JPH0373452B2 - - Google Patents

Info

Publication number
JPH0373452B2
JPH0373452B2 JP58089988A JP8998883A JPH0373452B2 JP H0373452 B2 JPH0373452 B2 JP H0373452B2 JP 58089988 A JP58089988 A JP 58089988A JP 8998883 A JP8998883 A JP 8998883A JP H0373452 B2 JPH0373452 B2 JP H0373452B2
Authority
JP
Japan
Prior art keywords
molecular weight
ultra
high molecular
weight polyethylene
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58089988A
Other languages
Japanese (ja)
Other versions
JPS59215826A (en
Inventor
Toshio Kobayashi
Fukuhiro Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP8998883A priority Critical patent/JPS59215826A/en
Publication of JPS59215826A publication Critical patent/JPS59215826A/en
Publication of JPH0373452B2 publication Critical patent/JPH0373452B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、超高分子量ポリエチレンフイルムの
製造方法に関する。 超高分子量ポリエチレンは汎用のポリエチレン
に比べ、耐衝撃性、耐摩耗性、耐薬品性、引張強
度等に優れており、エンジニアリングプラスチツ
クとしその用途が拡がりつつある。しかしながら
汎用のポリエチレンに比較して溶融粘度が極めて
高く流動性が悪いため、従来の押出成形や射出成
形によつて成形することは非常に難しく、その殆
どは圧縮成形によつて成形されており、一部ロツ
ド等が極く低速で押出成形されているのが現状で
あつた。 また、超高分子量ポリエチレンフイルムの製造
方法としては、超高分子量ポリエチレンの粉末を
焼結した後、ポリエチレンの融点以上の温度に加
熱して、2枚のベルト間で加熱、圧着、冷却して
フイルムを製造する方法(特公昭48−11576号公
報)、あるいは焼結した超高分子量ポリエチレン
シートを二次転移点以上ないし融点未満の温度範
囲で加圧ロールで配向させる方法(特開昭53−
45376号公報)等が提案されている。しかしなが
ら前記方法では良好な外観のフイルムは製造され
るものの、更に薄いフイルムを成形するには、超
高分子量ポリエチレンの溶融粘度が極端に大きい
ので不向きである。また後者の方法においても超
高分子量ポリエチレンは融点未満の温度では更に
粘度が大きいので、たとえ加圧ロールで圧延して
も薄いフイルムは得られないという欠点を有して
いた。薄いフイルムを成形する方法としては、延
伸する方法が考えられるが、超高分子量ポリエチ
レンは分子量が非常に大きいので、単独では全く
延伸することはできない。また加圧ロールでの圧
延時に融点以上の温度に加熱することも考えられ
るが、通常結晶性ポリオレフインは融点以上に加
熱されると粘着性が増すとともに粘度が低下して
ロール圧延等が困難となる傾向にあり、事実超高
分子量ポリエチレンにおいても前述の特開昭53−
45376号公報にも融点以上では加圧ロールに溶融
樹脂が粘着し、良好な外観のフイルムが得られな
いことが指摘されている。 かかる状況に鑑み、本発明者らは、超高分子量
ポリエチレンの薄いフイルムを得る方法を開発す
べく種々検討した結果、超高分子量ポリエチレン
のシートを加圧ロールで圧延する際に、加圧ロー
ルの温度を融点以上のある一定の範囲に定め、且
つ張力をかけて引取ることにより、薄く且つ透明
性に優れた超高分子量ポリエチレンフイルムが得
られることが分かり、本発明に到達した。 すなわち本発明は、少なくとも極限粘度〔η〕
が5.0dl/g以上の超高分子量ポリエチレンのシ
ートを、融点以上ないし融点+15℃未満の温度で
ロールで圧延しながら張力をかけて引取ることを
特徴とする超高分子量ポリエチレンフイルムの製
造方法を提供するものである。 本発明の方法に用いる超高分子量ポリエチレン
は、デリカン溶媒135℃における極限粘度〔η〕
が5.0dl/g以上、好ましくは15ないし30dl/g
の範囲のものである。〔η〕が5.0dl/g未満のも
のは、溶融張力が小さく、融点以上の温度で圧延
しながら張力をかけて引取る際に、フイルムが破
断し、成形性に劣る。一方〔η〕の上限はとくに
限定はされないが、30dl/gを越えるものは溶融
粘度が高く、圧延しても薄いフイルム(例えば
50μ以下)が得られない場合がある。かかる超高
分子量ポリエチレンは、エチレンあるいはエチレ
ンと少量の他のα−オレフイン、例えばプロピレ
ン、1−ブテン、4−メチル−1−ペンテン、1
−ヘキセン等とを所謂チーグラー重合により重合
することにより得られるポリエチレンの中で、は
るかに分子量が高い範疇のものである。 本発明における超高分子量ポリエチレンの融点
は、ASTMD3417により、示差走査型熱量計
(DSC)により測定した値である。 前記超高分子量ポリエチレンを用いてシートを
製造する方法としては、種々公知の方法、例えば
本出願人によつて提案された特公昭48−11576号
公報に示される超高分子量ポリエチレン粉末を多
孔質板状体とした後、2枚のベルト間に挾み、加
熱、圧着、冷却することによつてシート等を製造
する方法、あるいは単に熱により固めて多孔質板
状体シートにする方法、もしくは圧縮成形により
シートを製造する方法等が挙げられるが、連続し
て均一なシートが得られる点で特公昭48−11576
号公報による方法が好ましい。 本発明の方法は、前記超高分子量ポリエチレン
のシートを、融点以上ないし融点+15℃未満の温
度でロールで圧延しながら張力をかけて引取るこ
とにより超高分子量ポリエチレンフイルムを製造
する方法である。 シートが圧延される前に、予め60ないし融点+
15℃の範囲にシートを加熱しておくと、ロールの
圧延が容易になるので好ましい。シートの予熱
は、オーブン、加熱ロール、遠赤外ヒーター等に
より行い得る。 ロールでの圧延温度が融点未満では薄いフイル
ムが得られず、また透明性も多少劣る傾向にあ
る。一方圧延温度が融点+15℃以上になるとフイ
ルムが白化する。 圧延温度は前述の如く、融点以上ないし融点+
15℃未満の範囲にすべきであるが、圧延温度はロ
ール温度を前述の範囲に設定することにより制御
できる。 本発明の方法は、ロール圧延時に、更に張力を
かけることが必須要件であるが、張力をかけるに
は、具体的には例えば圧延ロールの後に引取りロ
ールを設置し、圧延ロールと引取りロールの周速
度の比を、溶融したフイルムが溶融弾性により収
縮するので、通常1:0.5以上、好ましくは1:
0.8以上、更に好ましくは1:1以上にすること
により行い得る。 また引取りロールで引取る際の周速度比は0.5
以上であればとくに限定はされないが、大きくな
り過ぎると溶融状態にあるフイルムが延伸破断す
る虞れがあるので、大凡1ないし2の範囲にする
ことが好ましい。また引取りロールは圧延ロール
で溶融されたフイルムを冷却する目的もあるので
通常、常温ないし120℃に冷却されている。 本発明の方法に用いる超高分子量ポリエチレン
には、耐熱安定剤、耐候安定剤、滑剤、アンチブ
ロツキング剤、スリツプ剤、顔料、染料、無機充
填剤等の通常ポリオレフインに添加して使用され
る各種添加剤を本発明の目的を損わない範囲で配
合しておいてもよい。 本発明の方法により得られる超高分子量ポリエ
チレンフイルムの厚さは、用途に応じて適宜選択
され得るが、通常10ないし500μ、好ましくは50
ないし200μの範囲である。又、該フイルムは単
独で用いてもよいし、片面もしくは両面をコロナ
放電処理等を行い、更に必要に応じてアンカー処
理を行い、他の樹脂、もしくは紙、セロフアン、
アルミニウム箔と積層して用いてもよい。 本発明の方法により得られる超高分子量ポリエ
チレンフイルムは従来の方法により得られるフイ
ルムに比べ薄く、また無機充填剤等を添加しない
場合には、透明性にも優れているので、スライデ
イングテープ、スラストワツシヤー、すべりシー
ト、ガイド、スキーの裏張り、ホツパー及びシユ
ートのライニング、ドクターナイフ、カセツトテ
ープライナーあるいは耐極低温性袋等の用途に好
適である。 次に実施例を挙げて、本発明を更に具体的に説
明する。 実施例 1 極限粘度〔η〕が17dl/g及び融点が137℃の
超高分子量ポリエチレン(商品名ハイゼツクス
ミリオン240M三井石油化学工業(株)製)を用いて
圧縮成形によりブロツクを成形し、それをスライ
スして、幅100mm×厚さ1.0mmのシートを得た。次
いで該シートを遠赤外線ヒーターで約140℃に予
熱した後、145℃に加熱した圧延ロールで37cm/
minの速度で圧延しながら、80℃に加熱した引取
りロールで40cm/minの速度で引取り、幅92mm×
厚さ180μのフイルムを得た。次いで該フイルム
の評価を以下の方法で行つた。 引張試験:JISK6781に準拠し、引張方向
(MD)と横方向(TD)の二方向の測定を行
つた。但し、引張速さは200mm/minとした。 動摩擦係数(μk):ASTMD1894に準拠。但し
荷重を980gとした。 霞み度:ASTMD1003に準拠。 結果を第1表に示す。 比較例 1 実施例1の成形方法において、圧延ロールの温
度を100℃とする以外は実施例1と同様に行つた。
結果を第1表に示す。尚、得られたフイルムは幅
96mm×厚さ360μであつた。 比較例 2 実施例1の成形方法において、圧延ロールの温
度を120℃とする以外は実施例1と同様に行つた。
結果を第1表に示す。尚、得られたフイルムは幅
94mm×厚さ260μであつた。
The present invention relates to a method for producing an ultra-high molecular weight polyethylene film. Ultra-high molecular weight polyethylene has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene, and its uses as an engineering plastic are expanding. However, compared to general-purpose polyethylene, it has an extremely high melt viscosity and poor fluidity, so it is very difficult to mold it using conventional extrusion molding or injection molding, and most of it is molded by compression molding. Currently, some rods and the like are extruded at extremely low speeds. In addition, as a method for producing ultra-high molecular weight polyethylene film, after sintering ultra-high molecular weight polyethylene powder, the film is heated to a temperature higher than the melting point of polyethylene, heated between two belts, pressed, and cooled. (Japanese Patent Publication No. 48-11576), or a method of orienting a sintered ultra-high molecular weight polyethylene sheet with a pressure roll in a temperature range from above the secondary transition point to below the melting point (Japanese Patent Publication No. 1983-11576).
45376) etc. have been proposed. However, although the above-mentioned method produces a film with a good appearance, it is not suitable for forming even thinner films because the melt viscosity of ultra-high molecular weight polyethylene is extremely high. Furthermore, even in the latter method, ultra-high molecular weight polyethylene has a higher viscosity at temperatures below its melting point, so it has the disadvantage that a thin film cannot be obtained even if it is rolled with a pressure roll. One possible method for forming a thin film is stretching, but since ultra-high molecular weight polyethylene has a very large molecular weight, it cannot be stretched at all by itself. It is also possible to heat the crystalline polyolefin to a temperature above its melting point during rolling with pressure rolls, but normally, when crystalline polyolefins are heated above their melting point, their stickiness increases and their viscosity decreases, making roll rolling, etc. difficult. In fact, even in the case of ultra-high molecular weight polyethylene, the
No. 45376 also points out that at temperatures above the melting point, the molten resin sticks to the pressure roll, making it impossible to obtain a film with a good appearance. In view of this situation, the present inventors conducted various studies to develop a method for obtaining a thin film of ultra-high molecular weight polyethylene, and found that when rolling a sheet of ultra-high molecular weight polyethylene with a pressure roll, It was found that a thin ultra-high molecular weight polyethylene film with excellent transparency can be obtained by setting the temperature within a certain range above the melting point and applying tension, thereby achieving the present invention. That is, the present invention provides at least the intrinsic viscosity [η]
A method for producing an ultra-high molecular weight polyethylene film, which comprises rolling a sheet of ultra-high molecular weight polyethylene with a temperature of 5.0 dl/g or more with rolls at a temperature above the melting point or below the melting point + 15°C while applying tension and taking it off. This is what we provide. The ultra-high molecular weight polyethylene used in the method of the present invention has an intrinsic viscosity [η] at 135°C in Delicane solvent.
is 5.0dl/g or more, preferably 15 to 30dl/g
It is within the range of . If [η] is less than 5.0 dl/g, the melt tension is low, and the film breaks when tension is applied and taken off while rolling at a temperature above the melting point, resulting in poor moldability. On the other hand, the upper limit of [η] is not particularly limited, but if it exceeds 30 dl/g, the melt viscosity is high, and even when rolled, a thin film (e.g.
50μ or less) may not be obtained. Such ultra-high molecular weight polyethylenes contain ethylene or ethylene and small amounts of other α-olefins such as propylene, 1-butene, 4-methyl-1-pentene, 1
Among the polyethylenes obtained by polymerizing -hexene and the like by so-called Ziegler polymerization, it has a much higher molecular weight. The melting point of the ultra-high molecular weight polyethylene in the present invention is a value measured using a differential scanning calorimeter (DSC) according to ASTM D3417. There are various known methods for manufacturing sheets using the ultra-high molecular weight polyethylene, such as the method proposed by the applicant of the present invention in Japanese Patent Publication No. 11576/1983, in which ultra-high molecular weight polyethylene powder is formed into a porous plate. A method of producing a sheet by sandwiching the material between two belts, heating, crimping, and cooling after forming the material into a shape, or a method of simply hardening with heat to make a porous plate-like sheet, or a method of compressing the material into a porous plate-like material. There are methods of manufacturing sheets by molding, etc., but the method of manufacturing sheets by forming them is known, but the method used by the Japanese Patent Publication No. 48-11576 is that it allows continuous and uniform sheets to be obtained.
The method according to the publication is preferred. The method of the present invention is a method for producing an ultra-high molecular weight polyethylene film by rolling the ultra-high molecular weight polyethylene sheet with a roll at a temperature from above the melting point to below the melting point + 15°C and taking it off under tension. Before the sheet is rolled, it is preheated to a melting point of 60 to +
It is preferable to heat the sheet to a temperature in the range of 15° C., as this facilitates rolling with rolls. Preheating of the sheet can be performed using an oven, a heating roll, a far-infrared heater, or the like. If the rolling temperature with the rolls is below the melting point, a thin film cannot be obtained, and the transparency tends to be somewhat inferior. On the other hand, if the rolling temperature exceeds the melting point +15°C, the film will whiten. As mentioned above, the rolling temperature is above the melting point or above the melting point.
Although it should be in the range below 15°C, the rolling temperature can be controlled by setting the roll temperature in the range mentioned above. In the method of the present invention, it is essential to apply additional tension during roll rolling, but in order to apply tension, specifically, for example, a take-up roll is installed after the rolling roll, and the rolling roll and the take-up roll are Since the molten film contracts due to melt elasticity, the ratio of peripheral speeds is usually 1:0.5 or more, preferably 1:
This can be done by setting the ratio to be 0.8 or more, more preferably 1:1 or more. Also, the circumferential speed ratio when taking it off with the take-up roll is 0.5
There is no particular limitation as long as it is above, but if it becomes too large, there is a risk that the film in a molten state may stretch and break, so it is preferably within the range of approximately 1 to 2. Further, since the take-up roll also has the purpose of cooling the film melted by the rolling roll, it is usually cooled to room temperature to 120°C. The ultra-high molecular weight polyethylene used in the method of the present invention includes heat-resistant stabilizers, weather-resistant stabilizers, lubricants, anti-blocking agents, slip agents, pigments, dyes, inorganic fillers, etc., which are usually added to polyolefins. Various additives may be blended within the range that does not impair the purpose of the present invention. The thickness of the ultra-high molecular weight polyethylene film obtained by the method of the present invention can be appropriately selected depending on the application, but is usually 10 to 500μ, preferably 50μ
It ranges from 200μ to 200μ. The film may be used alone, or one or both sides may be subjected to corona discharge treatment, etc., and if necessary, anchor treatment may be performed, and the film may be used with other resins, paper, cellophane, etc.
It may also be used by laminating it with aluminum foil. The ultra-high molecular weight polyethylene film obtained by the method of the present invention is thinner than films obtained by conventional methods, and also has excellent transparency when no inorganic filler is added, so it can be used for sliding tapes, thrusts, etc. Suitable for applications such as washers, sliding sheets, guides, ski linings, hopper and chute linings, doctor knives, cassette tape liners, and cryogenic bags. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Ultra-high molecular weight polyethylene (trade name Hi-Zex) with an intrinsic viscosity [η] of 17 dl/g and a melting point of 137°C
A block was formed by compression molding using Million 240M (manufactured by Mitsui Petrochemical Industries, Ltd.), and the block was sliced to obtain a sheet with a width of 100 mm and a thickness of 1.0 mm. Next, the sheet was preheated to about 140℃ with a far-infrared heater, and then rolled 37cm/37cm with a rolling roll heated to 145℃.
While rolling at a speed of 40cm/min, the width of 92mm x
A film with a thickness of 180μ was obtained. The film was then evaluated in the following manner. Tensile test: In accordance with JISK6781, measurements were performed in two directions: tensile direction (MD) and transverse direction (TD). However, the tensile speed was 200 mm/min. Dynamic friction coefficient (μk): Based on ASTMD1894. However, the load was 980g. Haze level: Compliant with ASTMD1003. The results are shown in Table 1. Comparative Example 1 The molding method of Example 1 was carried out in the same manner as in Example 1 except that the temperature of the rolling roll was 100°C.
The results are shown in Table 1. Furthermore, the width of the obtained film is
It was 96mm x 360μ thick. Comparative Example 2 The molding method of Example 1 was carried out in the same manner as in Example 1 except that the temperature of the rolling roll was 120°C.
The results are shown in Table 1. Furthermore, the width of the obtained film is
It was 94mm x 260μ thick.

【表】 圧延フイルム断面積
[Table] Cross-sectional area of rolled film

Claims (1)

【特許請求の範囲】 1 少なくとも極限粘度〔η〕が5.0dl/g以上
の超高分子量ポリエチレンのシートを、融点以上
ないし融点+15℃未満の温度でロールで圧延しな
がら張力をかけて引取ることを特徴とする超高分
子量ポリエチレンフイルムの製造方法。
[Claims] 1. A sheet of ultra-high molecular weight polyethylene having an intrinsic viscosity [η] of at least 5.0 dl/g or more is rolled with a roll at a temperature above the melting point or below the melting point + 15°C and taken off under tension. A method for producing an ultra-high molecular weight polyethylene film characterized by:
JP8998883A 1983-05-24 1983-05-24 Manufacture of super high molecular weight polyethylene film Granted JPS59215826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8998883A JPS59215826A (en) 1983-05-24 1983-05-24 Manufacture of super high molecular weight polyethylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8998883A JPS59215826A (en) 1983-05-24 1983-05-24 Manufacture of super high molecular weight polyethylene film

Publications (2)

Publication Number Publication Date
JPS59215826A JPS59215826A (en) 1984-12-05
JPH0373452B2 true JPH0373452B2 (en) 1991-11-21

Family

ID=13986018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8998883A Granted JPS59215826A (en) 1983-05-24 1983-05-24 Manufacture of super high molecular weight polyethylene film

Country Status (1)

Country Link
JP (1) JPS59215826A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220329A (en) * 1983-05-30 1984-12-11 Agency Of Ind Science & Technol Preparation of ultra-high molecular weight polyethylene sheet
JPS6015120A (en) * 1983-07-07 1985-01-25 Agency Of Ind Science & Technol Manufacture of crystalline polymeric sheet
US5171815A (en) * 1986-10-22 1992-12-15 University Of Pittsburgh Method for producing doubly oriented polymers
US5049347A (en) * 1988-11-22 1991-09-17 The University Of Pittsburgh Method for producing doubly oriented polymers
JP4749576B2 (en) * 2001-03-14 2011-08-17 住友化学株式会社 Method for producing resinous film
JP4749574B2 (en) * 2001-03-14 2011-08-17 住友化学株式会社 Method for producing resinous film
JP5302534B2 (en) * 2007-12-21 2013-10-02 旭化成ケミカルズ株式会社 Ultra high molecular weight polyolefin sheet and method for producing the same
JP6044309B2 (en) * 2012-12-07 2016-12-14 東洋紡株式会社 Polyethylene tape, polyethylene split yarn and method for producing them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525874A (en) * 1975-07-02 1977-01-17 Nippon Petrochemicals Co Ltd Manufacturing of rolled sheet or film of thermoplastic resin
JPS526314A (en) * 1975-07-07 1977-01-18 Nisshin Steel Co Ltd Method of loading steel making materials into charging chute for conve rters
JPS5318553A (en) * 1976-08-04 1978-02-20 Agency Of Ind Science & Technol Oxidation of tetralin
JPS5889326A (en) * 1981-11-24 1983-05-27 Agency Of Ind Science & Technol Preparation of high elastic modulus sheet of ultra-high molecular weight polyethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525874A (en) * 1975-07-02 1977-01-17 Nippon Petrochemicals Co Ltd Manufacturing of rolled sheet or film of thermoplastic resin
JPS526314A (en) * 1975-07-07 1977-01-18 Nisshin Steel Co Ltd Method of loading steel making materials into charging chute for conve rters
JPS5318553A (en) * 1976-08-04 1978-02-20 Agency Of Ind Science & Technol Oxidation of tetralin
JPS5889326A (en) * 1981-11-24 1983-05-27 Agency Of Ind Science & Technol Preparation of high elastic modulus sheet of ultra-high molecular weight polyethylene

Also Published As

Publication number Publication date
JPS59215826A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
JP2936493B2 (en) Biaxially oriented film
US4020141A (en) Method of making heat-sealable, heat-shrinkable, biaxially oriented polyester film
US3634552A (en) Polymer blend compositions comprising polypropylene and ethylene/butene copolymer
US4333968A (en) Thermoplastic packaging films with improved heat-seal characteristics
KR20160033117A (en) Heat-sealable stretched multilayer polypropylene film
US6168826B1 (en) Biaxially oriented polyethylene film with improved optics and sealability properties
US8986590B2 (en) Polymer article and method for producing polymer article
KR20200047733A (en) Polypropylene laminated film
JPH0373452B2 (en)
CN110303747B (en) Polyolefin shrink film for ultra-high-speed, high-heat-sealing-performance and high-shrinkage packaging
JPH0380092B2 (en)
JPH0349952A (en) Polypropylene composite film and metal vapor deposition polypropylene composite film
TW202204495A (en) Biaxially-oriented polypropylene film
TW202204494A (en) Biaxially-oriented polypropylene film
JP4475699B2 (en) High strength high molecular weight polyolefin film excellent in transparency and method for producing the same
US4604441A (en) Polypropylene sheet
US20030166778A1 (en) Micro-composite polymer/polymer materials with semicrystalline dispersed phase and preparation method
JPH075758B2 (en) High density polyethylene film and method for producing the same
JPH03175029A (en) Manufacture of product made of at least polyethylene layer and elastomer layer and product obtained using said method
JP4345901B2 (en) High molecular weight polyolefin transparent film having high elongation and method for producing the same
JPS6320690B2 (en)
JPH0247334B2 (en) ENSHINHORIECHIRENFUIRUMU
JP3637829B2 (en) Polypropylene sheet for PTP packaging and packaging method using the same
JPS6174820A (en) Polyethylene oriented film
JP3006897B2 (en) Thermoforming sheet