JPH0373586A - Quantum well laser - Google Patents

Quantum well laser

Info

Publication number
JPH0373586A
JPH0373586A JP21031789A JP21031789A JPH0373586A JP H0373586 A JPH0373586 A JP H0373586A JP 21031789 A JP21031789 A JP 21031789A JP 21031789 A JP21031789 A JP 21031789A JP H0373586 A JPH0373586 A JP H0373586A
Authority
JP
Japan
Prior art keywords
quantum well
well structure
quantum
impurity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21031789A
Other languages
Japanese (ja)
Inventor
Shinji Takano
信司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21031789A priority Critical patent/JPH0373586A/en
Publication of JPH0373586A publication Critical patent/JPH0373586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten carrier life without loss of characteristics of a quantum well laser and to perform an extremely abrupt optical pulse response even at the time of high speed pulse modulation by using a first quantum well structure as an active layer and a second quantum well structure having larger bottom state energy of the first structure and an impurity added to a well layer. CONSTITUTION:A quantum well active layer 40 is formed of a first quantum well structure 50, second quantum well structures 70, 71 at both sides, and barrier layers 60, 6 for isolating the first and second structures. The structure 50 is formed of an InGaAsP barrier 57, 6 layers of InGaAs well 55, and energy gap has quantum levels 51, 52. The structure 70 has barrier 77 of the same composition as that of the structure 50 and InGaAsP wells 75, 76, zinc is doped as an impurity in the wells 75, 76, and the well 76 is doped with silicon. Thus, an impurity can be added to a semiconductor layer having a small diffusion speed without diffusion of the impurity into the first quantum well structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信、光演算あるいは光計測装置等の光源と
して用いられる量子井戸レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a quantum well laser used as a light source for optical communications, optical calculations, optical measurement devices, and the like.

〔従来の技術〕[Conventional technology]

半導体レーザは印加した電流を変える、いわゆる直接変
調により数GHzにまでわたる高速変調のできる特徴を
有し、高速および長距離の光通信用の光源として開発が
進められている。特に近年、単一軸モードで動作する分
布帰還形半導体レーザ(Distributed Fe
edback La5er Diode :以下DFB
−LDと略す、)、あるいは分布ブラック反射形半導体
レーザ(Distributed Bragg Ref
tectorlB6rDiode :以下DBR−LD
と略す、)は、発振波長の単色性に極めて優れているこ
とから超高速・長距離の光フアイバー通信用の光源とし
て、またコヒーレントな光学系を組んだ光計測器の光源
として期待され、研究開発が急ピッチで進められている
。InGaAsP/InP系材料を用いたDFB−LD
では10Gb/sという超高速で80kmを越える伝送
距離の光フアイバー通信システム実験の光源として用い
られ良好な結果が得られている。
Semiconductor lasers have the characteristic of being capable of high-speed modulation up to several GHz by changing the applied current, so-called direct modulation, and are being developed as light sources for high-speed and long-distance optical communications. Particularly in recent years, distributed feedback semiconductor lasers (Distributed Fe semiconductor lasers) that operate in a single-axis mode have been developed.
edback La5er Diode:hereinafter referred to as DFB
-LD), or Distributed Bragg Ref.
tectorlB6rDiode: Hereinafter referred to as DBR-LD
) is expected to be used as a light source for ultra-high-speed, long-distance optical fiber communications, as well as for optical measuring instruments that incorporate coherent optical systems, due to its extremely excellent monochromaticity of oscillation wavelength. Development is proceeding at a rapid pace. DFB-LD using InGaAsP/InP material
It has been used as a light source in an experiment for an optical fiber communication system with an ultra-high speed of 10 Gb/s and a transmission distance of over 80 km, and good results have been obtained.

半導体レーザの周波数応答特性は素子自体の容量のほか
に、活性層における光子とキャリアとの相互−伶用に起
因する緩和振動(特定の変調周波数で共振を起こし、変
調感度が著しく増加する共振状現象)、およびキャリア
寿命によって決定される。特に近年、量子井戸層を活性
層とする量子井戸構造半導体レーザが開発され、従来の
ダブルへテロ接合(バルク構造)半導体レーザに比べ緩
和振動周波数が増大することから、より高速の半導体レ
ーザな実現できる可能性がある。
In addition to the capacitance of the device itself, the frequency response characteristics of semiconductor lasers are determined by relaxation oscillations (resonance oscillations that occur at a specific modulation frequency and significantly increase modulation sensitivity) caused by mutual interaction between photons and carriers in the active layer. phenomenon), and carrier lifetime. In particular, in recent years, quantum well structure semiconductor lasers with a quantum well layer as the active layer have been developed, and as the relaxation oscillation frequency increases compared to conventional double heterojunction (bulk structure) semiconductor lasers, faster semiconductor lasers have been realized. There is a possibility that it can be done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、素子容量が小さく緩和振動周波数の高い
半導体レーザであっても、パルス変調時では、駆動電流
パルスの立ち下がり時において光出力パルスにはキャリ
ア寿命り応じた裾引きが生じる。上記の量子井戸構造半
導体レーザにおいてもバルク構造半導体レーザと同様に
、キャリア寿命は数ns (1ns=IX10−’秒)
程度であるから、パルス変調速度が数G b / s以
上では伝送特性の劣化を招く問題があった。
However, even in a semiconductor laser with a small element capacitance and a high relaxation oscillation frequency, during pulse modulation, the optical output pulse has a tail depending on the carrier lifetime at the falling edge of the drive current pulse. Similarly to the bulk structure semiconductor laser, the carrier lifetime in the quantum well structure semiconductor laser described above is several ns (1ns=IX10-' seconds).
Therefore, when the pulse modulation rate exceeds several Gb/s, there is a problem that the transmission characteristics deteriorate.

従来のバルク構造半導体レーザでは、活性層に不純物を
添加しキャリア寿命を短くすることが出来るが、量子井
戸構造半導体レーザでは量子井戸構造に直接不純物を添
加すると、ヘテロ接合界面のだれや量子準位のブロード
ニングを生じるため量子効果が失われてしまうという欠
点があった。
In conventional bulk structure semiconductor lasers, the carrier lifetime can be shortened by adding impurities to the active layer, but in quantum well structure semiconductor lasers, adding impurities directly to the quantum well structure causes drooping at the heterojunction interface and the quantum level. This has the disadvantage that the quantum effect is lost due to the broadening of .

〔課題を解決するための手段〕[Means to solve the problem]

前述の課題を解決するために本発明が提供する手段は、
半導体基板上に量子井戸構造から成る活性層を有する半
導体層を積層した量子井戸レーザにおいて、前記活性層
が第1の量子井戸構造と、基底状態エネルギーが前記第
1の量子井戸構造の基底状態エネルギーよりも大きく、
且つウェル層に不純物を添加した第2の量子井戸構造を
用いる。
Means provided by the present invention to solve the above problems are as follows:
In a quantum well laser in which a semiconductor layer having an active layer having a quantum well structure is laminated on a semiconductor substrate, the active layer has a first quantum well structure and the ground state energy is equal to or greater than the ground state energy of the first quantum well structure. larger than
In addition, a second quantum well structure in which impurities are added to the well layer is used.

〔作用〕[Effect]

本発明の作用を以下に説明する。一般に長波長組成の半
導体の方が不純物の拡散速度が小さく、また量子井戸構
造とした場合では光学遷移エネルギーは同−組成のバル
クに比べて大きい。従って、上述したように第2の量子
井戸構造のウェルに不純物を添加する方法を用いれば、
第1の量子井戸構造への不純物拡散を招くことなく拡散
速度の小さい半導体層に不純物を添加できる。また、第
1の量子井戸構造のウェル層の間、あるいは極く近傍に
不純物を添加した第2の量子井戸構造を配置できるので
得られる効果も大きい。
The operation of the present invention will be explained below. In general, a semiconductor with a long wavelength composition has a lower diffusion rate of impurities, and in the case of a quantum well structure, the optical transition energy is larger than that of a bulk with the same composition. Therefore, if the method of adding impurities to the well of the second quantum well structure as described above is used,
Impurities can be added to a semiconductor layer with a low diffusion rate without causing impurity diffusion into the first quantum well structure. Further, since the second quantum well structure doped with impurities can be placed between the well layers of the first quantum well structure or very close to it, great effects can be obtained.

〔実施例1〕 本発明による量子井戸レーザの第1の実施例を第1図を
参照して詳細に説明する。量子井戸構造の成長法として
は有機金属気相成長(MOCVD)法を用いた。
[Example 1] A first example of the quantum well laser according to the present invention will be described in detail with reference to FIG. Metal organic chemical vapor deposition (MOCVD) was used as the growth method for the quantum well structure.

第1図(a)に伝導帯のエネルギーバンド図を示すよう
に量子井戸活性層40は第1の量子井戸構造50と、こ
の両側に第2の量子井戸構造70゜71およびこれら第
1.第2の量子井戸構造を分離するパリ7層80.61
とから構成されている。
As shown in the energy band diagram of the conduction band in FIG. 1(a), the quantum well active layer 40 consists of a first quantum well structure 50, a second quantum well structure 70. Paris 7 layer separating the second quantum well structure 80.61
It is composed of.

第1の量子井戸構造50は1.1μm組戒InGaAs
Pバリア57(厚さ100A)、6層のInGaAsウ
ェル55(厚さ80人)から成りエネルギーギヤ、ブが
それぞれ0.8eV(λ=1.55μm)、 0.92
 eV (λ=1.35μm)の量子準位51.52を
有する。第2の量子井戸構造70は第1の量子井戸構造
50と同一組成のバリア77(厚さ70A)、および1
.4μm組成1nGaAsPウェル75,76 (各層
の厚さ60人)から成り、ウェル75,76には不純物
として亜鉛(Z n)を4 X 10 ”an−’、ま
たウェル76には珪素(Si)を6 X 10 ”cm
−’ドープしている。第1および第2の量子井戸構造を
分離するパリ7層60.61の厚さはそれぞれ300人
、200人である。
The first quantum well structure 50 is made of 1.1 μm InGaAs.
Consisting of a P barrier 57 (thickness 100A) and a 6-layer InGaAs well 55 (thickness 80mm), the energy gear and beam are 0.8 eV (λ = 1.55 μm) and 0.92, respectively.
It has a quantum level of 51.52 eV (λ=1.35 μm). The second quantum well structure 70 has a barrier 77 (thickness 70A) having the same composition as the first quantum well structure 50, and 1
.. It consists of 4μm composition 1nGaAsP wells 75 and 76 (each layer has a thickness of 60 layers), and the wells 75 and 76 contain 4×10 ``an-'' of zinc (Zn) as an impurity, and the well 76 contains silicon (Si). 6 x 10”cm
-'Doped. The thickness of the Paris 7 layer 60,61 separating the first and second quantum well structures is 300 and 200, respectively.

上記に述べた量子井戸活性層を用いて、第1図(b)の
斜視図に示すように、周期的凹凸から成る回折格子15
を表面に形成したInP基板IO上に、InGaAsP
ガイドN20と量子井戸活性層40とを含む多層構造を
備えた二重チャネル形埋め込み構造(DC−PBH)分
布帰還形(DFB)半導体レーザを形成する。共振器長
を300μmとしてへき開した素子の特性として、発振
しきい値は15mA程度、外部微分量子効率で0.1.
8W/A/facet程度、キャリア寿命は0.3 n
 s 〜0.6ns (ns=IX10−’秒)が期待
され、10 Gb/sのパルス変調時においても伝送特
性の劣化を招かない程度の十分急峻な光パルスの立ち下
がりが期待される。さらにドープ量、ドーパントの最適
化、またパリ7層厚やウェル数の最適化により一層のパ
ルス応答特性の向上が望める。
Using the quantum well active layer described above, as shown in the perspective view of FIG. 1(b), a diffraction grating 15 consisting of periodic irregularities is
InGaAsP is formed on the InP substrate IO formed on the surface.
A double channel buried structure (DC-PBH) distributed feedback (DFB) semiconductor laser with a multilayer structure including a guide N20 and a quantum well active layer 40 is formed. The characteristics of a device cleaved with a cavity length of 300 μm include an oscillation threshold of about 15 mA and an external differential quantum efficiency of 0.1.
Approximately 8W/A/facet, carrier life is 0.3n
s ~0.6 ns (ns=IX10-' seconds), and a sufficiently steep fall of the optical pulse is expected to not cause deterioration of transmission characteristics even during 10 Gb/s pulse modulation. Furthermore, further improvement in pulse response characteristics can be expected by optimizing the doping amount, dopant, and the thickness of the Paris layer and the number of wells.

以上の実施例は二重チャネル形埋め込み(DC−P B
 H)構造の半導体レーザな例に説明したが、他の埋め
込み構造やりッジウェーブガイド構造などにも当然有効
である。
The above embodiments are based on dual channel embedding (DC-P B
Although the description has been given using an example of a semiconductor laser having the H) structure, it is naturally effective for other buried structures, ridge waveguide structures, and the like.

〔実施N2) 本発明によ争量子井戸レーザの第2の実施例を第2図を
参照して説明する。
[Embodiment N2] A second embodiment of the quantum well laser according to the present invention will be described with reference to FIG.

第1の量子井戸構造150は1.3μm組成InG a
 A s Pバリアー57(厚さ100人)、10層の
InGaAsウェル155(厚さ65A)から成る。第
2の量子井戸構造170は1.3μm組成InGaAs
Pバリアー77(厚さ60人)、および1.4 p m
組成InGaAsPウェル175(厚さ50人、6層)
から成り、ウェル175には不純物として亜鉛(Zn)
を6 > 10 ” cm−”ドープしている。第1、
および第2の量子井戸構造を分離するパリ7層180,
161の厚さはそれぞれ400人、100Aである。
The first quantum well structure 150 is made of 1.3 μm composition InGa
It consists of an A s P barrier 57 (thickness: 100 mm) and 10 layers of InGaAs wells 155 (thickness: 65 Å). The second quantum well structure 170 is made of 1.3 μm composition InGaAs.
P barrier 77 (thickness 60 people), and 1.4 p m
Composition InGaAsP well 175 (thickness 50, 6 layers)
The well 175 contains zinc (Zn) as an impurity.
6 >10"cm-" doped. First,
and a Paris 7 layer 180 separating the second quantum well structure,
The thickness of 161 is 400 and 100A, respectively.

このような量子井戸レーザにおいても第1の実施例と同
様の優れた特性が得られることが期待される。
It is expected that such a quantum well laser will also have excellent characteristics similar to those of the first embodiment.

また以上の二つの実施例はInP系の量子井戸構造を例
に説明したが、G a A s系など一般の半導体量子
井戸構造においても有効である。
Furthermore, although the above two embodiments have been explained using an InP-based quantum well structure as an example, the present invention is also effective in a general semiconductor quantum well structure such as a GaAs-based quantum well structure.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば量子井戸レーザ
の特性を損なわずにキャリア寿命を短くでき、高速パル
ス変調時においても極めて急峻な光パルス応答の得られ
る量子井戸レーザな実現することができる。
As described above, according to the present invention, it is possible to shorten the carrier lifetime without impairing the characteristics of a quantum well laser, and to realize a quantum well laser that can obtain an extremely steep optical pulse response even during high-speed pulse modulation. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の説明図であり、第2図
は本発明の第2の実施例の説明図である。 図中、10はn−InP基板、15は回折格子、20は
n−InGaAsPガイド層、40は量子井戸活性層、
50,150は第1の量子井戸構造、51.52は伝導
帯の量子準位、55,155はInGaAsウェル、5
7,1’57はInGaAsPバリア層、60,61,
160,161は第1.第2の量子井戸構造を分離する
バリア層、To、71゜170は第2の量子井戸構造、
75,77.175゜177はそれぞれ第2の量子井戸
構造のウェルおよびバリア層である。
FIG. 1 is an explanatory diagram of a first embodiment of the invention, and FIG. 2 is an explanatory diagram of a second embodiment of the invention. In the figure, 10 is an n-InP substrate, 15 is a diffraction grating, 20 is an n-InGaAsP guide layer, 40 is a quantum well active layer,
50,150 is the first quantum well structure, 51.52 is the quantum level of the conduction band, 55,155 is the InGaAs well, 5
7, 1'57 is an InGaAsP barrier layer, 60, 61,
160 and 161 are the first. A barrier layer separating the second quantum well structure, To, 71° 170 is the second quantum well structure,
75, 77.175°177 are the well and barrier layer of the second quantum well structure, respectively.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、量子井戸構造から成る活性層を有する
半導体層を積層した量子井戸レーザにおいて、前記活性
層が第1の量子井戸構造と、基底状態エネルギーが前記
第1の量子井戸構造の基底状態エネルギーよりも大きく
、且つウェルに不純物を添加した第2の量子井戸構造と
から成ることを特徴とする量子井戸レーザ。
In a quantum well laser in which a semiconductor layer having an active layer having a quantum well structure is laminated on a semiconductor substrate, the active layer has a first quantum well structure and the ground state energy has a ground state of the first quantum well structure. 1. A quantum well laser comprising a second quantum well structure having an energy larger than that of the quantum well and having a well doped with impurities.
JP21031789A 1989-08-14 1989-08-14 Quantum well laser Pending JPH0373586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21031789A JPH0373586A (en) 1989-08-14 1989-08-14 Quantum well laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21031789A JPH0373586A (en) 1989-08-14 1989-08-14 Quantum well laser

Publications (1)

Publication Number Publication Date
JPH0373586A true JPH0373586A (en) 1991-03-28

Family

ID=16587422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21031789A Pending JPH0373586A (en) 1989-08-14 1989-08-14 Quantum well laser

Country Status (1)

Country Link
JP (1) JPH0373586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274404A (en) * 1995-03-30 1996-10-18 Nec Corp Multi-quantum well laser diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08274404A (en) * 1995-03-30 1996-10-18 Nec Corp Multi-quantum well laser diode
US6111904A (en) * 1995-03-30 2000-08-29 Nec Corporation Laser diode with an improved multiple quantum well structure adopted for reduction in wavelength chirping

Similar Documents

Publication Publication Date Title
JP2749038B2 (en) Tunable semiconductor laser
US4815087A (en) High speed stable light emitting semiconductor device with low threshold current
JP2001308451A (en) Semiconductor light emitting element
US5519721A (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
US5579155A (en) Semiconductor optical amplifier
JPH04783A (en) Semiconductor optical element
US6925103B2 (en) Gain-coupled DFB laser diode
EP0512681A2 (en) Semiconductor laser diode
JPH0373586A (en) Quantum well laser
JPH0358490A (en) Quantum well laser
JPS61164287A (en) Semiconductor laser
JP2000244059A (en) Semiconductor laser device
JPH04350988A (en) Light-emitting element of quantum well structure
EP0660473B1 (en) Quantum-well type semiconductor laser device having multi-layered quantum-well layer
JPS633477B2 (en)
JPH10326907A (en) Light reception element and its manufacture
JPH09179080A (en) Optical device
JP3215477B2 (en) Semiconductor distributed feedback laser device
JP2001013472A (en) Optical semiconductor element and optical communication equipment
JP2508332B2 (en) Integrated optical modulator
JP3146821B2 (en) Manufacturing method of semiconductor optical integrated device
JP3191669B2 (en) Semiconductor distributed feedback laser device and method of manufacturing the same
JP3752306B2 (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
KR890003385B1 (en) Semiconductor light emitting device