状に押出し、このフィルムを延伸し、このフィ
ルムを延伸し、このフィルムに少くとも2Mrepの照
射を行い、加熱し、熱間延伸によつて二軸方向に配向さ
せるフィルムの製造法が開示されている。
In Japanese Patent Publication No. 37-18893, polyethylene is extruded into a film, this film is stretched, the film is irradiated with at least 2 Mrep, heated, and biaxially formed by hot stretching. A method of making a film that is oriented in a direction is disclosed.

この方法で得られるフィルムの熱収縮率は収縮温度96
℃に於て、縦方向35〜40%、横方向30〜50%(
実施例1〜4)であり、縦・横二軸収縮性であり、横方
向一軸収縮性に優れたフィルムは得られていない。また
特公昭48−27904号公報、低密度エチレン重合体
と高密度エチレン重合体からなるフィルムを90〜11
5℃に加熱して、縦・横方向少くとも5倍延伸し、伸長
した状態て照射架橋する事により得られるフィルム及び
その製造方法が開示されれている。
The heat shrinkage rate of the film obtained by this method is 96
℃, 35-40% in the vertical direction, 30-50% in the horizontal direction (
Examples 1 to 4), and had biaxial shrinkability in the longitudinal and transverse directions, and no films with excellent uniaxial shrinkability in the transverse direction were obtained. Also, in Japanese Patent Publication No. 48-27904, a film consisting of a low-density ethylene polymer and a high-density ethylene polymer was disclosed in 90-11.
A film obtained by heating to 5° C., stretching at least 5 times in the longitudinal and transverse directions, and irradiation crosslinking in the stretched state, and a method for producing the same are disclosed.

この方法で得られるフィルムの熱収縮率は収縮温度10
0℃に於て縦方向19〜23%、横方向31〜34%(
実欅例1〜4)であり、熱収縮率も小さく、また横方向
一軸収縮性に優れたフィルムは得られていない。更に特
開昭51−59973号公報では、合成樹脂薄膜を延伸
加工して後架橋処理する事を特徴とする熱収縮性フィル
ム及びテープの製法が開示されている。
The heat shrinkage rate of the film obtained by this method is 10
19-23% in the vertical direction and 31-34% in the horizontal direction at 0°C (
Examples 1 to 4), the heat shrinkage rate is small, and a film with excellent uniaxial shrinkability in the transverse direction has not been obtained. Further, JP-A-51-59973 discloses a method for producing heat-shrinkable films and tapes, which is characterized by stretching a synthetic resin thin film and subjecting it to a post-crosslinking treatment.

この方法で得られるフィルムは、熱収縮率が縦方向13
〜15%、横方向12%(実施例2、3)であり、また
延伸加工後架橋処理する事により、熱収縮率が低下する
事が記載されているが、同報明細書第3頁の第2図に示
されている様に、延伸倍率1.7倍で一軸延伸したフィ
ルムの熱収縮率は約70%であるが、5Mrad,.1
0Mrad..15Mrad各々照射すると、収縮率は
各々約20%、約5%と大巾に低下する事が記載されて
いる。即ち、これ等の方法によつても、横方向のみ熱収
縮性に優れたフィルムは得られていない。又一般に架橋
ポリエチレン系樹脂フィルムは、その回収再使用が難し
く、従つてその製膜には、製膜ロス率を最小限に出来る
延伸製膜方法の採用が望まれる。
The film obtained by this method has a heat shrinkage rate of 13 in the machine direction.
~15% and 12% in the transverse direction (Examples 2 and 3), and it is also stated that the heat shrinkage rate is reduced by crosslinking after stretching, but on page 3 of the specification of the same publication. As shown in FIG. 2, the heat shrinkage rate of the film uniaxially stretched at a stretching ratio of 1.7 times is about 70%, but 5 Mrad. 1
0 Mrad. .. It is stated that when irradiated with 15 Mrad each, the shrinkage rate is significantly reduced to about 20% and about 5%, respectively. That is, even by these methods, a film having excellent heat shrinkability only in the lateral direction has not been obtained. In addition, it is generally difficult to recover and reuse crosslinked polyethylene resin films, and therefore, it is desirable to employ a stretching film forming method that can minimize the film loss rate.

インフレーシヨンニ軸延伸法は製膜後の製膜ロス(トリ
ム ロス)がない点で望ましい方法であるが、縦・横の
延伸倍率を異にする二軸延伸、ことに横方向(円周方向
)の延伸倍率が縦方向(引取方向)のそれよりも著るし
く大きい二軸延伸を、二軸方向の延伸が同時に進行する
インフレーシヨン延伸として確立させることは、架橋ポ
リエチレン系樹脂を対象とする技術分野では.バブル安
定化上、困難なものとされて来た。〔本発明の目的〕本
発明はこのような現状に鑑みてなされたもので、その目
的の第1は、キャップシールやシュリンクラベル用フィ
ルムとして実用上望ましい縦方一向の熱収縮率が20%
以下、横方向(円周方向)の熱収縮率50%以上の横方
向一軸収縮性に優れたフィルムを、架橋ポリエチレン系
樹脂フ,fルムを完成させる製造方法を提供することで
あり、第2の目的は、上記第1の目的を、装置の簡便性
や操作作業性の生産特性等に優れた、押出−インフレー
シヨンニ軸延伸で達成させる製造方法を提供することで
ある。
The inflation biaxial stretching method is a desirable method in that there is no film loss (trim loss) after film formation. Establishing biaxial stretching, in which the stretching ratio in the longitudinal direction (direction) is significantly larger than that in the machine direction (take-up direction), as inflation stretching, in which stretching in the biaxial directions proceeds simultaneously, is aimed at cross-linked polyethylene resins. In the technical field of It has been considered difficult to stabilize the bubble. [Object of the present invention] The present invention was made in view of the above-mentioned current situation, and its first purpose is to achieve a film with a heat shrinkage rate of 20% in the vertical direction, which is practically desirable as a film for cap seals and shrink labels.
Hereinafter, it is an object of the present invention to provide a manufacturing method for completing a crosslinked polyethylene resin film, a film having excellent transverse uniaxial shrinkability with a heat shrinkage rate of 50% or more in the transverse direction (circumferential direction). The object of the above is to provide a manufacturing method that achieves the first object by extrusion-inflation biaxial stretching, which is excellent in production characteristics such as ease of use and operability of the device.

〔本発明の要旨〕[Summary of the invention]

本発明の上記の目的は、本発明の製造方法即ち、。 The above object of the present invention is to provide a manufacturing method of the present invention, namely:

ポリエチレン系樹脂を基材としたゲル分率が50〜8唾
量%、フィルムの熱収縮率が縦方向の値に比べて横方向
の値が著るしく大きい熱収縮性・架橋ポリエチレン系樹
脂フィルムを得るに当り、先ず環状ダイを用いる押出法
に依つて、ゲル分率が30〜75重量%のポリエチレン
系樹脂チューブ状架橋原反を作成し、次いでこの原反を
90〜150℃に加熱して縦方向2.5倍以下、横方向
3倍以上の延伸倍率のインフレーシヨンニ軸延伸を施し
、次いで放射線照射に依りフィルムのゲル分率値を50
〜8鍾量%の範囲に調整して、縦方向の熱収縮率が20
%以下、横方向の熱収縮率が50%以上の値のフィルム
を得ることを特徴とする熱収縮性架橋ポリエチレン系フ
ィルムの製造方法。を採用することによつて、容易に達
成することができる。
A heat-shrinkable, cross-linked polyethylene resin film with a gel fraction of 50 to 8% and a film heat shrinkage rate significantly larger in the transverse direction than in the longitudinal direction. To obtain this, first, a crosslinked polyethylene resin tubular fabric having a gel fraction of 30 to 75% by weight is created by an extrusion method using a circular die, and then this fabric is heated to 90 to 150°C. The film was then subjected to inflation biaxial stretching at a stretching ratio of 2.5 times or less in the longitudinal direction and 3 times or more in the transverse direction, and then irradiated with radiation to reduce the gel fraction value to 50.
The longitudinal heat shrinkage rate was adjusted to 8% to 8%.
% or less, and a method for producing a heat-shrinkable crosslinked polyethylene film, the method comprising obtaining a film having a transverse heat shrinkage rate of 50% or more. This can be easily achieved by adopting

〔本発明の製造方法が対象とする物品の説明〕本発明で
基材として用いるポリエチレン系樹脂とは、25℃に於
る密度が0.915〜0.935y/C!11好ましく
は0.920〜0.930y/alで、190℃に於る
メルトインデックスが0.3〜30f/10分、好まし
くは0.5〜1.5y/10分である低密度エチレン樹
脂、また密度が0.940〜0.980f/Clll好
ましくは0.950〜0.970y/Allメルトイン
デックスが0.3〜3.0y/1紛、好ましくは0.5
〜1.5y/1紛である高密度ポリエチレン樹脂で代表
されるエチレン単独重合体、及びエチレンを主体成分と
するメルトインデックスが0.3〜3y/1紛、好まし
くは0.5〜1.5y/1紛であるエチレンと酢酸ビニ
ル、プロピレン、1〜ブテンや1−ペンテン等のα−オ
レフィンとの共重合体等のポリエチレン系樹脂の一種ま
たは2種以上との混合物である。
[Description of the article targeted by the manufacturing method of the present invention] The polyethylene resin used as the base material in the present invention has a density of 0.915 to 0.935 y/C at 25°C! 11 A low density ethylene resin preferably having a melt index of 0.920 to 0.930 y/al and a melt index of 0.3 to 30 f/10 min at 190°C, preferably 0.5 to 1.5 y/10 min, In addition, the density is 0.940-0.980f/Clll, preferably 0.950-0.970y/All, and the melt index is 0.3-3.0y/1 powder, preferably 0.5
Ethylene homopolymer typified by high-density polyethylene resin with a powder of ~1.5y/1, and a powder whose melt index is 0.3-3y/1, preferably 0.5-1.5y, whose main component is ethylene It is a mixture of ethylene and one or more polyethylene resins such as vinyl acetate, propylene, and copolymers with α-olefins such as 1-butene and 1-pentene.

更に上記ポリエチレン系樹脂に、通常使用されている添
加剤、例えば熱安定剤、紫外線吸収剤、滑剤、アンチプ
ロツキング剤、帯電防止剤、防曇剤、フィラー、顔料、
染料等を添加しても良い。上記に於てメルトインデック
スが0.3未満の値では、樹脂の溶融粘度が大きく、押
出機で溶融押出してチューブ状の原反を製造する時に、
押出機の負荷が大きくなる等製造上問題点が発生し易く
、一方メルトインデックスが3を越える大きい値では、
樹脂の溶融粘度が小さくなる為、押出機から樹脂を溶融
押出して原反製造する時、あるいは原反を加熱して延伸
する時に、所謂樹脂のドローダウン現象が発生し易くな
るのて製造上、条件の設定を注意した方が良い。
Furthermore, additives commonly used in the above polyethylene resin, such as heat stabilizers, ultraviolet absorbers, lubricants, antiblocking agents, antistatic agents, antifogging agents, fillers, pigments,
A dye or the like may be added. In the above, when the melt index is less than 0.3, the melt viscosity of the resin is high, and when manufacturing a tube-shaped raw fabric by melt extrusion with an extruder,
Manufacturing problems such as increased load on the extruder are likely to occur; on the other hand, if the melt index is large, exceeding 3,
As the melt viscosity of the resin decreases, the so-called drawdown phenomenon of the resin is likely to occur when melt extruding the resin from an extruder to produce the original fabric, or when heating and stretching the original fabric, so the so-called drawdown phenomenon of the resin tends to occur. It is better to be careful when setting conditions.

本発明の対象フィルムとしては、フィルムのゲル分率は
50〜8唾量%、好ましくは55〜75重量%である。
As a target film of the present invention, the gel fraction of the film is 50 to 8% by weight, preferably 55 to 75% by weight.

ゲル分率は試料約200mgを沸騰キシレン500cc
中で10時間浸漬処理し、不溶部分を乾燥し、処理前重
量に対し該不溶部分の重量を百分率で表わした値であり
、フィルムの架橋度を示すものである。このゲル分率は
後述の実施例で詳細に述べるが、横方向一軸収縮性を付
与する為に定められた値である。また本発明の対象フィ
ルムは、熱収縮率が縦方向20%以下、好ましくは15
%以下、横方向50%以上、好ましくは60%以上であ
る。
Gel fraction: Approximately 200 mg of sample was boiled in 500 cc of xylene.
The film is immersed in a film for 10 hours, the insoluble part is dried, and the value is the weight of the insoluble part expressed as a percentage of the weight before treatment, and indicates the degree of crosslinking of the film. This gel fraction will be described in detail in Examples below, but is a value determined to provide uniaxial contractility in the transverse direction. Further, the target film of the present invention has a heat shrinkage rate of 20% or less in the machine direction, preferably 15% or less.
% or less, 50% or more in the lateral direction, preferably 60% or more.

縦方向とはフィルムの長さ(引取り)方向、横方向とは
フィルムの巾方向(円周)を示し、また熱収縮率の測定
は、フィルムに縦・横各10cmの標線をつけた試料を
、所定の温度に設定されたエアーオープン中に1紛間放
置し、フィルムを収縮させ元の標線間長さ(10cm)
に対し収縮した長さを百分率、で表わした値である。熱
収縮率を示す温度は、使用するポリエチレン系樹脂の種
類、樹脂の軟化点、結晶融点により異なるが、本発明に
用いるポリエチレン系樹脂からなるフィルムに於ては、
約130℃で.前後の温度で最大熱収縮率を示す為、本
発明では温度130℃ての収縮率(n=10の平均値)
を熱収縮率として示す。又この熱収縮率は前述したキャ
ップシールまたはシュリンクラベル用フィルム等として
使用されている塩化ビニル樹脂の横方向一!軸収縮性フ
ィルムの特性値、即ち熱収縮率で、縦方向10〜20%
、横方向50〜65%の値に因んで設定されてある。以
上述べた様に、本発明の対象フィルムはポリエチレン系
樹脂を後述する特定の製造条件から得くた、横方向一軸
収縮性に優れたフィルムであり、今までにない新規なフ
ィルムである。
The longitudinal direction refers to the length (take-up) direction of the film, and the transverse direction refers to the width direction (circumference) of the film. Also, to measure the heat shrinkage rate, mark lines of 10 cm each in length and width were attached to the film. The sample was left in an air vent set at a predetermined temperature, and the film was shrunk to its original length (10 cm).
This is the value expressed as a percentage of the length that has shrunk compared to the actual length. The temperature at which the thermal shrinkage rate is shown varies depending on the type of polyethylene resin used, the softening point of the resin, and the crystal melting point, but in the film made of the polyethylene resin used in the present invention,
At about 130℃. Since the maximum thermal shrinkage rate is shown at different temperatures, in the present invention, the shrinkage rate at a temperature of 130°C (average value of n = 10)
is expressed as the heat shrinkage rate. Also, this heat shrinkage rate is the same in the lateral direction as that of the vinyl chloride resin used as the cap seal or shrink label film mentioned above! The characteristic value of the axially shrinkable film, that is, the heat shrinkage rate, is 10 to 20% in the longitudinal direction.
, is set based on a value of 50 to 65% in the horizontal direction. As described above, the target film of the present invention is a film obtained from polyethylene resin under specific manufacturing conditions described below, and has excellent uniaxial shrinkability in the transverse direction, and is an unprecedented novel film.

〔本発明の製法の内容とその意義〕[Contents of the manufacturing method of the present invention and its significance]

以下、本発明で対象の新規でかつ有用なフィルムを得る
製造方法について説明する。
Hereinafter, a manufacturing method for obtaining a novel and useful film, which is the object of the present invention, will be explained.

本発明フィルムの基材として用いられるポリエチレ7系
樹脂を通常使用されている押出機に供給し(一種類の樹
脂からなる場合はそのま)、また二種以上の樹脂からな
る場合は、予め所定量の各樹脂をドラムブレンダー、り
ポンプレンダー等でドライブレンドしたものか或いはド
ライブレンドした樹脂を溶融混合したものを供給する)
、環状ダイからチューブ状に押出し、冷却固化して原反
)を製造する。
The polyethylene 7 resin used as the base material of the film of the present invention is fed to a commonly used extruder (if it is made of one type of resin, it is fed as is), and if it is made of two or more types of resin, it is fed to a commonly used extruder. (Supplied by dry blending a fixed amount of each resin using a drum blender, pump blender, etc., or by melting and mixing dry blended resins)
The material is extruded into a tube shape from an annular die, cooled and solidified to produce a raw material (original fabric).

この時冷却固化法としては、エアーリングによる冷却、
水冷リングによる冷却、チルロールによる冷却等を用い
るが、チューブ状原反の冷却法として水冷リングを使用
し、例えば5〜20℃の水を直接原反と接触させ急冷固
化させる方・法が、エアーシリンダを使用して空冷徐冷
する方法よりも、冷却固化された原反の表面が平滑にな
り透明性の良い原反が得られ、また厚い原反を製造する
場合の加工安定性が良くなると云う点で、特に本発明の
実施に於いては有用な方法である。この様にして得られ
た原反に、電子線、γ線、β線等の高エネルギーイオン
化放射線を8〜20Mrad1好ましくは10〜15M
rad照射して原反を架橋する。照射する放射線として
は、装置の操作性、作業性等の点から電子線を使用する
事が最も実用的であり、また照射時の発熱等の点から、
例えば2〜5Mrad/回を数回に分けて繰返し照射す
る方法が好ましく、ゲル分率で30〜75重量%の範囲
に架橋する。放射線照射架橋を採用する場合の照射線量
の目安として、原反への照射線量が、8Mrad未満で
は樹脂の架橋度即ちゲル分率が小さくなりすぎ、原反を
延伸する場合の安定性、均一性が不充分である。
At this time, the cooling solidification method includes cooling with an air ring,
Cooling with a water-cooling ring, cooling with a chill roll, etc. is used, but the method of cooling the tube-shaped raw fabric using a water-cooling ring and bringing water at a temperature of 5 to 20°C directly into contact with the raw fabric to rapidly solidify it is a method using air. Compared to the air-cooling method using a cylinder, the surface of the cooled and solidified raw fabric is smoother and more transparent, and the processing stability is improved when manufacturing thick raw fabric. In this respect, it is a particularly useful method in carrying out the present invention. High energy ionizing radiation such as electron beam, γ ray, β ray, etc.
The original fabric is cross-linked by rad irradiation. As for the radiation to be irradiated, it is most practical to use an electron beam in terms of operability and workability of the equipment, and also in terms of heat generation during irradiation.
For example, a method of repeating irradiation at 2 to 5 Mrad/time in several batches is preferred, and crosslinking is carried out to a gel fraction in the range of 30 to 75% by weight. As a guideline for the irradiation dose when employing radiation crosslinking, if the irradiation dose to the original fabric is less than 8 Mrad, the degree of crosslinking of the resin, that is, the gel fraction, will be too small, and the stability and uniformity when stretching the original fabric will be reduced. is insufficient.

更に後述の実施例で採用したような、延伸後のフィルム
へ放射線を再照射する場合に、得られるフィルムの熱収
縮率が小さくなり、本発明の目的とする横方向一軸収縮
性に優れたフィルムが得られない。また、原反への照射
線量が、20Mradを越えるとゲル分率が大きくなり
、原反を延伸する場合に、延伸倍率を大きくする事が出
来難くなる。
Furthermore, when the film after stretching is re-irradiated with radiation, as employed in the Examples described later, the heat shrinkage rate of the resulting film is reduced, and the film has excellent uniaxial shrinkability in the transverse direction, which is the objective of the present invention. is not obtained. Furthermore, if the irradiation dose to the original fabric exceeds 20 Mrad, the gel fraction will increase, making it difficult to increase the stretching ratio when stretching the original fabric.

更に後述の実施例で採用したような、延伸後のフィルム
へ放射線を再照射した場合に、得られたフィルムの縦方
向の熱収縮率が大きく、本発明の目的とする横方向一軸
収縮性に優れたフィルムが得られなくなる。以上述べた
様に原反の架橋度(ゲル分率)は延伸の安定性、均一性
と共に、特に本発明の目的とするインフレーシヨンニ軸
延伸の延伸条件の設定を容易にならしめる。
Furthermore, when the stretched film is re-irradiated with radiation as employed in the examples described later, the resulting film has a large longitudinal heat shrinkage rate, and does not have the transverse uniaxial shrinkage that is the objective of the present invention. It becomes impossible to obtain a good film. As described above, the degree of crosslinking (gel fraction) of the original fabric, as well as the stability and uniformity of stretching, makes it easy to set the stretching conditions particularly for inflation biaxial stretching, which is the object of the present invention.

放射線による照射量は使用する樹脂の種類、また所望す
る熱収縮率等によつて定められるが、原反のゲル分率が
30〜75重量%、更には50〜7唾量%になる様な照
射線量が好ましくい。またこの架橋は従来公知の架橋剤
による化学架橋、紫外線架橋等で行つても良い。次いで
原反を加熱された気体、液体或いは赤外線ヒータ等によ
り加熱し、通常のインフレーシヨン法により所定の延伸
倍率で延伸加工しフィルムを得る。原反の加熱方法とし
ては、赤外線ヒーターによる方法がその装置の操作性、
作業性の点で望ましい。また加熱温度は使用する樹脂、
延伸倍率、延伸の安定性・均一性等の点から適宜決めら
れるが、樹脂の軟化点あるいは結晶融点よりも約10〜
20℃低い温度からそれよりもそれ丈高い温度範囲、即
ち90〜150℃、好ましくは110〜140℃である
。加熱温度90′C未満では樹脂が完全に溶融軟化し難
い為、延伸の安定性・均一性が不充分となり易い事及ひ
延伸倍率を大きく出来難い事等の問題が発生し、一方1
50℃を越える温度では樹脂が過度に溶融する為、いわ
ゆるドローダウン現象によつて延伸の安定性・均一性が
不充分となる欠点がある。また延伸倍率は、所望の縦及
び横方向の熱収縮率によつて主としてて定められるが、
縦方向2.5倍以下、横方向3倍以上である。
The amount of radiation irradiation is determined by the type of resin used and the desired thermal shrinkage rate, but it is necessary to make the gel fraction of the original fabric 30 to 75% by weight, and furthermore 50 to 7% by weight. Irradiation dose is preferred. Further, this crosslinking may be carried out by chemical crosslinking using a conventionally known crosslinking agent, ultraviolet crosslinking, or the like. Next, the original fabric is heated with a heated gas, liquid, infrared heater, or the like, and stretched at a predetermined stretching ratio by an ordinary inflation method to obtain a film. As for the method of heating the original fabric, a method using an infrared heater is recommended due to the operability of the device and
Desirable in terms of workability. The heating temperature also depends on the resin used.
It can be determined as appropriate from the point of view of the stretching ratio, stability and uniformity of stretching, etc., but it is approximately 10 to
The temperature range is from 20°C lower to higher, ie 90-150°C, preferably 110-140°C. If the heating temperature is lower than 90'C, it is difficult for the resin to completely melt and soften, resulting in problems such as insufficient stability and uniformity of stretching and difficulty in increasing the stretching ratio.
At temperatures exceeding 50°C, the resin melts excessively, resulting in a so-called drawdown phenomenon, resulting in insufficient stretching stability and uniformity. In addition, the stretching ratio is mainly determined by the desired longitudinal and transverse heat shrinkage rates,
It is 2.5 times or less in the vertical direction and 3 times or more in the horizontal direction.

縦方向が2.5倍を越える延伸倍率ては、得られたフィ
ルムの縦方向の熱収縮率が大きく、延伸後再架橋しても
縦方向の熱収縮率の低下度が小さく、本発明の目的であ
る縦方向の熱収縮率が20%以下であるフィルムが得ら
れず、一方横方向3倍未満の延伸倍率では、得られたフ
ィルムの横方向の熱収縮率が小さく、更に延伸後再架橋
する事による熱収縮率の低下が大きすぎ、本発明の目的
である横方向の熱収縮率が50%以上であるフィルムが
得られない。インフレーシヨン法による延伸加工に於い
ては、縦方向延伸倍率1.5〜2倍、横方向の延伸倍率
3.5〜5倍の範囲が、延伸の安定性・均一性及び熱収
縮率の点て好ましく、更に横方向の延伸倍率の値を縦方
向の延伸倍率に対して約2〜25倍の値の関係に保たせ
ることが、インフレーシヨンニ軸延伸のバルブの安定化
を図る上で最も望ましい。次いで延伸して得られたフィ
ルムを再架橋、即ち一般には放射線を再照射する事によ
り本発明のフィルムが得られる。このフィルムへの再照
射はフィルムの縦及び横方向の熱収縮率を所望の熱収縮
率とする為に行うものであり、本発明の製造方法の大き
な特徴で、特に縦方向の熱収縮率を20%以下にする為
の方法である。この架橋度は最終フィルムのゲル分率で
50〜8唾量%になるように調整されるが、一般に用い
られる再照射での再照射量は、延伸前の原反のゲル分率
及び延伸加工時の縦及び横方向の延伸倍率(特に縦方向
の延伸倍率)によつて異なるが、一般に縦方向の延伸倍
率が大きい程再照射量は大となる。本発明の方法では8
〜20Mrad1更には10〜15r!4radが好ま
しいものである。再照射量が8r1!4rad未満では
、縦方向の熱収縮率の低下度が小さく、再照射を行つて
も熱収縮率が20%ご越えるし、一方20Mradを越
えて多い側では、縦方向の熱収縮率が20%以下になつ
ても、横方向の熱収縮率が5昧満となり、いずれも本発
明の目的である横方向一軸収縮性に優れたフィルムが得
られ難いものとなる。この様な延伸されたフィルムに放
射線を照射する事により、フィルムの熱収縮率が低下す
る事は前述の特開昭51−59973号公報にて開示さ
れているが、この公報の方法は架橋されていない原反を
延伸したフィルムに照射する為、熱収縮率の低下度は非
常に大きく、この方法ては本発明が対象と″するフィル
ムの縦及び横方向の熱収縮率が特異なフィルムは到底得
られない。
When the stretching ratio in the machine direction exceeds 2.5 times, the heat shrinkage rate in the machine direction of the obtained film is large, and even if the film is recrosslinked after stretching, the degree of decrease in the heat shrinkage rate in the machine direction is small. A film with a desired heat shrinkage rate of 20% or less in the machine direction cannot be obtained, and on the other hand, at a stretching ratio of less than 3 times in the transverse direction, the resulting film has a small heat shrinkage rate in the transverse direction, and furthermore, it is difficult to regenerate after stretching. The reduction in heat shrinkage due to crosslinking is too large, making it impossible to obtain a film having a heat shrinkage of 50% or more in the transverse direction, which is the object of the present invention. In the stretching process by the inflation method, a stretching ratio of 1.5 to 2 times in the longitudinal direction and a range of 3.5 to 5 times in the transverse direction is suitable for the stability and uniformity of stretching and the heat shrinkage rate. In order to stabilize the inflation biaxial stretching valve, it is preferable to maintain the stretching ratio in the transverse direction at a value of about 2 to 25 times the stretching ratio in the longitudinal direction. most desirable. The film of the present invention is then obtained by re-crosslinking the stretched film, that is, generally by re-irradiating it with radiation. This re-irradiation of the film is performed in order to adjust the heat shrinkage rate of the film in the longitudinal and lateral directions to the desired heat shrinkage rate, and is a major feature of the manufacturing method of the present invention. This is a method to reduce the amount to 20% or less. The degree of crosslinking is adjusted so that the gel fraction of the final film is 50 to 8% by weight, but the amount of re-irradiation in generally used re-irradiation is determined by the gel fraction of the original film before stretching and the stretching process. Although it differs depending on the stretching ratio in the longitudinal and transverse directions (particularly the stretching ratio in the longitudinal direction), in general, the larger the stretching ratio in the longitudinal direction, the larger the re-irradiation amount. In the method of the present invention, 8
~20 Mrad1 and even 10~15r! 4 rad is preferred. When the re-irradiation amount is less than 8r1!4 rad, the degree of decrease in the longitudinal heat shrinkage rate is small, and even if re-irradiation is performed, the heat shrinkage rate exceeds 20%.On the other hand, when the re-irradiation amount is more than 20 Mrad, the longitudinal Even if the heat shrinkage rate is 20% or less, the heat shrinkage rate in the transverse direction is less than 5, making it difficult to obtain a film with excellent uniaxial shrinkability in the transverse direction, which is the object of the present invention. It is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 51-59973 that the heat shrinkage rate of the film is reduced by irradiating such a stretched film with radiation. Since the irradiation is applied to the stretched film from a raw material that has not been irradiated, the degree of reduction in heat shrinkage is extremely large. I can't get it at all.

また特公昭48−27904号公報では、縦及び横の延
伸倍率が5倍以上であるフィルムに照射する方法が開示
されているが、この方法によつても照射する前と照射し
た−後との縦及び横方向の熱収縮率は殆ど変つていない
事が記載されている。この様に従来公知の架橋していな
い原反を延伸した後、放射線を照射しても本発明の目的
とする横方向一軸収縮性に優れたフィルムは得られなか
つた。l 本発明の方法に関して、再架橋により縦及び
横方向の熱収縮率の低下度が、各々特異な挙動を示す事
は後述の実施例に述べる通りであるが、延伸前の原反の
ゲル分率及び原反延伸時の延伸倍率(特に縦方向の延伸
倍率)及び延伸倍後の再架橋量の3条件が複雑にからみ
あつているものと考えられる。
Furthermore, Japanese Patent Publication No. 48-27904 discloses a method of irradiating a film with a stretching ratio of 5 times or more in the longitudinal and lateral directions. It is stated that the thermal shrinkage rates in the longitudinal and lateral directions are almost unchanged. Even after stretching a conventionally known uncrosslinked original fabric and irradiating it with radiation, it was not possible to obtain a film with excellent transverse uniaxial shrinkage, which is the object of the present invention. l Regarding the method of the present invention, the degree of reduction in heat shrinkage in the longitudinal and transverse directions exhibits unique behavior due to recrosslinking, as will be described in the Examples below. It is thought that the following three conditions are intricately intertwined: the stretching ratio, the stretching ratio during stretching of the original fabric (particularly the stretching ratio in the machine direction), and the amount of recrosslinking after stretching.

これらの作用機構についての詳細は明確でないが、以下
の様な作用が考えられる。一般的に、ポリエチレン系樹
脂等を延伸加工した場合の延伸配向は、各分子鎖が延伸
方向へ単に流動配向する場合、即ち各分子鎖間の単なる
ズレ等により各分子鎖が配向する延伸配向の言わは初期
段階と、更に各分子鎖内て炭素一炭素鎖間が引伸はされ
て配向する場合が考えられる。
Although the details of these mechanisms of action are not clear, the following actions are considered. In general, the stretching orientation when polyethylene resin etc. is stretched is when each molecular chain is simply flow-oriented in the stretching direction, that is, when each molecular chain is oriented due to a simple shift between each molecular chain In other words, it is possible that the carbon-carbon chains within each molecular chain are stretched and oriented in the initial stage.

通常、上記の各分子鎖間及び分子鎖内の配向が混在して
いるものと考えられるが、延伸倍率が小さい場合成いは
延伸温度が高い場合等は前者の各分子―間の流動配向が
、また逆に延伸倍率が大きい場合成いは延伸温度が適正
である場合(いわゆる延伸開始温度であり、樹脂により
異なる)は、主として各分子鎖内の配向が発生するもの
と考えられる。この様ないずれの延伸配向に於いても、
延伸配向後再度加熱する事により収縮し、延伸前の状態
にもどる性質を有するものである。本発明の延伸加工の
方法に於いては、縦方向の延伸倍率を横方向より小さく
設定する為、縦方向の各分子鎖の配向は各分子鎖間の流
動配向が主であると考えられ、また横方向は各分子鎖内
の配向が主であると考えられる。
Normally, it is thought that the above-mentioned inter- and intra-molecular chain orientations coexist, but if the stretching ratio is small or the stretching temperature is high, the former flow orientation between each molecule may occur. Conversely, when the stretching ratio is large, or when the stretching temperature is appropriate (this is the so-called stretching start temperature, which varies depending on the resin), it is thought that orientation mainly occurs within each molecular chain. In any of these stretching orientations,
It has the property of shrinking and returning to its pre-stretching state by heating again after stretching and orientation. In the stretching method of the present invention, since the stretching ratio in the longitudinal direction is set smaller than that in the transverse direction, it is thought that the orientation of each molecular chain in the longitudinal direction is mainly the fluid orientation between each molecular chain. In addition, it is thought that the orientation in the lateral direction is mainly within each molecular chain.

一般に樹脂の結晶化度が大きい程、架橋効率は小さく、
例えば低密度ポリエチレンのG値(架橋のし易さを示す
値で、大きい程架橋し易い。
Generally, the higher the crystallinity of the resin, the lower the crosslinking efficiency.
For example, the G value of low density polyethylene (a value indicating ease of crosslinking; the higher the value, the easier it is to crosslink.

)は3〜6であり、高密度ポリエチレンでは1〜3であ
ると言われている。以上の事から、本発明のフィルムに
於いては、各分子鎖間の流動配向が主である縦方向に於
いては、非晶領域的な挙動が大きく、一方各分子鎖内の
延伸配向が主たる横方向に於いては、結晶領域的な挙動
が大きくなつており、従つて照射に対して架橋効率が縦
方向と横方向とでは異なり、縦方向が横方向よりも選択
的に架橋される為、延伸後の再架橋にる熱収縮率の低下
度は、縦方向が横方向よりも大きくなるものと考えられ
る。
) is said to be 3 to 6, and 1 to 3 for high density polyethylene. From the above, in the film of the present invention, in the longitudinal direction where the flow orientation between each molecular chain is the main one, the behavior is largely amorphous region-like, whereas the stretching orientation within each molecular chain is In the main transverse direction, the crystalline region-like behavior is large, and therefore the crosslinking efficiency in response to irradiation is different in the longitudinal and transverse directions, and the longitudinal direction is more selectively crosslinked than the transverse direction. Therefore, it is thought that the degree of decrease in heat shrinkage rate due to recrosslinking after stretching is greater in the longitudinal direction than in the transverse direction.

またある範囲内で架橋された原反を用いて、延伸加工す
る本発明の方法に於いては、分子鎖間或いは分子鎖内で
架橋された三次元構造を有する原反は、各分子鎖の流動
性が低下する為、架橋していない原反を用いる場合より
、前記の分子鎖間の流動配向が少なくなつていると考え
られ、延伸後照射する事による熱収縮率の低下度は小さ
くなると考えられ、前記特開昭51−59973号公報
で開示されている様な、照射による大巾な熱収縮率の低
下は起らないと考えられる。
In addition, in the method of the present invention in which a raw fabric cross-linked within a certain range is stretched, the raw fabric has a three-dimensional structure cross-linked between or within molecular chains. Because the fluidity decreases, it is thought that the flow orientation between molecular chains is less than when using a non-crosslinked original fabric, and the degree of decrease in heat shrinkage rate due to post-stretching irradiation becomes smaller. It is considered that a large decrease in thermal shrinkage rate due to irradiation as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 51-59973 does not occur.

以上詳細に述べた様に、本発明の方法は、延伸前の原反
に所定範囲の架橋を行い、延伸加工時の縦方向及び横方
向の延伸倍率を所定の範囲に定め、かつ延伸加工後得ら
れたフィルムに所定範囲の照射を行う各工程を組合せて
、始めて達成されるものであり、全く新規な製造方法で
ある。
As described in detail above, the method of the present invention crosslinks the original fabric in a predetermined range before stretching, sets the stretching ratio in the longitudinal and lateral directions during stretching to a predetermined range, and This is a completely new manufacturing method that can only be achieved by combining steps in which the resulting film is irradiated in a predetermined range.

再照射されたフィルムは、通常使用されている方法で、
適宜スリットされ巻き取られる。フィルムの厚さは、フ
ィルムの使用分野によつて適宜選択されるが、チューブ
状原反を用いるインフレーシヨン法に於いては、5〜1
00μのフィルムが好適に製造され得る。
The re-irradiated film is then processed using the commonly used methods.
It is slit appropriately and wound up. The thickness of the film is appropriately selected depending on the field of use of the film, but in the inflation method using a tube-shaped original film, the thickness is 5 to 1.
00μ films can be suitably produced.

以下、本発明の実施例、比較例について述べる。Examples and comparative examples of the present invention will be described below.

実施例1 第1表に記した樹脂A65重量%と樹脂C35重量%を
ドライブレンドし、直径45T!r!N..L/D=2
8のスクリューを有する押出機の先端に設けられた2顛
のスリットを有する5亡径の環状ダイから、シリンダー
温度最高温度260℃、ダイ部温度250℃、スクリュ
ー回転数80r′Pmで下方に押出し、ダイ先端から約
20C7!の位置で、内側に水の出るスリットを有する
内直径657wtの水冷リングを用いて、水冷冷却固化
し、4.5rrL/分の引取速度て引取り、折巾100
−FOltl厚さ300μのチューブ状原反とした。
Example 1 65% by weight of resin A and 35% by weight of resin C listed in Table 1 were dry blended, and a diameter of 45T! r! N. .. L/D=2
It is extruded downward from an annular die of 5 diameter with 2 slits provided at the tip of an extruder with 8 screws at a maximum cylinder temperature of 260 °C, a die part temperature of 250 °C, and a screw rotation speed of 80 r'Pm. , about 20C7 from the die tip! Using a water-cooled ring with an inner diameter of 657 wt that has a slit for water to come out, the ring was cooled and solidified at the position , and was taken out at a take-up speed of 4.5 rrL/min, with a folding width of 100 wt.
-FOltl A tube-shaped original fabric with a thickness of 300 μm was prepared.

このチューブ状原反に、加速電圧500KV、加速管最
大電流密度25rr1Aの電子線加速機(日新ハイボル
テージ社製、EPS5OO)を用いて、各々6Mrad
110Mrad120Mrad照射した。次いでチュー
ブ状照射原反を環状の赤外線ヒーターを装備した加熱筒
の中に1.6771,/分の速度で送り込み、チューブ
状照射原反を120〜130℃に加熱し、縦延伸比2倍
となる様に引取るとともに、チューブ内部に空気を入れ
て横延伸比4倍となる様に膨らまし、次いで外周部から
エアリングによつて空気て均一に冷却し、厚さ葵μ、折
巾(代)oのチューブ状フィルムとし両端部をスリット
除去し、巾30C3のフィルムとなし、2枚に剥離して
ロール状に巻き取つた。次いで得られたフィルムを、同
上の電子線加速機を用いて、各々5IS−4rad,.
10Mrad115Mrad120Mrad再照射を行
つた。
Using an electron beam accelerator (manufactured by Nissin High Voltage Co., Ltd., EPS5OO) with an accelerating voltage of 500 KV and a maximum current density of accelerating tube of 25 rr1A, each tube-shaped original fabric was heated at 6 Mrad.
110 Mrad and 120 Mrad were irradiated. Next, the tubular irradiated fabric was fed into a heating tube equipped with an annular infrared heater at a speed of 1.6771,/min, and the tubular irradiated fabric was heated to 120 to 130°C to double the longitudinal stretching ratio. At the same time, air was introduced into the tube to inflate it to a horizontal stretching ratio of 4 times, and then it was uniformly cooled by air from the outer periphery using an air ring. ) A tube-shaped film was prepared by removing slits from both ends to obtain a film having a width of 30C3, which was peeled into two pieces and wound into a roll. The obtained films were then subjected to 5IS-4rad, .
Reirradiation was performed at 10 Mrad, 115 Mrad, and 120 Mrad.

得られたフィルムのゲル分率、130℃での熱収縮率、
及び延伸加工前の照射原反のゲル分率を測定した。
Gel fraction of the obtained film, heat shrinkage rate at 130°C,
And the gel fraction of the irradiated original fabric before stretching was measured.

その結果を第2表(表中備考欄の実は実施例、比は比較
例を示す。)、第1図に縦方向の熱収縮率の変化、第2
図に横方向の熱収縮率の変化を示す。なお図中1と■は
原反照射量6Mradの場合、■とVは10Mradの
場合、■と■は20Mradの場合を各々示し、また図
中各点の添字、例えば1,1″は第2表のNO.lのフ
ィルムを示し、以下同様である。これらの結果から明ら
かな様に、延伸加工後フィルムに再照射する事により、
熱収縮率は低下する事、延伸前の原反の照射量によつて
熱収縮率に及ぼす再照射の効果に差がある事等がわかる
The results are shown in Table 2 (the notes column in the table shows actual examples, and the ratio shows comparative examples).
The figure shows the change in the thermal shrinkage rate in the lateral direction. In the figure, 1 and ■ indicate the case of 6 Mrad, ■ and V indicate the case of 10 Mrad, and ■ and ■ indicate the case of 20 Mrad, and the subscripts of each point in the figure, for example, 1 and 1'' indicate the second The film No. 1 in the table is shown, and the same applies below.As is clear from these results, by re-irradiating the film after stretching,
It can be seen that the heat shrinkage rate decreases and that the effect of re-irradiation on the heat shrinkage rate varies depending on the irradiation dose of the original fabric before stretching.

即ち、原反ゲル分率2唾量%のサンプルであるNO.l
〜NO.5に於いて、再照射前のフィルムの熱収縮率は
縦方向47%、横方向72%であつたが、5Mrad再
照射したNO.2でも縦方向24%、横方向45%と大
巾に縦・横方向ともに熱収縮率が低下し、本発明の目的
たるフィルムは得られなかつた。一方原反ゲル分率5踵
量%から得られたサンプルNO.6〜NO.lOのフィ
ルムでは、再照射量が10、1\20MradてあるN
O.8、NO.9、NO.lOのフィルムは、縦方向の
熱収縮率20%以下、横方向の熱収縮率は50%以上で
あり、本発明の目的たるフィルムが得られた。また原反
ゲル分率7鍾量%から得られたサンプルNO.ll〜N
O.l5のフィルムでは、再照射量が15Mrad12
0Mradであり、NO.l4、NO.l5のフィルム
は、本発明の目的であるフィルムであつた。
That is, sample No. 1 with a raw gel fraction of 2% by saliva volume. l
~NO. In No. 5, the heat shrinkage rate of the film before re-irradiation was 47% in the longitudinal direction and 72% in the transverse direction, but in No. 5 after re-irradiation at 5 Mrad. Even in the case of No. 2, the heat shrinkage rate decreased significantly in both the vertical and horizontal directions, by 24% in the vertical direction and 45% in the horizontal direction, and the film that was the object of the present invention could not be obtained. On the other hand, sample No. 1 obtained from the original fabric gel fraction 5% heel weight. 6~NO. For the 1O film, the re-irradiation dose is 10, 1\20 Mrad.
O. 8.No. 9.No. The film of IO had a heat shrinkage rate of 20% or less in the longitudinal direction and a heat shrinkage rate of 50% or more in the transverse direction, and the film that is the object of the present invention was obtained. In addition, sample No. 1 obtained from the original gel fraction of 7%. ll~N
O. For 15 films, the re-irradiation dose is 15 Mrad12
0 Mrad, NO. l4, NO. Film No. 15 was the film that is the object of the present invention.

なおフィルムへの再照射量が増加するにもか)わらず、
ゲノヒ分率がほS′−定値を示しているが、これは照射
による架橋と分子鎖切断とが発生し、言わば平衡状態に
達している為ではないかと考えられる。実施例2 実施例1の方法で得られた原反のうち、ゲル分率5鍾量
%の原反を用い、縦及び横方向の延伸倍率を各々、1.
212.皓、2.214.4倍、2.816.5倍とし
て実施例1と同時に延伸し、次いで各フィルムに5Mr
ad110Mrad115Mrad再照射してフィルム
を得た。
Although the amount of re-irradiation to the film increases),
Although the Genohi fraction shows a near S'-constant value, it is thought that this is because crosslinking and molecular chain scission occur due to irradiation, and an equilibrium state is reached, so to speak. Example 2 Among the original fabrics obtained by the method of Example 1, the original fabric with a gel fraction of 5% by weight was used, and the stretching ratio in the longitudinal and transverse directions was set to 1.
212. Stretched at the same time as Example 1 at 2.214.4 times and 2.816.5 times, and then 5 Mr.
A film was obtained by re-irradiation with ad110 Mrad and 115 Mrad.

得られたフィルムの熱収縮率を第3表に示す。(表中備
考欄の実は実施例、比は比較例を示す。)第3表から明
らかな様に、延伸倍率と再照射量により熱収縮率は変化
する。
Table 3 shows the heat shrinkage rate of the obtained film. (The notes in the table indicate examples, and the ratios indicate comparative examples.) As is clear from Table 3, the heat shrinkage rate changes depending on the stretching ratio and the amount of re-irradiation.

即ちNOl6〜NOl9のフィルムに於ては、横方向延
伸倍率が2.5倍と小さい為、再照射により横方向の熱
収縮率が50%に達しないものであつた。またNO.2
4〜NO27のフイルl、に於ては、縦方向延伸倍率が
2.8倍と大きい為、再照射しても縦方向の熱収縮率は
20%以下にならないものであつた。
That is, in the films of NO16 to NO19, since the transverse stretching ratio was as small as 2.5 times, the transverse heat shrinkage did not reach 50% upon re-irradiation. Also NO. 2
In films 1 of No. 4 to No. 27, the longitudinal stretching ratio was as large as 2.8 times, so that even after re-irradiation, the longitudinal heat shrinkage did not fall below 20%.

一方NO.23のフィルムは、縦方向の熱収縮率が15
%、横方向が55%であり、本発明の目的を満たすフィ
ルムであつた。実施例3 実施例1に於て、樹脂組成を第4表に示す様にかえ、チ
ューブ状原反を作成し、チューブ状原反に20Mrad
照射し、延伸倍率縦方向1.6f8、横方向3.2倍、
延伸温度NO.28は110℃、NO.29〜NO.3
4は130〜140℃で延伸し、次いで15Mrad再
照射した。
On the other hand, NO. Film No. 23 has a heat shrinkage rate of 15 in the longitudinal direction.
% and 55% in the transverse direction, and the film satisfied the purpose of the present invention. Example 3 In Example 1, the resin composition was changed as shown in Table 4, a tube-shaped raw fabric was created, and 20 Mrad was applied to the tube-shaped raw fabric.
irradiated, stretching magnification: 1.6 f8 in the vertical direction, 3.2 times in the horizontal direction,
Stretching temperature NO. 28 is 110℃, NO. 29~NO. 3
4 was stretched at 130-140°C and then re-irradiated at 15 Mrad.

得られたフィルムの熱収縮率を第4表に示す。以上述べ
た様に、本発明で得られるフィルムは第1図及び第2図
に示すように特定の製造条件下で初めて得られるもので
あり、ポリエチレン系樹脂を基材とし、架橋後延伸し、
更に延伸したフィルムに放射線を照射する製造方法によ
つて得られる。横方向一軸収縮性に優れたフィルムであ
り、以下の様な特徴を有するものてある。(イ)ゲル分
率が30〜75重量%となる様に架橋された原反を、縦
方向の延伸倍率2.5倍以下、横方向の延伸倍率3倍以
上て延伸し、次いて放射線に依り再架橋(8〜20Mr
ad再照射)する新規なる本発明の製造方法により得る
為、フィルムの縦方向の熱収縮率が20%以下、横方向
の収縮率が50%以上てあり、横方向一軸収縮性に優れ
たポリエチレン系樹脂フィルムである。
Table 4 shows the heat shrinkage rate of the obtained film. As mentioned above, the film obtained by the present invention is obtained only under specific manufacturing conditions as shown in FIGS.
It is obtained by a manufacturing method in which the stretched film is further irradiated with radiation. It is a film with excellent uniaxial shrinkability in the transverse direction, and has the following characteristics. (a) The crosslinked original fabric is stretched so that the gel fraction is 30 to 75% by weight, at a stretching ratio of 2.5 times or less in the machine direction and at least 3 times in the transverse direction, and then exposed to radiation. Re-crosslinking (8~20Mr
Since the film is obtained by the new manufacturing method of the present invention, which involves ad re-irradiation, the film has a heat shrinkage rate of 20% or less in the longitudinal direction, a shrinkage rate of 50% or more in the transverse direction, and has excellent uniaxial shrinkability in the transverse direction. It is a resin film.

(ロ)架橋後延伸配向されたフィルムであり、機械的強
度、耐熱性、光学特性等に優れたフィルムである。
(b) It is a film that has been stretched and oriented after crosslinking, and has excellent mechanical strength, heat resistance, optical properties, etc.

(ハ)ポリエチレン系樹脂を基材としたフィルムであり
、食品衛生の点、廃棄物処理等の点で優れたフィルムで
ある。
(c) It is a film based on polyethylene resin, and is excellent in terms of food hygiene, waste disposal, etc.

上記(イ)〜(ハ)を満すフィルムは、例えばキャップ
シールや、シュリンクラベル用フィルムとして極めて有
用で、従来の塩ビフイルムをしのぐものである。
A film that satisfies (a) to (c) above is extremely useful, for example, as a film for cap seals or shrink labels, and outperforms conventional PVC films.

本発明は、このような有用性の高いフィルムを架橋ポリ
エチレン系樹脂で初めて完成できるようにした製法とい
う点、及び設備面、作業効率面で有利なインフレーシヨ
ン法でこれを達成し得るようにした製法という点で、産
業界に果す役割の大きい優れた発明といえる。
The present invention is a manufacturing method that makes it possible to complete such a highly useful film for the first time using cross-linked polyethylene resin, and uses an inflation method that is advantageous in terms of equipment and work efficiency. In terms of its manufacturing method, it can be said to be an excellent invention that will play a major role in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られたフィルムの 130℃に於る縦方向の熱収縮率を示す。 Figure 1 shows the film obtained in Example 1. The longitudinal heat shrinkage rate at 130°C is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレン系樹脂を基材としたゲル分率が50〜
80重量%、フィルムの熱収縮率が縦方向の値に比べて
横方向の値が著るしく大きい熱収縮性架橋ポリエチレン
系樹脂フィルムを得るに当り、先ず環状ダイを用いる押
出法に依つて、ゲル分率が30〜75重量%のポリエチ
レン系樹脂チューブ状架橋原反を作成し、次いでこの原
反を90〜150℃に加熱して縦方向2.5倍以下、横
方向3倍以上の延伸倍率のインフレーシヨン二軸延伸を
施し、次いで放射線照射に依りフィルムのゲル分率値を
50〜80重量%の範囲に調整して、縦方向の熱収縮率
が20%以下、横方向の熱収縮率が50%以上の値のフ
ィルムを得ることを特徴とする熱収縮性架橋ポリエチレ
ン系樹脂フィルムの製造方法。
1 Gel fraction based on polyethylene resin is 50~
In order to obtain a heat-shrinkable cross-linked polyethylene resin film with a heat shrinkage rate of 80% by weight, which has a significantly larger value in the transverse direction than in the longitudinal direction, first, an extrusion method using an annular die was used. A polyethylene resin tubular crosslinked raw fabric with a gel fraction of 30 to 75% by weight is created, and then this raw fabric is heated to 90 to 150°C and stretched 2.5 times or less in the machine direction and 3 times or more in the transverse direction. The gel fraction value of the film is adjusted to a range of 50 to 80% by weight by inflation biaxial stretching at a magnification, and then the gel fraction value of the film is adjusted to a range of 50 to 80% by weight by radiation irradiation, so that the heat shrinkage rate in the longitudinal direction is 20% or less, and the heat shrinkage rate in the transverse direction is A method for producing a heat-shrinkable crosslinked polyethylene resin film, characterized by obtaining a film having a shrinkage rate of 50% or more.
JP11512477A 1977-09-27 1977-09-27 Method for producing heat-shrinkable cross-linked polyethylene resin film Expired JPS6054334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11512477A JPS6054334B2 (en) 1977-09-27 1977-09-27 Method for producing heat-shrinkable cross-linked polyethylene resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11512477A JPS6054334B2 (en) 1977-09-27 1977-09-27 Method for producing heat-shrinkable cross-linked polyethylene resin film

Publications (2)

Publication Number Publication Date
JPS5448864A JPS5448864A (en) 1979-04-17
JPS6054334B2 true JPS6054334B2 (en) 1985-11-29

Family

ID=14654848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11512477A Expired JPS6054334B2 (en) 1977-09-27 1977-09-27 Method for producing heat-shrinkable cross-linked polyethylene resin film

Country Status (1)

Country Link
JP (1) JPS6054334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276866A (en) * 1986-03-12 1987-12-01 エスジェーエス―トムソン ミクロエレクトロニクス ソシエテ アノニム Integrated circuit archtecture and manufacture of integratedcircuit with the archtecture

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648970A (en) * 1979-09-28 1981-05-02 Asahi Dow Ltd Film for packing sleeve and its manufacture
JPS5791236A (en) * 1980-11-28 1982-06-07 Nitto Electric Ind Co Ltd Improvement of oil resistance of high density polyethylene molding
JPS57137117A (en) * 1981-02-18 1982-08-24 Dainippon Printing Co Ltd Stretched film for package
DE3107907C2 (en) * 1981-03-02 1984-06-07 kabelmetal electro GmbH, 3000 Hannover Process for the production of shrink tubing, sleeves and caps
JPS5851121A (en) * 1981-09-21 1983-03-25 Mitsui Petrochem Ind Ltd Heat-shrinkable film or sheet
JPS62253431A (en) * 1986-04-28 1987-11-05 Ube Ind Ltd Uniaxially stretched crosslinked polyethylene film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276866A (en) * 1986-03-12 1987-12-01 エスジェーエス―トムソン ミクロエレクトロニクス ソシエテ アノニム Integrated circuit archtecture and manufacture of integratedcircuit with the archtecture

Also Published As

Publication number Publication date
JPS5448864A (en) 1979-04-17

Similar Documents

Publication Publication Date Title
FI96961C (en) Bio-oriented film, process for making and using it
US3634552A (en) Polymer blend compositions comprising polypropylene and ethylene/butene copolymer
US4379888A (en) Composition for drawn film, cold drawn film made of said composition and process for manufacture of said film
JP2904903B2 (en) Polyethylene film
CA1046216A (en) Altering gas permeabilities of polymeric material
JPS63178140A (en) Single layer polyethylene shrinkable film
JPS6147234A (en) Manufacturing method of heat shrinkable polypropylene film
JPS6054334B2 (en) Method for producing heat-shrinkable cross-linked polyethylene resin film
FR2541181A1 (en) POLYOLEFIN THERMORETRACTABLE MULTILAYER FILM
US4731288A (en) Vinylidene fluoride resin film and metallized film thereof
JP3154729B2 (en) Improved heat-shrinkable polyolefin film
JPS6020410B2 (en) Polybutene resin composition
KR100203444B1 (en) Ldpe film and there manufacturing method
JPH0530855B2 (en)
JP2836156B2 (en) Method for producing stretched polyethylene film
JPH10250012A (en) Heat-shrinkable multilayer film of crosslinked polyethylene
JP2000273201A (en) Polypropylene-based heat shrinkable film
JPH038658B2 (en)
JPS6244427A (en) Heat-shrinkable film superior in transparency and its manufacture
JPH09239926A (en) Heat shrinkable laminated polyolefin film
JPS58177324A (en) Highly toughened film
JPH03212434A (en) Polypropylene film for shrink packaging
JP2001114910A (en) Heat shrinkable polypropylene film
JPH08151454A (en) Thermally shrinkable polypropylene film
JPS62201229A (en) Heat shrinkable film