JPS5889326A - Preparation of high elastic modulus sheet of ultra-high molecular weight polyethylene - Google Patents

Preparation of high elastic modulus sheet of ultra-high molecular weight polyethylene

Info

Publication number
JPS5889326A
JPS5889326A JP18813581A JP18813581A JPS5889326A JP S5889326 A JPS5889326 A JP S5889326A JP 18813581 A JP18813581 A JP 18813581A JP 18813581 A JP18813581 A JP 18813581A JP S5889326 A JPS5889326 A JP S5889326A
Authority
JP
Japan
Prior art keywords
molecular weight
elastic modulus
stretching
ultra
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18813581A
Other languages
Japanese (ja)
Other versions
JPS6053690B2 (en
Inventor
Akira Kaido
海藤 彰
Kazuo Nakayama
和郎 中山
Hisaaki Kanetsuna
金綱 久明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18813581A priority Critical patent/JPS6053690B2/en
Publication of JPS5889326A publication Critical patent/JPS5889326A/en
Publication of JPS6053690B2 publication Critical patent/JPS6053690B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a high density polyethylene sheet having high elastic modulus and high tensile strength by a method wherein a polyethylene sheet is heated and melted, then, stretched at 150 deg.C or below so that the percent of stretch is increased by ten times or more. CONSTITUTION:In preparing a high elastic modulus sheet of ultra-high molecular weight polyethylene having 1.5 millions or more of viscosity average molecular weight, said polyethylene sheet is melted, then, stretched at 150 deg.C or below so that the percent of stretch is increased by ten times or more. In this method, it is possible to obtain a high density polyethylene sheet having excellent high elastic modulus and high tensile strength as well as various characteristics given to common ultra-high molecular weight polyethylene such as high impact resistance, excellent wear resistance, chemical resistance, self-lubricating properties and low water-absorbing properties.

Description

【発明の詳細な説明】 本発明は、高弾性率と高引張強度を有する配向度の高い
超高分子量ボ1)エチレンシートの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly oriented ultra-high molecular weight 1) ethylene sheet having high modulus of elasticity and high tensile strength.

粘度平均分子量70万以上のような、超高分子量ボI+
エチレンは、通常の重量平均分子量10万程度の中密度
や高密度ポリエチレンに比べてその物性値は極めて異な
っており、例えば衝撃強度が大きい、耐摩耗性及び耐薬
品性が良好、自己潤滑性がよい、吸水性が少ない、スト
レスクラッキング特性に優れているなどの多(の特性を
有していて、これらの特性が要求される工業部品などに
幅広く用いられている。
Ultra-high molecular weight polymers with a viscosity average molecular weight of 700,000 or more
Ethylene has extremely different physical properties compared to normal medium-density and high-density polyethylene with a weight average molecular weight of about 100,000, such as high impact strength, good abrasion resistance and chemical resistance, and self-lubricating properties. It has many properties such as high water absorption, low water absorption, and excellent stress cracking properties, and is widely used in industrial parts that require these properties.

しかしながら、この超高分子量ポリエチレンは、そのメ
ルトインデックス(荷重2.16に4)が0.O1以下
と小さくて射出成形が困難である上に、加工自由度が小
さく、ま゛た固体状態における延伸や押し出しのような
塑性変形を受けに(いという欠点−を有している。
However, this ultra-high molecular weight polyethylene has a melt index (load of 2.16 to 4) of 0. It is small (O1 or less), making injection molding difficult, and has the disadvantage of having a small degree of freedom in processing and not being susceptible to plastic deformation such as stretching or extrusion in a solid state.

ところで、重量平均分子量10万程度の通常用いられて
いる高密度ポリエチレンにおいては、そのシートは70
〜80℃の温度において塑性変形を受けやすくて固体状
態において高倍率に延伸することが可能であり、したが
ってこの延伸により高弾性率及び高引張強度を有する高
密度ポリエチレンシートを得ることができる。
By the way, in the commonly used high-density polyethylene with a weight average molecular weight of about 100,000, the sheet has a weight average molecular weight of about 70,000.
It is susceptible to plastic deformation at temperatures of ~80° C. and can be stretched to high magnifications in the solid state, thus making it possible to obtain high-density polyethylene sheets with high elastic modulus and high tensile strength.

一万、粘度平均分子量150万以上のような超高分子量
ポリエチレンシートにおいては、前記欠点を有している
ために、従来その延伸や固体押出しが試みられているも
のの、変形比が小さくて弾性率や引張強度について十分
満足しうるシートは得られていない。
Ultra-high molecular weight polyethylene sheets with a viscosity average molecular weight of 1,500,000 or more have the above-mentioned drawbacks, and although stretching and solid extrusion have been attempted in the past, the deformation ratio is small and the elastic modulus is No sheet has been obtained that is fully satisfactory in terms of strength and tensile strength.

本発明者らは、このような事情に鑑み、高弾性率と高引
張強度を有する超高分子量ポリエチレンシートを製造す
る方法について鋭意研究を重ねた結果、粘度平均分子量
150万以上の超高分子量ポリエチレンシートにおいて
は、そのメルトインデックス(荷重2.16Kgないし
21.6Kg)が0.01以下と小さくて150℃を超
えない温度における溶融状態ではゴム弾性状となり高倍
率に延伸すること−が可能であること、また、この超高
分子量ポリエチレンは多数のからみ合った分子鎖を有し
ており、溶融状態における延伸によってこのからみ合っ
た分子鎖が延伸方向に配列するため、延伸後の冷却によ
り高配向した超高分子量ポリエチレンシートが得られ、
その目的を達しうろことを見出し、この知見に基づいて
本発明を完成するに至った。
In view of these circumstances, the inventors of the present invention have conducted intensive research on a method for manufacturing ultra-high molecular weight polyethylene sheets having high elastic modulus and high tensile strength, and have found that ultra-high molecular weight polyethylene sheets with a viscosity average molecular weight of 1.5 million or more have been developed. The sheet has a small melt index (load of 2.16Kg to 21.6Kg) of 0.01 or less, and when melted at a temperature not exceeding 150°C, it becomes rubber elastic and can be stretched to a high ratio. In addition, this ultra-high molecular weight polyethylene has a large number of entangled molecular chains, and as the entangled molecular chains are aligned in the stretching direction by stretching in the molten state, it becomes highly oriented by cooling after stretching. An ultra-high molecular weight polyethylene sheet is obtained,
The inventors have found that it is possible to achieve this objective, and have completed the present invention based on this knowledge.

すなわち、本発明は、粘度平均分子量150万以上の超
高分子量ポリエチレンの高弾性率シートを製造するに当
り、該ポリエチレンのシートを溶融状態としたのち、1
50℃を超えない温度のもとて延伸倍率10倍以上に延
伸することを特徴とする超高分子量ポリエチレンの高弾
性率シートの製造方法を提供するものである。
That is, in producing a high elastic modulus sheet of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 1.5 million or more, the present invention involves melting the polyethylene sheet,
The present invention provides a method for producing a high elastic modulus sheet of ultra-high molecular weight polyethylene, which is characterized by stretching at a stretching ratio of 10 times or more at a temperature not exceeding 50°C.

本発明方法に用いる超高分子量ポリエチレンは、その粘
度平均分子量が150万以上のものである。
The ultra-high molecular weight polyethylene used in the method of the present invention has a viscosity average molecular weight of 1.5 million or more.

このような超高分子量ポリエチレンは、そのシートを1
50℃以下の溶融状態において延1伸すれば、得られた
延伸シートの弾性率と引張強度は延伸倍率の増加に伴な
って増加するという特徴を有するが、粘度平均分子量が
150万未満のものはこのような性質を示さない。また
、本発明方法によって最大延伸倍率まで延伸して得られ
た延伸シートは、従来の固体状態における延伸方法によ
って最大延伸倍率まで延伸して得られた延伸シートに比
べて、その弾性率がはるかに大きい。例えば粘度平均分
子量190万の超高分子量ボ1】エチレンにおいては、
本発明方法により最大延伸倍率約23倍まで延伸するこ
とが可能であり(延伸温度140℃)、この場合得られ
た延伸シートの弾性率は約15 GPaに達するが、固
体状態における延伸方法によると、最大延伸倍率約11
まで延伸することが可能であり(延伸温度130℃)、
この場合得られた延伸シートの弾性率は約60Pa程度
である。
Such ultra-high molecular weight polyethylene has a sheet of 1
If the stretched sheet is stretched once in a molten state at 50°C or lower, the elastic modulus and tensile strength of the obtained stretched sheet increase as the stretching ratio increases, but those with a viscosity average molecular weight of less than 1.5 million does not exhibit this property. Furthermore, the stretched sheet obtained by stretching to the maximum draw ratio by the method of the present invention has a much higher elastic modulus than the stretched sheet obtained by stretching to the maximum draw ratio by the conventional solid state drawing method. big. For example, in ultra-high molecular weight ethylene with a viscosity average molecular weight of 1.9 million,
By the method of the present invention, it is possible to stretch to a maximum stretching ratio of about 23 times (stretching temperature: 140°C), and the elastic modulus of the stretched sheet obtained in this case reaches about 15 GPa. , maximum stretching ratio approximately 11
It is possible to stretch up to (stretching temperature 130°C),
The elastic modulus of the stretched sheet obtained in this case is about 60 Pa.

また、本発明方法により高延伸倍率に延伸して得うした
延伸シートにおいては、広角X線回折と複屈折測定によ
ると、結晶領域及び非晶領域ともによく配向しており、
配向度及び結晶化度は延伸倍率が高いほど太き(、また
同一延伸倍率では延伸温度が低いほど大きい。さらに小
角散乱像は二点像であって、ラメラ面が延伸方向と垂直
になるように配向した400〜600八程度の長い周期
構造が存在する。これに対し、固体状態における延伸に
よって得られる延伸シートにおいては、その小角散乱像
は四点像であって、ラメラの法線が延伸方向から傾いて
配列した周期構造を有している。
In addition, in the stretched sheet obtained by stretching to a high stretching ratio by the method of the present invention, wide-angle X-ray diffraction and birefringence measurements show that both crystalline and amorphous regions are well oriented.
The degree of orientation and crystallinity increase as the stretching ratio increases (and, at the same stretching ratio, the lower the stretching temperature) There exists a long periodic structure of about 400 to 6008 oriented.On the other hand, in a stretched sheet obtained by stretching in a solid state, the small-angle scattering image is a four-point image, and the normal line of the lamella is It has a periodic structure arranged at an angle.

また、本発明方法においては、延伸倍率の増加にともな
って示差走査熱量測定における融解ピークが高温側ヘシ
フトすることから、延伸シートには伸びきり鎖結晶や緊
張した非晶鎖が含まれているものと考えられる。
In addition, in the method of the present invention, the melting peak in differential scanning calorimetry shifts to the high temperature side as the stretching ratio increases. it is conceivable that.

本発明方法においては、粘度平均分子量150万以上の
超高分子量ポリエチレンシートの延伸を、150℃以下
の溶融状態にて延伸倍率10倍以上で行うことが必要で
あり、この延伸温度が150℃を超えると、高延伸倍率
が得られずに目的とする高弾性率及び高引張強度を有す
る延伸シートが得られない。また、通常130℃以下の
温度では該ポリエチレンシートは溶融していないので、
好ましい延伸温度は136〜150℃の範囲である。
In the method of the present invention, it is necessary to stretch an ultra-high molecular weight polyethylene sheet having a viscosity average molecular weight of 1.5 million or more in a molten state of 150°C or less at a stretching ratio of 10 times or more, and this stretching temperature is 150°C or higher. If it exceeds, a high stretching ratio cannot be obtained and a stretched sheet having the desired high elastic modulus and high tensile strength cannot be obtained. In addition, since the polyethylene sheet does not usually melt at temperatures below 130°C,
The preferred stretching temperature is in the range of 136-150°C.

一方、粘度平均分子量70万程度の超高分子量ポリエチ
レンに対して本発明方法を適用した場合、36倍といっ
た高延伸倍率に延伸することが可能であるが、得られた
延伸シートの弾性率や引張強度は期待するほど太き(は
な(、むしろ固体状態における従来の延伸方法を用いる
方が、本発明方法を用いるより弾性率や引張強度の高い
延伸シートが得−られる。この理由は粘度平均分子量7
0万程度の超高分子量ポリエチレンは、粘度平均分子1
ii150万以上の超高分子量ポリエチレンに比べて、
その溶融粘度がそれほど高(ない9とによる。
On the other hand, when the method of the present invention is applied to ultra-high molecular weight polyethylene with a viscosity average molecular weight of about 700,000, it is possible to stretch it to a high stretching ratio of 36 times, but the elastic modulus and tensile strength of the obtained stretched sheet are The strength is as thick as expected (in fact, it is better to use the conventional stretching method in the solid state to obtain a stretched sheet with higher elastic modulus and tensile strength than using the method of the present invention.The reason for this is that the viscosity average Molecular weight 7
Ultra-high molecular weight polyethylene of about 0,000 has a viscosity average molecular weight of 1
ii Compared to ultra-high molecular weight polyethylene of 1.5 million or more,
Its melt viscosity is not so high (9).

次に本発明の製造方法について、その1例を示すと、ま
ず粘度平均分子量150万以上の超高分子量ポリエチレ
ン粉末を金型に入れ、温度220−250℃、圧力60
〜70Kg/l;Jの条件で熱プレスにて圧縮し、厚さ
0.5〜0.8簡のシートに成形する。
Next, to give an example of the manufacturing method of the present invention, first, ultra-high molecular weight polyethylene powder with a viscosity average molecular weight of 1.5 million or more is placed in a mold, and the temperature is 220-250°C and the pressure is 60°C.
It is compressed with a hot press under the conditions of ~70 Kg/l; J and formed into a sheet with a thickness of 0.5 to 0.8.

次いでこのシートを延伸装置に保持して140−160
℃の温度で溶融したのち、136〜150℃の温度にて
一軸方向に延伸すればよい。この−軸延伸は自由幅で行
うことが望ましい。
This sheet is then held in a stretching device and stretched to 140-160
After melting at a temperature of 136°C to 150°C, it may be uniaxially stretched at a temperature of 136 to 150°C. It is desirable that this -axis stretching be performed in a free width.

本発明方法で得られた超高分子量ポリエチレン高弾性率
シートは、通常の超高分子量ポリエチレンのもつ種々の
特性、例えば高い衝撃強度、優れた耐摩耗性や耐薬品性
や自己潤滑性、及び低吸水性々どの特性を有する上に、
さらに優れた弾性率と引張強度を有している。
The ultra-high molecular weight polyethylene high modulus sheet obtained by the method of the present invention has various properties that ordinary ultra-high molecular weight polyethylene has, such as high impact strength, excellent abrasion resistance, chemical resistance, self-lubricity, and low In addition to having properties such as water absorption,
Furthermore, it has excellent elastic modulus and tensile strength.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、各例中の伸度、引張;強度及び弾性率は、クロス
ヘッド速度一定形引張試験機(東洋ボールドウィン■製
、 UTM−1−100)を用い、J工5K7113−
1980に従って測定した。各測定値の意味するところ
は次のとおりである。
In addition, the elongation, tensile strength, and elastic modulus in each example were measured using a crosshead constant speed tensile tester (manufactured by Toyo Baldwin ■, UTM-1-100), and
Measured according to 1980. The meaning of each measurement value is as follows.

伸度  ;引張破断時におけるひずみ値。Elongation: Strain value at tensile rupture.

引張強度;引張破断時における応力値であって、破断時
の荷重を試験片の元の断面積 で除した値。
Tensile strength: Stress value at tensile rupture, which is the value obtained by dividing the load at rupture by the original cross-sectional area of the test piece.

弾性率 ;変形開始点における引張応力のひずみに対す
る比。
Elastic modulus: Ratio of tensile stress to strain at the point where deformation begins.

また、延伸シートの固体構造の測定は次の方法に従って
行った。
Furthermore, the solid structure of the stretched sheet was measured according to the following method.

広角X線回折はガイガーフレックスxGC−20回折装
置(理学電機(床裏]を、また小角X線回折はロータフ
レックスRU−200ip折装置(理学電機ニルマー製
)を用いて行った。複屈折は、偏光顕微鏡トベレツク(
Berθk)#コンペンセーターを用いて測定した。ま
た、結晶化度は水−エタノール密度勾配管を用いて測定
した密度の値より計算した。
Wide-angle X-ray diffraction was carried out using a Geigerflex xGC-20 diffractometer (manufactured by Rigaku Denki Co., Ltd.), and small-angle X-ray diffraction was carried out using a Rotaflex RU-200ip diffraction device (manufactured by Rigaku Denki Nilmer). Birefringence was Polarizing microscope Toveretsk (
Berθk)# Measured using a compensator. Further, the degree of crystallinity was calculated from the density value measured using a water-ethanol density gradient tube.

実施例1 粘度平均分子量190万の超高分子量ポリエチレン粉末
(三井石油化学■製、商品名ハイゼックスミリオン24
0M)を金型に入れ、温度240℃、圧カフ0Kg/d
の条件で熱プレスにて圧縮し、厚さ帆6閣のシートに成
形した。
Example 1 Ultra-high molecular weight polyethylene powder with a viscosity average molecular weight of 1.9 million (manufactured by Mitsui Petrochemicals, trade name: HIZEX MILLION 24)
0M) into the mold, temperature 240℃, pressure cuff 0Kg/d
It was compressed using a hot press under the following conditions and formed into a sheet with a thickness of 6 mm.

このシートからゲージ要約2cInの試料を切り出し、
手動式の延伸装置に保持して恒温空気浴槽に入れ、温度
を140〜160℃に保った。最初半透明であった固体
のシートは、徐々に透明になり30〜60分後には完全
に溶融して、一様に透明化した溶融状態のシートに変化
した。次いで溶融状態に保ったままで、136〜150
℃の所定の温度に数分間維持したのち、その温度におい
て自由幅−軸延伸した。延伸後、恒温空気浴槽から試料
が保持されている延伸装置を出して放冷したのち、延伸
シートの試料を取り出した。
A sample of gauge summary 2 cIn was cut out from this sheet,
It was held in a manual stretching device and placed in a constant temperature air bath, and the temperature was maintained at 140-160°C. The solid sheet, which was initially translucent, gradually became transparent and completely melted after 30 to 60 minutes, turning into a uniformly transparent molten sheet. Then, while keeping it in a molten state, it was heated to 136 to 150
After maintaining a predetermined temperature of .degree. C. for several minutes, free width-axis stretching was carried out at that temperature. After stretching, the stretching device holding the sample was taken out from the constant temperature air bath and allowed to cool, and then the stretched sheet sample was taken out.

この試料について、前記した方法に従って伸度、引張強
度及び弾性率を測定し、これらの力学的性質と延伸倍率
との関係を第1図に示した。
The elongation, tensile strength, and elastic modulus of this sample were measured according to the methods described above, and the relationship between these mechanical properties and the stretching ratio is shown in FIG.

また、前記の方法に従って結晶構造を測定して、結晶C
軸の延伸方向への配向度、小角散乱像より求めた長周期
及びラメラ面の傾き角、非晶鎖の配向度、及び結晶化度
を求め、その結果を第1表に示した。
In addition, the crystal structure was measured according to the method described above, and the crystal C
The degree of orientation of the axis in the stretching direction, the long period and inclination angle of the lamellar plane determined from the small-angle scattering image, the degree of orientation of the amorphous chains, and the degree of crystallinity were determined, and the results are shown in Table 1.

また、比較のため、圧縮成形して得られたシートを固体
状態(130℃)において自由幅−軸延伸し、その延伸
シートについて前記と同様に力学的性質及び結晶構造を
測定した。そσ6果を第1図及び第1表に示した。
For comparison, a sheet obtained by compression molding was subjected to free width-axis stretching in a solid state (130° C.), and the mechanical properties and crystal structure of the stretched sheet were measured in the same manner as described above. The σ6 results are shown in Figure 1 and Table 1.

第1図から明らかなように、本発明方法により最大延伸
倍率まで延伸して得られた延伸シートの弾性率(延伸温
度140℃、延伸倍率22.7、弾性率15.3 GP
a )は、固体状態において最大延伸倍率まで延伸して
得られた延伸シートの弾性率(延伸温度130℃、延伸
倍率11.弾性率5 GPa )よりはるかに大きい。
As is clear from FIG. 1, the elastic modulus of the stretched sheet obtained by stretching to the maximum stretching ratio by the method of the present invention (stretching temperature 140°C, stretching ratio 22.7, elastic modulus 15.3 GP
a) is much larger than the elastic modulus of the stretched sheet obtained by stretching to the maximum stretching ratio in the solid state (stretching temperature: 130° C., stretching ratio: 11. Elastic modulus: 5 GPa).

また、延伸倍率が増加するにつれて、弾性率と引張強度
は増加し、伸度は減少する。
Moreover, as the stretching ratio increases, the elastic modulus and tensile strength increase, and the elongation decreases.

他方、第1表から明らかなように、延伸倍率の増加に伴
なって結晶C軸と非晶銀の配向度及び結晶化度は増加し
、また同一延伸倍率では延伸温度が低いほど、それらは
大きい。さらに溶融状態において延伸して得られた延伸
シートでは、ラメラ面が延伸方向と垂直になるように配
向した周期構造C賢しているが、固体状態の延伸によっ
て得られた延伸シートにおいては、ラメラの法線が延伸
方向から傾いて配列するような周期構造を有している。
On the other hand, as is clear from Table 1, the crystal C axis and the degree of orientation and crystallinity of amorphous silver increase as the stretching ratio increases, and at the same stretching ratio, the lower the stretching temperature, the lower the big. Further, a stretched sheet obtained by stretching in a molten state has a periodic structure C in which the lamellar plane is oriented perpendicular to the stretching direction, but a stretched sheet obtained by stretching in a solid state has a periodic structure C. It has a periodic structure in which the normal lines of are arranged at an angle from the stretching direction.

実施例2 粘度平均分子量270万の超高分子量ポリエチレン粉末
(三井石油化学■製、商品名ハイゼックスミリオン34
0M)を用い、実施例1と同様にして各延伸温度(溶融
状態136℃、140℃、150℃、固体状態130℃
)における延伸シートを作製し、力学的性質及び結晶構
造を測定した。その結果を第2図及び第2表に示す。
Example 2 Ultra-high molecular weight polyethylene powder with a viscosity average molecular weight of 2.7 million (manufactured by Mitsui Petrochemicals, trade name HIZEX MILLION 34)
0M), and each stretching temperature (136°C, 140°C, 150°C in molten state, 130°C in solid state) in the same manner as in Example 1.
) was produced, and its mechanical properties and crystal structure were measured. The results are shown in FIG. 2 and Table 2.

第2図から明らかなように、溶融状態(136℃)にお
いて最大延伸倍率(12,6)まで延伸して得られた延
伸シートの最高弾性率は7.8GPaであるのに対し、
固体状態(130℃]において最大延伸1音率(8,9
)まで延伸して得られた延伸シートの最大弾性率は3 
、8GPa程度である。
As is clear from FIG. 2, the maximum elastic modulus of the stretched sheet obtained by stretching to the maximum stretching ratio (12,6) in the molten state (136°C) is 7.8 GPa, whereas
Maximum stretching 1 sound rate (8,9
) The maximum elastic modulus of the stretched sheet obtained by stretching it to
, about 8 GPa.

比較例 粘度平均分子量70万の超高分子量ポリエチレン粉末(
三片石油化学■製、商品名ハイゼックスミリオン145
M)を用い、実施例1と同様にして各延伸温度(溶融状
態136℃、 140”C、固体状態130℃)におけ
る延伸シートを作成し、力学的性質を測定した。その結
果を第3図に示す。
Comparative Example Ultra-high molecular weight polyethylene powder with a viscosity average molecular weight of 700,000 (
Manufactured by Mikata Petrochemical ■, product name: HIZEX MILLION 145
Using M), stretched sheets were prepared at each stretching temperature (136°C, 140"C in the melt state, 130"C in the solid state) in the same manner as in Example 1, and the mechanical properties were measured. The results are shown in Figure 3. Shown below.

第3図から明らかなように、溶融状態において延伸する
場合、36倍(136℃)といった高延伸倍率に延伸す
ることができたが、得られた延伸シートの弾性率は3.
8GPa、引張強度はQ、2GPaと小さい。これに対
して固体状態(130℃)において延伸する場合、延伸
倍率の増加に伴なって得られた延伸シートの弾性率と引
張強度は増加し、最高延伸倍率12におい℃、その弾性
率は3 GPa、引張強度はQ、59 GPaを示して
おり、したがって゛この程度の分子量をもつ超高分子量
ポリエチレンにおいては、溶融状態よりむしろ固体状態
において延伸する方が高い弾性率と引張強度を有する延
伸シートが得られることが分る。
As is clear from FIG. 3, when stretching in the molten state, it was possible to stretch to a high stretching ratio of 36 times (136°C), but the elastic modulus of the obtained stretched sheet was 3.
8 GPa, and the tensile strength is as low as Q, 2 GPa. On the other hand, when stretching in the solid state (130°C), the elastic modulus and tensile strength of the obtained stretched sheet increase as the stretching ratio increases, and at the maximum stretching ratio of 12°C, the elastic modulus is 3°C. GPa and tensile strength are Q, 59 GPa. Therefore, in ultra-high molecular weight polyethylene with a molecular weight of this level, it is possible to obtain a stretched sheet with higher elastic modulus and tensile strength when stretched in the solid state rather than in the molten state. It can be seen that the following can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は、それぞれハイセツクスミ
リオン240M、同340 M及び同145Mを用いて
得られた延伸シートにおける弾性率、引張強度及び伸度
と延伸倍率との関係を示すグラフである。 特許出願人 工業技術院長 石 坂誠 −第1図 第2図 延伸Pr* 136°CCΔ)140’C(0)  +50’c(ロ
)1306c(・)
Figures 1, 2 and 3 show the relationships between the elastic modulus, tensile strength and elongation of stretched sheets obtained using Hisex Million 240M, 340M and 145M, respectively, and the stretching ratio. It is a graph. Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Figure 1 Figure 2 Stretching Pr* 136°CCΔ) 140'C(0) +50'c(B) 1306c(・)

Claims (1)

【特許請求の範囲】[Claims] 1 粘度平均分子量150万以上の超高分子量ポリエチ
レンの高弾性率シートを製造するに当り、該ポリエチレ
ンのシートを加熱し溶融状態としたのち、150℃を超
えない温度のもとて延伸倍率10倍以上に延伸すること
を特徴とする超高分子量ポリエチレンの高弾性率シート
の製造方法。
1. In producing a high elastic modulus sheet of ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.5 million or more, the polyethylene sheet is heated to a molten state and then stretched at a stretching ratio of 10 times at a temperature not exceeding 150°C. 1. A method for producing a high elastic modulus sheet of ultra-high molecular weight polyethylene, which comprises stretching the sheet to a higher degree.
JP18813581A 1981-11-24 1981-11-24 Method for producing high elastic modulus sheet of ultra-high molecular weight polyethylene Expired JPS6053690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18813581A JPS6053690B2 (en) 1981-11-24 1981-11-24 Method for producing high elastic modulus sheet of ultra-high molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18813581A JPS6053690B2 (en) 1981-11-24 1981-11-24 Method for producing high elastic modulus sheet of ultra-high molecular weight polyethylene

Publications (2)

Publication Number Publication Date
JPS5889326A true JPS5889326A (en) 1983-05-27
JPS6053690B2 JPS6053690B2 (en) 1985-11-27

Family

ID=16218343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18813581A Expired JPS6053690B2 (en) 1981-11-24 1981-11-24 Method for producing high elastic modulus sheet of ultra-high molecular weight polyethylene

Country Status (1)

Country Link
JP (1) JPS6053690B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215826A (en) * 1983-05-24 1984-12-05 Mitsui Petrochem Ind Ltd Manufacture of super high molecular weight polyethylene film
JPS59220329A (en) * 1983-05-30 1984-12-11 Agency Of Ind Science & Technol Preparation of ultra-high molecular weight polyethylene sheet
JPS60228122A (en) * 1984-04-27 1985-11-13 Toa Nenryo Kogyo Kk Extremely thin polyethylene film and its manufacture
JPS60255415A (en) * 1984-05-31 1985-12-17 Mitsubishi Chem Ind Ltd Polyethylene resin film
EP0278569A2 (en) * 1987-02-10 1988-08-17 Dsm N.V. Process for the production of cast film from high-density polyethylene
US4824619A (en) * 1986-12-19 1989-04-25 Toyo Boseki Kabushiki Kaisha Process of producing polyethylene drawn filaments and drawn films
WO2010101214A1 (en) * 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
US7942577B2 (en) * 2006-12-12 2011-05-17 The Procter & Gamble Company Flexible bag having a drawtape closure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215826A (en) * 1983-05-24 1984-12-05 Mitsui Petrochem Ind Ltd Manufacture of super high molecular weight polyethylene film
JPH0373452B2 (en) * 1983-05-24 1991-11-21 Mitsui Petrochemical Ind
JPS59220329A (en) * 1983-05-30 1984-12-11 Agency Of Ind Science & Technol Preparation of ultra-high molecular weight polyethylene sheet
JPH0358902B2 (en) * 1983-05-30 1991-09-06 Kogyo Gijutsuin
JPS60228122A (en) * 1984-04-27 1985-11-13 Toa Nenryo Kogyo Kk Extremely thin polyethylene film and its manufacture
JPH0367492B2 (en) * 1984-04-27 1991-10-23 Tonen Kk
JPS60255415A (en) * 1984-05-31 1985-12-17 Mitsubishi Chem Ind Ltd Polyethylene resin film
US4824619A (en) * 1986-12-19 1989-04-25 Toyo Boseki Kabushiki Kaisha Process of producing polyethylene drawn filaments and drawn films
EP0278569A2 (en) * 1987-02-10 1988-08-17 Dsm N.V. Process for the production of cast film from high-density polyethylene
US7942577B2 (en) * 2006-12-12 2011-05-17 The Procter & Gamble Company Flexible bag having a drawtape closure
WO2010101214A1 (en) * 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
US9133315B2 (en) 2009-03-06 2015-09-15 National University Corporation Gunma University Method for producing ultrahigh molecular weight polyethylene film

Also Published As

Publication number Publication date
JPS6053690B2 (en) 1985-11-27

Similar Documents

Publication Publication Date Title
KR930002990B1 (en) Polyimide film and preparation process of the film
JP6349636B2 (en) Stretched polypropylene film
KR101294457B1 (en) Biaxially stretched polyamide resin film
KR20010024527A (en) Polypropylene composition useful for making solid state oriented film
Cakmak et al. Molecular mechanism of neck formation in uniaxially stretched poly (ethylene naphthalate) films
AU627180B2 (en) A composition comprising polymers of but-1-ene and propylene
EP1532198A1 (en) Resin compositions for producing biaxially oriented polypropylene films
JPS5889326A (en) Preparation of high elastic modulus sheet of ultra-high molecular weight polyethylene
EP1308255A1 (en) Process for the manufacturing of a shaped part of ultra high molecular weight polyethylene and a fibre made with this process
EP0140546B1 (en) Stretchend fluorine type film and method for manufacture thereof
EP2569366B1 (en) Polypropylene blends for non-woven production
JP2002294010A (en) Polypropylene-based resin composition for oriented film and the resultant oriented film
JP2002348423A (en) Polypropylene resin composition for oriented film, method for producing the same and oriented film
EP0158488B1 (en) Vinylidene fluoride resin film, process for production thereof and metallized film thereof
JPS5971411A (en) Production of macromolecular substance
Lüpke et al. Solid‐state processing of phb‐powders
JPS62156928A (en) Manufacture of polyethylene film
Cakmak et al. The effect of biaxial orientation and crystallinity on the long‐term creep behavior of poly (ethylene terephthalate) films below glass transition temperature
KR20110030687A (en) Optical resin, optical resin composition, optical film, and film
Drummond et al. Morphological analysis of linear low density polyethylene films by atomic force microscopy
JP4475699B2 (en) High strength high molecular weight polyolefin film excellent in transparency and method for producing the same
JP4507031B2 (en) High-molecular-weight polyolefin film having highly transparent portion and method for producing the same
CN113710458B (en) Stretched film and method for producing same
JP2592457B2 (en) Polyacetal molding composition
KR100572086B1 (en) Polyamide tape and preparation thereof