JPS6174820A - Polyethylene oriented film - Google Patents

Polyethylene oriented film

Info

Publication number
JPS6174820A
JPS6174820A JP19673684A JP19673684A JPS6174820A JP S6174820 A JPS6174820 A JP S6174820A JP 19673684 A JP19673684 A JP 19673684A JP 19673684 A JP19673684 A JP 19673684A JP S6174820 A JPS6174820 A JP S6174820A
Authority
JP
Japan
Prior art keywords
cross
linking
degree
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19673684A
Other languages
Japanese (ja)
Other versions
JPH0248417B2 (en
Inventor
Yasushi Itaba
板場 康
Keichirou Saitou
齋藤 啓智郎
Tadao Yoshino
忠雄 吉野
Hiroshi Yoshifuji
吉藤 寛
Takayoshi Kondo
隆義 近藤
Joichi Tabuchi
田渕 丈一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP19673684A priority Critical patent/JPS6174820A/en
Publication of JPS6174820A publication Critical patent/JPS6174820A/en
Publication of JPH0248417B2 publication Critical patent/JPH0248417B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To form a polyethylene oriented film which is transparent and superior in moisture resistance, by performing cross-linking from both sides so that a degree of the cross-linking is deteriorated inwardly in the direction of a thickness of a molded article. CONSTITUTION:As for cross-linking of a sheet like or tubular raw fabric made of polyethylene resin, it is performed from both sides so as to deteriorate inwardly a degree of the cross-linking in the direction of a thickness of raw fabric. As for the degree of the cross-linking, it is desirable that a gel content ratio whose degree of the cross-linking is lowest is less than 0-5%, the gel content ratios of cross-linked surface layers each of both the sides are more than 5% and especially within a range of 10-80% in constitution of the cross-linking of the raw fabric. Especially an article wherein the gel content ratio of the lowest degree of the cross-linking is 0% and a cross-linked layer/uncross-linked layer/cross-linked layer is constituted in the direction of the thickness of the raw material is desirable, in this case, it is desirable that a constituting ratio of each layer falls within a range of cross-linked layer:uncross- linked layer:cross-linked layer=1:0.1-10:1, and it is desirable especially that the degrees of cross-linking of the cross-linked layers each of both the sides are identical with each other.

Description

【発明の詳細な説明】 産業上の利用分野 本発明に、架橋度がフィルムの厚さ方向において、中方
向に低下したポリエチレン延伸フィルムに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a stretched polyethylene film in which the degree of crosslinking decreases in the direction of the thickness of the film.

従来の技術 従来、ポリエチレンフィルムの透明性や熱収縮性を改良
するために、架橋ポリエチレンフィルムの製造方法が種
々提案されている。例えば、特公昭57−18895号
公報にはポリエチレンなどのエチレン系樹脂フィルムを
、電子線、放射線などで均一に架橋してm熱し二軸延伸
する方法が記載されている。
BACKGROUND ART Conventionally, various methods for producing crosslinked polyethylene films have been proposed in order to improve the transparency and heat shrinkability of polyethylene films. For example, Japanese Patent Publication No. 57-18895 describes a method in which an ethylene-based resin film such as polyethylene is uniformly crosslinked with an electron beam or radiation, heated to m, and biaxially stretched.

しかしながら、従来の方法で得られる架橋延伸ポリエチ
レンフィルムは、その透明性、熱収縮性などに改良され
るものの防湿性については十分ではなく、防湿性の要求
される用途においてはフィルムの厚さを増し次り、バリ
ヤー性樹脂層を設けることが必!である。この几めフィ
ルムの透明性や包装特性全損い、また製造コストも高く
なる。
However, although cross-linked stretched polyethylene films obtained by conventional methods have improved transparency and heat shrinkability, they do not have sufficient moisture resistance, and in applications that require moisture resistance, the thickness of the film must be increased. Next, it is necessary to provide a barrier resin layer! It is. The transparency and packaging properties of this thinned film are completely lost, and the manufacturing cost also increases.

発明が解決しょうとする問題点 本発明は、透明で、かつ防湿性に優れるポリエチレン延
伸フィルムを提供すること全目的とする。
Problems to be Solved by the Invention The entire purpose of the present invention is to provide a stretched polyethylene film that is transparent and has excellent moisture resistance.

問題点を解決する乏めの手段 本発明の要旨は、架橋度がフィルムの厚さ方向において
、中方向に低下したポリエチレン延伸フィルムに関し、
その延伸フィルムはポリエチレン系樹脂からなるシート
ま比はチューブ状の成形物を、該成形物の厚さ方向にお
いて、中方向に架橋度が低下する工うに両側から架橋し
、次いで好ましくは樹脂の融点以下の温度で少くとも一
方向に延伸することに工って製造することができる。
Poor Means to Solve the Problems The gist of the present invention relates to a stretched polyethylene film in which the degree of crosslinking decreases in the direction of the thickness of the film,
The stretched film is made by crosslinking a sheet or tube-shaped molded product made of polyethylene resin from both sides in the thickness direction of the molded product such that the degree of crosslinking decreases in the middle direction, and then preferably at the melting point of the resin. It can be produced by stretching in at least one direction at the following temperatures.

次に、本発明のポリエチレン延伸フィルムについて説明
する。
Next, the polyethylene stretched film of the present invention will be explained.

ルトフローインデックス(、T工SK6760に工0温
1190c%荷重2−16に&テm11定、以下M工と
いう)がQ、051/10分以上、好ましくは11〜2
09/10分の結晶性のエチレン単独重合体し/、線状
低密度ポリエチレンの如きポリエチレン、またにエチレ
ン含量が50Xjl1%以上であるエチレンとプロピレ
ン、1−ブテン、1−ペンテン、1−ヘキセン、4−メ
チル−1−ペンテン、1−オクテンなどのα−オレフィ
ンもしくは酢酸ビニル、(メタ)アクリル酸、(メタ)
アクリル酸エステル、アクリルアミド、アクリロニトリ
ル、スチレン、塩化ビニルなどのビニル牟欣体との共重
合体などがあげられる。
Root flow index (T-work SK6760, work 0 temperature 1190c% load 2-16 & temperature 11 constant, hereinafter referred to as M-work) is Q, 051/10 minutes or more, preferably 11-2
09/10 crystalline ethylene homopolymer/polyethylene such as linear low density polyethylene, ethylene with an ethylene content of 1% or more, propylene, 1-butene, 1-pentene, 1-hexene, α-olefins such as 4-methyl-1-pentene and 1-octene or vinyl acetate, (meth)acrylic acid, (meth)
Examples include copolymers with vinyl polymers such as acrylic esters, acrylamide, acrylonitrile, styrene, and vinyl chloride.

これらポリエチレン系樹脂は単独または2種以上の混合
物で用いる。なお、これらポリエチレン系樹脂には必要
に応じて酸化防止剤、紫外線吸収剤、アンチブロッキン
グ剤、滑剤、中和剤、核剤、顔料、染料などの公知の添
加剤を加えることができる。
These polyethylene resins are used alone or in a mixture of two or more. Note that known additives such as antioxidants, ultraviolet absorbers, antiblocking agents, lubricants, neutralizing agents, nucleating agents, pigments, and dyes can be added to these polyethylene resins as necessary.

本発明のフィルムの!!!造におけるポリエチレン系樹
脂は、通常使用されている押出機に供給し、溶融押出し
冷却固化してシート状またはチューブ状の原反を成形す
る。W3融押出成形は、通常使用されているTダイから
押出してフラット7に原反とする方法、環状グイから押
出してチューブ状原反とする方法、チューブ状原反を切
り開いてシート状原反とする方法、まtにチューブ状原
反の両側を切断して二枚のシート状原反とするなど何れ
の方法を用いても工い。この場合の各原反の厚さは、原
反の厚さ方向において両側から架橋度が中方向に低下す
る工うに架橋できる厚さであれば良く、延伸倍率と延伸
後のフィルムの厚さにエフ決るものであるが、通常d2
10S200μm1好ましく1j400〜1000μm
の範囲が取り扱いお工び前記の架橋を構成させるうえか
らも望ましい。
Of the film of the present invention! ! ! The polyethylene resin in the manufacturing process is supplied to a commonly used extruder, and is melt-extruded, cooled, and solidified to form a sheet or tube-like raw fabric. W3 melt extrusion molding involves extruding from a commonly used T-die to form a flat 7 material, extruding from an annular gouer to form a tube-shaped material, and cutting open a tube-like material to create a sheet-like material. Either method can be used, such as cutting both sides of a tube-shaped raw fabric to make two sheet-shaped raw fabrics. In this case, the thickness of each film should be such that it can be crosslinked from both sides in the thickness direction of the film so that the degree of crosslinking decreases in the middle direction, and it depends on the stretching ratio and the thickness of the film after stretching. It depends on F, but usually d2
10S200μm1 preferably 1J400-1000μm
This range is desirable from the viewpoint of handling and forming the above-mentioned crosslinks.

本発明におけるポリエチレン系樹脂からなるシート状ま
几はチューブ状の原反の架橋は、原反の厚さ方向に訃い
て架橋度が中に向って低下する工うに両側から架橋する
ことが必要である。
In the present invention, cross-linking of the tube-shaped raw fabric of the sheet-like container made of polyethylene resin requires cross-linking from both sides so that the degree of crosslinking decreases in the thickness direction of the raw fabric. be.

その架橋度は、ゲル分率で表わされるが、本発明の目的
を達成させる友めには、上記の原反の架橋構成において
架橋度最低のゲル分率が0〜5チ未満で、両側各架橋表
層のゲル分率が5%以上、特に10へ80チの範囲であ
ることが好ましい。特に、架橋度最低のゲル分率が0%
で、原反の厚さ方向に架橋層/未架橋層/架橋層を構成
するものが好ましくこの場合は、各層の構成割合が架橋
層:未架橋層二架橋層=にα1〜10:1の範囲である
ことが望ましく、特に両側各架橋層の架橋度が同一であ
ることが好ましい。
The degree of crosslinking is expressed by the gel fraction, but in order to achieve the purpose of the present invention, the gel fraction at the lowest degree of crosslinking in the crosslinked structure of the above-mentioned raw fabric is 0 to less than 5 inches, and each It is preferable that the gel fraction of the crosslinked surface layer is 5% or more, particularly in the range of 10 to 80%. In particular, the gel fraction with the lowest degree of crosslinking is 0%.
In this case, it is preferable to configure crosslinked layer/uncrosslinked layer/crosslinked layer in the thickness direction of the original fabric, in which case the composition ratio of each layer is α1 to 10:1. It is desirable that the degree of crosslinking be within this range, and it is particularly preferable that the degree of crosslinking of each crosslinked layer on both sides be the same.

上記の架橋が、原反り厚さ方向において中方向に架橋度
が低下する工うに架橋が行われない場合、特に架橋度最
低のゲル分率が5チを越える場合は、延伸加工は均−t
ζ行われ、透明性は改善されるものの本発明の主目的で
ある防湿性の改善され九フィルムは得られない。ま之、
両側各架橋民層の架橋度は、ゲル分率か5チ未満の場合
は延伸加工が均一に行なわれずフィルムの透明性は改善
されない。一方、ゲル分率が80%全越える場合に、延
伸加工においてフィルムが破断し易く円滑な延伸ができ
711.qうさらに、原反の厚さ方向全層に均一に架橋
か行われた場合には延伸加工に均−Pこ行われ透F!A
注は改善されるが防湿で註が改善されず、一方、原反の
厚み方向の片側のみの架橋でl−C延伸加工においてフ
・fルムが破断しやすく、マ之原反の厚さ方向の一方か
ら架v4度が低下するL5に全層に架橋した場合は、得
られるフィルムの防湿性の改善が十分ではなく共に好ま
しくない。
If the above-mentioned crosslinking is not carried out in such a way that the degree of crosslinking decreases in the direction of the original warp thickness, especially if the gel fraction at the lowest degree of crosslinking exceeds 5 inches, the stretching process will be carried out evenly.
Although the transparency is improved, a film with improved moisture resistance, which is the main objective of the present invention, cannot be obtained. Man,
If the degree of crosslinking of each of the crosslinked layers on both sides is less than the gel fraction of 5, the stretching process will not be uniform and the transparency of the film will not be improved. On the other hand, when the gel fraction exceeds 80%, the film tends to break during stretching and smooth stretching cannot be achieved.711. qFurthermore, if the entire thickness of the original fabric is uniformly crosslinked, the stretching process will be uniformly performed. A
Notes are improved, but moisture proofing does not improve notes, and on the other hand, crosslinking only on one side in the thickness direction of the original fabric causes the film to easily break during l-C stretching, and If the entire layer is crosslinked to L5, where the crosslinking degree V4 decreases, the moisture resistance of the resulting film will not be sufficiently improved, and both are unfavorable.

なお、上記のゲル分率は、試料金製とうp−キシレンで
抽出し不尋部分を示したものである。
In addition, the above gel fraction indicates the unnatural portion extracted with p-xylene manufactured by Sample Corporation.

この工りな架橋を行う方法としては、例えば、原反の両
側から電子線を照射する方法、まfcは架橋剤を配合し
たポリエチレン樹脂の多層共押出による方法などがあげ
られる。
Examples of methods for performing this elaborate crosslinking include a method of irradiating electron beams from both sides of the original fabric, and a method of multilayer coextrusion of polyethylene resin blended with a crosslinking agent.

電子線全照射する方法は、原反の厚さ、樹脂の種類、分
子量、分子量分布に工っても異なるが、通常は電子線の
照射量全3〜50メガラツド(Mrad ) s好まし
くは5〜30メガランドとすれば工い。ま几、照射は原
反シートの表裏もしくに原反チューブの内外に同時、ま
7’Cは表裏もしくは内外に分けて、さらには数回に分
けて行っても=い。この場合、原反への照射線量は、原
反の表裏もしくに内外が同一線量であることが特に好ま
しい。また、照射はポリエチレン系樹脂の原反が、押出
溶融の状態または押出冷却固化後の状態のいずれで行っ
ても工い。さらに、電子線の透過能の調整に、原反の厚
さに対する印加電圧の調整、遮へい物例えばフィルム、
シート、板などによるマスキングなどがあげられる。
The method of irradiating the entire electron beam varies depending on the thickness of the original fabric, the type of resin, the molecular weight, and the molecular weight distribution, but usually the total amount of electron beam irradiation is 3 to 50 megarads (Mrad), preferably 5 to 50 s. If it costs 30 megaland, it's a lot. Alternatively, the irradiation can be carried out simultaneously on the front and back sides of the original fabric sheet, the inside and outside of the original fabric tube, or the irradiation can be carried out separately on the front and back sides or inside and outside, or even in several batches. In this case, it is particularly preferable that the irradiation dose to the original fabric is the same on the front and back sides of the original fabric, or on the inside and outside. Further, the irradiation can be carried out regardless of whether the original polyethylene resin is in the extrusion melted state or in the state after extrusion cooling and solidification. Furthermore, in order to adjust the transmission ability of the electron beam, it is necessary to adjust the applied voltage depending on the thickness of the original fabric, and to use a shielding material such as a film.
Examples include masking with sheets, boards, etc.

次に、電子線照射tを調整する一例をあげると、例えば
照射する原反の厚さが500μmの場合には、20/A
m厚さの25枚の薄いフィルムを緊密に重ね合せてはソ
500μm厚さの試験片とし、これに厚さ方向の両側エ
フ同量の電子線を照射し、架橋せしめ友試験片を20μ
mの25枚のフィルムに分離し、それぞれの架橋度を測
定すれば試験片の厚さ方向の架橋度の分布状態を矧るこ
とができる。この結果から原反の厚さと電子線照射Fi
tKjる架橋度との関係を知ることができる。
Next, to give an example of adjusting the electron beam irradiation t, for example, when the thickness of the original fabric to be irradiated is 500 μm, 20/A
A test piece with a thickness of 500 μm was obtained by tightly stacking 25 thin films with a thickness of
By separating the sample into 25 films of m and measuring the degree of crosslinking of each film, it is possible to determine the distribution of the degree of crosslinking in the thickness direction of the test piece. From this result, the thickness of the original fabric and the electron beam irradiation Fi
The relationship between tKj and the degree of crosslinking can be known.

また、架橋剤を配合し九ポリエチレン系樹脂の多層共押
出しに二9架橋する方法としては、例えば有機過酸化物
などの架橋剤をポリエチレン系樹脂に配合したものを、
シート状原反においては厚さ方向の両側外層とし、チュ
ーブ状原反においてに厚さ方向の内外層とし、有機過酸
化物を配合しないか、ま九rs、前記の最低架橋度以下
となる工うに有機過酸化物を配合したものを原反厚さ方
向の中間層となるLうに多層共押出機に供給し、樹脂の
融点以上の温度で架橋共押出する方法があげられる。
In addition, as a method for crosslinking multilayer coextrusion of polyethylene resin by blending a crosslinking agent, for example, a method in which a crosslinking agent such as an organic peroxide is blended with polyethylene resin,
For sheet-like raw fabrics, the outer layers are on both sides in the thickness direction, and for tube-shaped raw fabrics, they are the inner and outer layers in the thickness direction. One method is to supply sea urchin mixed with an organic peroxide to a sea urchin multilayer coextruder to form an intermediate layer in the thickness direction of the original fabric, and crosslink and coextrude at a temperature equal to or higher than the melting point of the resin.

延伸は、架橋され之原反を加熱し、通常のロール法、テ
ンター法、チューブラ−法もしくは圧延法まfcはこれ
らの方法の組合せに1つて所定の倍率で一軸ま之框二軸
方向に延伸してフィルムを得る。二軸延伸では、同時ま
たは逐次延伸のどちらであっても工い。
Stretching is carried out by heating the cross-linked raw material and stretching it in the uniaxial and biaxial directions at a predetermined magnification using the usual roll method, tenter method, tubular method, or rolling method, or a combination of these methods. and get the film. Biaxial stretching can be done either simultaneously or sequentially.

延伸温度に、ポリエチレン系樹脂の軟化点以上、特に軟
化点から結晶融点迄の範囲が好ましい。具体的には70
〜1ダ0℃、好ましくは満でハ使脂の軟化が不十分で均
一で安定な延伸を行うことができない。一方、温度が融
点を越えると樹脂が過度に溶融するので安定な延伸が行
えず、また得られるフィルムの防湿性の改善が不十分で
ある。
The stretching temperature is preferably higher than the softening point of the polyethylene resin, particularly in the range from the softening point to the crystal melting point. Specifically 70
When the temperature is between 0.degree. On the other hand, if the temperature exceeds the melting point, the resin will melt excessively, making stable stretching impossible, and the resulting film will not be sufficiently improved in moisture resistance.

ま之、延伸倍率に、引張り延伸において、縦方向(MD
)お工び/ま几は横方向(TD)に5倍以上、好ましく
は4〜8倍で行うことが望ましい。延伸倍率が3倍未満
では延伸が不均一で透明法に優れる延伸フィルムが得ら
れない。ま友、MD力方向圧延し、TD力方向引張り延
伸する場合の延伸倍率に、MD力方向1.5倍以上、好
ましくは2〜6倍、TD力方向3倍以上、好ましくは4
〜8倍で行うことが望ましい。TD力方向圧延倍率が1
.5倍未満では防湿性の改良効果が不十分である。
However, in the stretching ratio, in the tensile stretching, the longitudinal direction (MD
) The machining/machining is desirably carried out at 5 times or more in the transverse direction (TD), preferably 4 to 8 times. If the stretching ratio is less than 3 times, the stretching will be non-uniform and a stretched film excellent in transparency cannot be obtained. Mayu, the stretching ratio when rolling in the MD force direction and tensile stretching in the TD force direction is 1.5 times or more in the MD force direction, preferably 2 to 6 times, and 3 times or more in the TD force direction, preferably 4.
It is desirable to perform the test at a magnification of ~8 times. TD force direction rolling ratio is 1
.. If it is less than 5 times, the effect of improving moisture resistance is insufficient.

発明の効果 以上の構成による本発明のポリエチレン延伸フィルムは
、均一に全層架橋し念ポリエチレン延伸フィルムrこ比
べ防湿性お工び剛性に優れ、また未架橋ボリエデレンフ
イルムに比べ透明法にも優れるものである。
The polyethylene stretched film of the present invention, which has a structure that exceeds the effects of the invention, is uniformly cross-linked in all layers, has superior moisture resistance and rigidity compared to stretched polyethylene films, and is also more resistant to transparent processing than uncrosslinked polyethylene films. It is excellent.

本発明のポリエチレン延伸フィルムに、上記の工うな優
れ几特性に工9、透明な防湿性包装フィルムとして好適
である。
The stretched polyethylene film of the present invention has the above-mentioned excellent properties and is suitable as a transparent moisture-proof packaging film.

実施例 以下、本発明の実施例を示す。なお、実施例における試
験法は次の通りである。
Examples Examples of the present invention will be shown below. In addition, the test method in the example is as follows.

(1)ヘイズ: ASTM D1005(2)透湿f:
 、7I8 Z0208B法(温240℃、相対湿度9
0チで両足ン ]3)   剛  注:  ASTM  D882(4
)   ゲル分率:  ASTM  D2765、A法
実施例1 低密度ポリエチレン(密度α92017cm3、M]:
 五〇f/10分、以下LDPEという)をTダイ押出
シート状原反にエフ厚さQ、6mのシート状原反に成形
した。
(1) Haze: ASTM D1005 (2) Moisture permeability f:
, 7I8 Z0208B method (temperature 240°C, relative humidity 9
[Both feet at 0] 3) Tsuyoshi Note: ASTM D882 (4
) Gel fraction: ASTM D2765, A method Example 1 Low density polyethylene (density α92017cm3, M]:
50 f/10 minutes (hereinafter referred to as LDPE) was extruded using a T-die to form a sheet-like raw fabric with an F thickness of Q and 6 m.

このシート状原反に、電子線照射装置(ESI社製)を
用い、窒素ガス雰囲気下で表裏それぞれに165 kV
−45mAの条件下で10メガランドの電子線を照射し
友。この架橋シートの照射面お工びシートの厚さ方向の
内部の架橋度全昶る之め、上記LDPKからなる厚さ2
0μmの薄いフィルム50枚金重ねて厚さ16鴎の試験
片とし、同一条件で電子線を照射して各々の薄いフィル
ムの架橋度を調べ次ところ、照射面両側の薄いフィルム
の架橋度はゲル分率30%、厚さ方向内部の最低架橋は
ゲル分率0チであつ次。
Using an electron beam irradiation device (manufactured by ESI), this sheet-like material was exposed to 165 kV on each front and back under a nitrogen gas atmosphere.
A 10 megaland electron beam was irradiated under the condition of -45mA. The irradiated surface of this crosslinked sheet is made of the above-mentioned LDPK so that the degree of crosslinking inside the sheet in the thickness direction is completely reduced.
Fifty sheets of 0 μm thin film were layered to form a test piece with a thickness of 16 mm, and the degree of crosslinking of each thin film was examined by irradiating it with electron beams under the same conditions. The gel fraction is 30%, and the lowest crosslinking inside the thickness direction is when the gel fraction is 0.

また、架橋層お工び未架44層の厚ざの構成比は、架橋
層:未架橋m:架橋層=1:t8二1であった。
Further, the composition ratio of the thickness of the crosslinked layer and the uncrosslinked 44 layers was crosslinked layer: uncrosslinked m: crosslinked layer = 1:t821.

この架橋シート金温度105℃でMD方向に4倍、TD
方向5倍に延伸して厚さ30μmの二軸i伸hnpgフ
ィルムを得友。このフィルムの特性を表−1に示し皮。
This cross-linked sheet metal temperature is 105℃, 4 times in MD direction, TD
A biaxial i-stretched HNPG film with a thickness of 30 μm was obtained by stretching 5 times in the direction. The properties of this film are shown in Table 1.

なお、このフィルムの1i′ft実体顕微鏡で100倍
に拡大し、フィルム面全鋭利なビンセットではつると表
面の架橋層は柔らかく剥がれるが、未架橋の中部層はフ
ィブリル化した。また、フィルムの反対面も同様であつ
九。
This film was magnified 100 times using a 1i'ft stereoscopic microscope, and when used with a sharp bin set on the entire surface of the film, the crosslinked layer on the surface was gently peeled off, but the uncrosslinked middle layer was fibrillated. The same goes for the other side of the film.

実施例2〜10 実施例1のLDPコ、I、DPIIC(密度f1922
S’/cm”、MI&’ Of/10分)、線状低密度
ポリエチレン(密度α924 f/cm’、M工 2.
09710分、以下I、LDPK  といり2お工び中
密度ポリエチレン(密度CL954f/α3、M工t0
2/10分、以下MDICという)を用いて、原反の厚
さ、原反厚さ方向の架橋度の調整おLび延伸を表−1に
示す工うな条件で行つfc以外は、実施例1と同様の方
法で各延伸フィルムを得た。この各フィルムの特注を表
−1に併記し几。
Examples 2 to 10 LDP Ko, I, DPIIC (density f1922) of Example 1
S'/cm", MI &' Of/10 minutes), linear low density polyethylene (density α924 f/cm', M work 2.
09710 minutes, hereinafter referred to as I, LDPK 2-hole medium-density polyethylene (density CL954f/α3, M-work t0
2/10 minutes, hereinafter referred to as MDIC), the thickness of the original fabric, the degree of crosslinking in the thickness direction of the original fabric were adjusted, and the stretching was carried out under the conditions shown in Table 1. Each stretched film was obtained in the same manner as in Example 1. The custom orders for each film are listed in Table 1.

比較例1,2 実施例1お工び7において、電子線照射装置の印加電圧
を上げて電子線の透過能を増大し、原反シート厚き方向
の架橋度を均一とし、ゲル分率をそれぞA65チお工び
45チとしたものを用い、表−1に示す条件で延伸を行
い延伸フィルムを得た。このフィルムの特性を表−1に
併記した。
Comparative Examples 1 and 2 In Step 7 of Example 1, the applied voltage of the electron beam irradiation device was increased to increase the electron beam penetration ability, the degree of crosslinking in the thickness direction of the raw sheet was made uniform, and the gel fraction was A stretched film was obtained by stretching under the conditions shown in Table 1 using A65-thick and 45-thick A65 film. The properties of this film are also listed in Table-1.

比較例3.4 実施例1お工び7において、電子線による架橋を原反の
厚さ方向片側から行い、原反厚ざ方向の架橋層お工び未
架橋層の比をそれぞれ1:19とし、原反シートの照射
面お工び非照射面のゲル分率をそれぞれ65チと0%お
工び45チと0%としtものを用い、表−1に示す条件
で延伸全行い延伸フィルムを得友。このフィルムの特注
全表−1に併記し之。
Comparative Example 3.4 In the process 7 of Example 1, crosslinking with electron beam was performed from one side in the thickness direction of the original fabric, and the ratio of the crosslinked layer to the uncrosslinked layer in the thickness direction of the original fabric was 1:19, respectively. The gel fraction of the irradiated side and the non-irradiated side of the original sheet were set to 65 and 0%, respectively, and 45 and 0%, and the stretching was carried out under the conditions shown in Table 1. Get the film. All custom orders for this film are listed in Table-1.

実施例11〜13 ポリエチレンの密度、M工 および融点のツレぞれ異な
るものを用いて、原反の厚さ、原反厚さ方向の架橋度の
調整および延伸加工を表−2に示す条件で行った以外は
実施例1と同様の方法で各延伸フィルムを得た。この各
フィルムの特性を表−2に示した。
Examples 11 to 13 Using polyethylene with different density, M process, and melting point, the thickness of the original fabric, the degree of crosslinking in the thickness direction of the original fabric were adjusted, and the stretching process was performed under the conditions shown in Table 2. Each stretched film was obtained in the same manner as in Example 1 except for the following steps. The characteristics of each film are shown in Table 2.

比較例5 実施例12において、原反シートの厚さ方向の架橋度を
全層均一にした延伸フィルムの特性を表−2に併記した
Comparative Example 5 Table 2 also shows the properties of the stretched film in which the degree of crosslinking in the thickness direction of the raw sheet in Example 12 was made uniform throughout the thickness.

Claims (1)

【特許請求の範囲】[Claims] 架橋度がフイルムの厚さ方向において、中方向に低下し
たポリエチレン延伸フイルム。
A stretched polyethylene film in which the degree of crosslinking decreases in the direction of the thickness of the film.
JP19673684A 1984-09-21 1984-09-21 Polyethylene oriented film Granted JPS6174820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19673684A JPS6174820A (en) 1984-09-21 1984-09-21 Polyethylene oriented film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19673684A JPS6174820A (en) 1984-09-21 1984-09-21 Polyethylene oriented film

Publications (2)

Publication Number Publication Date
JPS6174820A true JPS6174820A (en) 1986-04-17
JPH0248417B2 JPH0248417B2 (en) 1990-10-25

Family

ID=16362739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19673684A Granted JPS6174820A (en) 1984-09-21 1984-09-21 Polyethylene oriented film

Country Status (1)

Country Link
JP (1) JPS6174820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305634A (en) * 2006-05-09 2007-11-22 Sekisui Chem Co Ltd Adhesive sheet for solar cell
JP2007311443A (en) * 2006-05-17 2007-11-29 Sekisui Chem Co Ltd Method for manufacturing adhesive sheet for solar cell
KR101139088B1 (en) * 2010-05-26 2012-04-30 삼성토탈 주식회사 EVA sheet for solar cell encapsulant and method for its preparation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470506U (en) * 1990-10-31 1992-06-23

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174321A (en) * 1983-03-23 1984-10-02 Toa Nenryo Kogyo Kk Stretched polyethylene film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174321A (en) * 1983-03-23 1984-10-02 Toa Nenryo Kogyo Kk Stretched polyethylene film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305634A (en) * 2006-05-09 2007-11-22 Sekisui Chem Co Ltd Adhesive sheet for solar cell
JP2007311443A (en) * 2006-05-17 2007-11-29 Sekisui Chem Co Ltd Method for manufacturing adhesive sheet for solar cell
KR101139088B1 (en) * 2010-05-26 2012-04-30 삼성토탈 주식회사 EVA sheet for solar cell encapsulant and method for its preparation

Also Published As

Publication number Publication date
JPH0248417B2 (en) 1990-10-25

Similar Documents

Publication Publication Date Title
JP7459919B2 (en) Biaxially oriented laminated polypropylene film
US4705714A (en) Differentially crosslinked and oriented polyethylene film
US4891173A (en) Process for producing a crosslinked and oriented polyethylene film
KR910009524B1 (en) Heat-stable crosslinked oriented polyethylene film and production there of
US4636340A (en) Method of producing crosslinked polyethylene stretched film
JPS63262242A (en) Film having low shrinkage energy
JPH0852781A (en) Multilayer polyolefin film containing reused polymer derivedfrom crosslinked film
US5045620A (en) Oriented polyethylene film and production thereof
KR100637004B1 (en) Biaxially Oriented Heat Shrinkable Polyolefin Film
JPH0392328A (en) Preparation of rolled sheet made of transparent high density polyethylene
JPH0226860B2 (en)
JPH0321341B2 (en)
JPS6174820A (en) Polyethylene oriented film
JPH0531803A (en) Manufacture of antistatic polyethylene crosslinking oriented film
JPS62173251A (en) Easy-cut film
JPH0218219B2 (en)
JPH0247334B2 (en) ENSHINHORIECHIRENFUIRUMU
JPH06297659A (en) Biaxially stretched double layer film
JPS6176533A (en) Polyethylene film
JPH0218217B2 (en)
JPH01141936A (en) Drawn polyethylene film
JP3097874B2 (en) Crosslinked heat shrinkable laminated film
JPH038659B2 (en)
JPS60196341A (en) Metal evaporated polyethylene film
JPH02134228A (en) Manufacture of high density polyethylene film