JP3097874B2 - Crosslinked heat shrinkable laminated film - Google Patents

Crosslinked heat shrinkable laminated film

Info

Publication number
JP3097874B2
JP3097874B2 JP03352695A JP35269591A JP3097874B2 JP 3097874 B2 JP3097874 B2 JP 3097874B2 JP 03352695 A JP03352695 A JP 03352695A JP 35269591 A JP35269591 A JP 35269591A JP 3097874 B2 JP3097874 B2 JP 3097874B2
Authority
JP
Japan
Prior art keywords
heat
density
film
linear low
olefin copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03352695A
Other languages
Japanese (ja)
Other versions
JPH05162270A (en
Inventor
孝啓 梶谷
照雄 多田
豊喜 和納
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Priority to JP03352695A priority Critical patent/JP3097874B2/en
Publication of JPH05162270A publication Critical patent/JPH05162270A/en
Application granted granted Critical
Publication of JP3097874B2 publication Critical patent/JP3097874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、商品をラフに包んでお
き、収縮トンネルのような加熱装置によって加熱収縮さ
せ、商品の形状にぴったり沿って密着させることによ
り、タイトに包装を行う熱収縮包装に用いる架橋熱収縮
性積層フィルムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat shrinking method in which a product is roughly wrapped, heat shrunk by a heating device such as a shrinking tunnel, and closely adhered to the shape of the product, thereby tightly wrapping the product. The present invention relates to a crosslinked heat-shrinkable laminated film used for packaging.

【0002】[0002]

【従来の技術】従来から、エチレン系重合体からなる熱
収縮性フィルムとしては、低密度エチレン単独重合体あ
るいはエチレン−酢酸ビニル共重合体に電離性放射線を
照射することにより架橋したのち延伸したものがある。
これらのエチレン系重合体からなる架橋熱収縮性フィル
ムは、プロピレン系重合体からなるものに比べ、引裂強
度、溶断シール部の衝撃強度、および耐寒性に優れると
ともに、収縮包装仕上がりがソフトである。しかし、そ
の反面、透明性やフィルム強度については十分ではなか
った。そこで、線状低密度エチレン−αオレフィン共重
合体が市販されるようになると、これらの問題を解決す
るために、低密度エチレン単独重合体あるいはエチレン
−酢酸ビニル共重合体の代わりとして、該樹脂が使用さ
れるようになった。線状低密度エチレン−αオレフィン
共重合体からなる架橋熱収縮性フィルムは、低密度エチ
レン単独重合体あるいはエチレン−酢酸ビニル共重合体
から形成された架橋熱収縮性フィルムに比べ、透明性や
フィルム強度は改善された。しかしながら、架橋されて
いる為ヒートシール性の悪さは未だ改善されていないま
まであり、その改良が望まれていた。
2. Description of the Related Art Conventionally, a heat-shrinkable film composed of an ethylene-based polymer has been obtained by crosslinking a low-density ethylene homopolymer or an ethylene-vinyl acetate copolymer by irradiating it with ionizing radiation and then stretching the film. There is.
The crosslinked heat-shrinkable film made of such an ethylene-based polymer is excellent in tear strength, impact strength of a fusing seal portion, and cold resistance as compared with those made of a propylene-based polymer, and has a soft shrink wrapping finish. However, on the other hand, transparency and film strength were not sufficient. Therefore, when a linear low-density ethylene-α-olefin copolymer is commercially available, in order to solve these problems, instead of the low-density ethylene homopolymer or ethylene-vinyl acetate copolymer, the resin is used. Came to be used. A crosslinked heat-shrinkable film composed of a linear low-density ethylene-α-olefin copolymer has higher transparency and film than a crosslinked heat-shrinkable film formed from a low-density ethylene homopolymer or an ethylene-vinyl acetate copolymer. Strength was improved. However, because of the cross-linking, the poor heat sealability has not been improved yet, and the improvement has been desired.

【0003】そこで架橋熱収縮性フィルムのヒートシー
ル性の悪さを改良するために種々の検討が行われてき
た。例えば、まず、ヒートシール性の悪さが架橋されて
いることに起因することから、架橋度をできるだけ抑え
ることが検討された。しかしながら、架橋度を低くする
と、製造時の延伸加工が困難になるばかりか、架橋する
ことにより付与される熱収縮性フィルムとしての優れた
性質、例えば高い熱収縮率や熱収縮応力が損なわれると
言う問題があった。
Therefore, various studies have been made to improve the heat sealing property of the crosslinked heat-shrinkable film. For example, first, since the poor heat sealability is caused by crosslinking, it has been studied to suppress the degree of crosslinking as much as possible. However, when the degree of cross-linking is lowered, not only the stretching process during the production becomes difficult, but also excellent properties as a heat-shrinkable film imparted by cross-linking, such as a high heat shrinkage and heat shrinkage stress are impaired. There was a problem to say.

【0004】また、フィルムの表層部だけを選択的に架
橋度を低下させることによりヒートシール性を改良する
という考え方により次の様な検討も行われた。すなわ
ち、特開昭57−197161号公報には、電離性放射
線架橋特性の異なるオレフィン系樹脂層を積層し、該積
層体に電離性放射線を照射することを特徴とする架橋度
の異なるオレフィン系樹脂層を有する積層フィルムの製
造方法が開示されている。しかしながら、この方法で得
られた積層フィルムは、線状低密度エチレン−αオレフ
ィン共重合体から形成されることによりもたらされる架
橋熱収縮フィルムとしての優れた性質、即ち透明性の良
さや強いフィルム強度が、低密度エチレン単独重合体や
エチレン−酢酸ビニル共重合体等の種類の異なる樹脂と
積層されることで損なわれるという不都合があった。
[0004] Further, the following studies have been made on the basis of improving the heat sealing property by selectively lowering the degree of crosslinking only in the surface layer portion of the film. That is, Japanese Patent Application Laid-Open No. 57-197161 discloses an olefin resin having a different degree of crosslinking characterized by laminating olefin resin layers having different ionizing radiation crosslinking properties and irradiating the laminate with ionizing radiation. A method for producing a laminated film having layers is disclosed. However, the laminated film obtained by this method has excellent properties as a crosslinked heat-shrinkable film provided by being formed from a linear low-density ethylene-α-olefin copolymer, that is, good transparency and strong film strength. However, there is an inconvenience that it is impaired when laminated with different types of resins such as a low-density ethylene homopolymer and an ethylene-vinyl acetate copolymer.

【0005】更に、フィルムの表層部に架橋抑制剤を含
浸せしめたのち電離放射線を照射することにより、フィ
ルムの表層部を除いた部分に架橋を生ぜしめ、次いでフ
ィルムを延伸する方法が特開昭50−72942号公報
に、また、基層および少なくともその片面に設けられた
架橋抑制剤を含む表面層からなる積層フィルムに電離放
射線を照射して、架橋を生ぜしめ、次いでフィルムを延
伸する方法が特開昭50−12167号公報に開示され
ている。これらの方法は線状低密度エチレン−αオレフ
ィン共重合体のみから架橋熱収縮性フィルムを形成でき
る利点はあるものの、表層部に添加された架橋抑制剤が
表面にブリードして透明性を低下せしめると共に、逆に
ヒートシール性を悪化させるという問題点があった。
Further, a method of impregnating a surface layer portion of a film with a crosslinking inhibitor and then irradiating the film with ionizing radiation to cause cross-linking in a portion excluding the surface layer portion of the film, and then stretching the film is disclosed in Japanese Patent Application Laid-Open Publication No. Sho. Japanese Patent Application Laid-Open No. 50-72942 also discloses a method of irradiating a laminated film comprising a base layer and a surface layer containing a crosslinking inhibitor provided on at least one surface thereof with ionizing radiation to cause crosslinking and then stretching the film. It is disclosed in Japanese Unexamined Patent Publication No. 50-12167. Although these methods have an advantage that a crosslinked heat-shrinkable film can be formed only from a linear low-density ethylene-α-olefin copolymer, the crosslinking inhibitor added to the surface layer bleeds to the surface to lower the transparency. At the same time, there is a problem that heat sealability is deteriorated.

【0006】[0006]

【本発明が解決しようとする課題】本発明は、線状低密
度エチレン−αオレフィン共重合体から形成されること
によりもたらされる架橋熱収縮性フィルムとしての優れ
た性質が、種類の異なる樹脂が積層されることで損なわ
れることなく、製造時の延伸加工性が良く、しかも、ヒ
ートシール性に優れた線状低密度エチレン−αオレフィ
ン共重合体からなる架橋熱収縮性積層フィルムを提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention is based on the fact that the excellent properties of a crosslinked heat-shrinkable film provided by being formed from a linear low-density ethylene-α-olefin copolymer, To provide a crosslinked heat-shrinkable laminated film made of a linear low-density ethylene-α-olefin copolymer having good stretch processability during production and excellent heat sealability without being impaired by being laminated. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明によれば、線状低
密度エチレン−αオレフィン共重合体から形成される基
層の両面に、該基層を形成する線状低密度エチレン−α
オレフィン共重合体より密度が少なくとも0.01g/
cm3以上大きい線状低密度エチレン−αオレフィン共
重合体から形成される表面層を有する積層フィルムに、
電離性放射線を5〜30Mrad照射したのち、加熱延
伸してなる架橋熱収縮性積層フィルムが提供され、また
特に、表面層を形成する線状低密度エチレン−αオレフ
ィン共重合体の密度が0.910g/cm3以上である
ことを特徴とする前記架橋熱収縮性積層フィルムが提供
される。
According to the present invention, a linear low-density ethylene-α forming the base layer is provided on both sides of a base layer formed from a linear low-density ethylene-α olefin copolymer.
Density of at least 0.01 g /
a laminated film having a surface layer formed of cm 3 or more larger linear low density ethylene -α-olefin copolymer,
A crosslinked heat-shrinkable laminated film obtained by irradiating with ionizing radiation for 5 to 30 Mrad and then stretching by heating is provided. In particular, the density of the linear low-density ethylene-α-olefin copolymer forming the surface layer is 0. The crosslinked heat-shrinkable laminated film having a weight of 910 g / cm 3 or more is provided.

【0008】本発明者らは、上記課題を達成するために
鋭意検討し、密度の異なる線状低密度エチレン−αオレ
フィン共重合体に、電離性放射線を特定の照射量範囲で
同じ照射線量を照射した場合に、僅小な密度の差におい
ても、二つの樹脂の架橋度が著しく異なることに着目
し、種々試験検討した結果、前記本発明の構成をとるこ
とにより、本発明の線状低密度エチレン−αオレフィン
共重合体からなる架橋熱収縮性積層フィルムが、製造時
の延伸加工性、および熱収縮特性がよく、しかも、ヒー
トシール性に優れていることを見い出し、本発明を完成
するに至った。
The present inventors have conducted intensive studies to achieve the above object, and applied the same irradiation dose to a linear low-density ethylene-α-olefin copolymer having different densities in a specific dose range. Focusing on the fact that the degree of cross-linking of the two resins is remarkably different even at a small difference in density when irradiated, and as a result of various tests and examinations, as a result of adopting the constitution of the present invention, the linear low A crosslinked heat-shrinkable laminated film made of a high-density ethylene-α-olefin copolymer has been found to have good stretchability during production, and good heat-shrinkage properties, and has excellent heat-sealing properties, thus completing the present invention. Reached.

【0009】しかして、本発明に用いられる線状低密度
エチレン−αオレフィン共重合体とは、密度が0.93
0g/cm3以下の、分子が重合鎖に沿い分岐または交
さ結合がほとんどまたは全く無い直鎖状分子構造のエチ
レンと少量のαオレフィンとの共重合体である。一般に
エチレンと共重合されるαオレフィンとして、プロピレ
ン、ブテン−1、ペンテン−1,4−メチルペンテン、
ヘプテン、ヘキセン−1、オクテン−1等が単独または
複数で用いられる。また、線状低密度エチレン−αオレ
フィン共重合体の密度は、エチレンと共重合するαオレ
フィンの炭素数が多い方が、またエチレンと共重合する
αオレフィンの量が多い方が低い。
The linear low-density ethylene-α-olefin copolymer used in the present invention has a density of 0.93
A copolymer of ethylene and a small amount of α-olefin having a linear molecular structure of 0 g / cm 3 or less and having little or no branching or cross-linking along the polymer chain. In general, α-olefins copolymerized with ethylene include propylene, butene-1, pentene-1,4-methylpentene,
Heptene, hexene-1, octene-1 and the like are used alone or in combination. The density of the linear low-density ethylene-α-olefin copolymer is lower when the α-olefin copolymerized with ethylene has a larger carbon number and when the amount of the α-olefin copolymerized with ethylene is larger.

【0010】本発明の架橋熱収縮性積層フィルムは、上
記の線状低密度エチレン−αオレフィン共重合体からな
る基層の両面に、基層を形成する線状低密度エチレン−
αオレフィン共重合体より密度が少なくとも0.01g
/cm3以上、好ましくは0.02g/cm3以上大きい
線状低密度エチレン−αオレフィン共重合体からなる表
面層を有する積層フィルムに、電離性放射線を5〜30
Mrad、好ましくは10〜25Mrad照射したの
ち、加熱延伸したものである。線状低密度エチレン−α
オレフィ共重合体からなる基層の両面に、基層を形成す
る線状低密度エチレン−αオレフィ共重合体より密度が
少なくとも0.01g/cm3以上大きい線状低密度エ
チレン−αオレフィ共重合体からなる表面層を有する積
層フィルムに、電離性放射線を5〜30Mradの照射
線量範囲で適宜照射すると、表面層より密度の低い基層
だけが選択的に高度に架橋され、表面層は基層に比べあ
まり架橋しない。そして、このように基層だけが選択的
に主に架橋された積層フィルムは、基層が高度に架橋さ
れているため製造時の延伸加工性が良好で、架橋するこ
とにより付与される良好な熱収縮特性即ち高い熱収縮率
や熱収縮応力を有し、しかも表面層は基層に比べあまり
架橋していないのでヒートシール性にも優れるものであ
る。
[0010] The crosslinked heat-shrinkable laminated film of the present invention comprises a linear low-density ethylene-based film having a base layer formed on both sides of the above-mentioned linear low-density ethylene-α-olefin copolymer base layer.
Density is at least 0.01 g more than α-olefin copolymer
/ Cm 3 or more, preferably 0.02 g / cm 3 or more, to the laminated film having a surface layer composed of a linear low-density ethylene-α-olefin copolymer, which is exposed to ionizing radiation for 5 to 30 times.
It is irradiated with Mrad, preferably 10 to 25 Mrad, and then heated and stretched. Linear low density ethylene-α
On both sides of a base layer made of an olefin copolymer, a linear low-density ethylene-α olefin copolymer having a density at least 0.01 g / cm 3 or more larger than the linear low-density ethylene-α olefin copolymer forming the base layer When a laminated film having a surface layer is appropriately irradiated with ionizing radiation in an irradiation dose range of 5 to 30 Mrad, only the base layer having a lower density than the surface layer is selectively highly crosslinked, and the surface layer is less crosslinked than the base layer. do not do. The laminated film in which only the base layer is selectively mainly crosslinked as described above has good stretchability at the time of production because the base layer is highly crosslinked, and has good heat shrinkage imparted by crosslinking. It has properties, that is, high heat shrinkage and heat shrinkage stress, and has excellent heat sealing properties because the surface layer is less crosslinked than the base layer.

【0011】尚、30Mradより多い照射量を照射し
た場合には、基層および表面層が共に同じ程度に高度な
架橋を生じるため、製造時の延伸加工性は良好であり、
熱収縮特性は良好であるものの、表面層が高度に架橋さ
れてしまうためヒートシール性に劣るものしか得られな
い。また、5Mrad未満の照射量しか照射しない場
合、架橋度が低すぎるため製造時の延伸加工が難しくな
る。
When the irradiation amount is more than 30 Mrad, both the base layer and the surface layer undergo the same high degree of crosslinking, so that the stretchability at the time of production is good.
Although the heat shrinkage property is good, only a poor heat seal property can be obtained because the surface layer is highly crosslinked. When the irradiation amount is less than 5 Mrad, the degree of crosslinking is too low, so that the stretching process during the production becomes difficult.

【0012】また、表面層を形成する線状低密度エチレ
ン−αオレフィン共重合体の密度は、基層を形成する線
状低密度エチレン−αオレフィン共重合体の密度より少
なくとも0.01g/cm3以上大きいことが好まし
く、更に0.02g/cm3以上大きいことが好まし
い。密度の差が0.01g/cm3以上、好ましくは
0.02/cm3以上ある場合には、5〜30Mra
d、好ましくは10〜25Mradの照射量範囲内で適
宜照射量を選択して照射した場合、基層と表面層の架橋
度の差をより大きくすることができる。即ち、基層をよ
り十分架橋せしめ且つ表面層の架橋度を十分抑えること
ができ、延伸加工性および加熱延伸後に得られる熱収縮
性フィルムの熱収縮特性やヒートシール性はより良好な
ものとなる。
The density of the linear low-density ethylene-α-olefin copolymer forming the surface layer is at least 0.01 g / cm 3 higher than the density of the linear low-density ethylene-α-olefin copolymer forming the base layer. It is preferably larger than that, more preferably larger than 0.02 g / cm 3 . When the difference in density is 0.01 g / cm 3 or more, preferably 0.02 / cm 3 or more, 5 to 30 Mra
d, preferably when the irradiation is appropriately selected within the irradiation range of 10 to 25 Mrad, the difference in the degree of crosslinking between the base layer and the surface layer can be further increased. That is, the base layer can be more sufficiently crosslinked, and the degree of crosslinking of the surface layer can be sufficiently suppressed, and the heat-shrinkable film and the heat-shrinkability of the heat-shrinkable film obtained after heat-stretching can be further improved.

【0013】更に、表面層を形成する線状低密度エチレ
ン−αオレフィン共重合体の密度は特に限定されない
が、好ましくは、0.910g/cm3以上であること
が望ましい。表面層を形成する線状低密度エチレン−α
オレフィン共重合体の密度が小さい場合には融点が低く
耐熱性が劣るため、熱収縮包装する際に良好な熱収縮仕
上がりを得る目的で熱収縮トンネルの温度を上げると、
熱収縮後のフィルム表面に一般的に「やけ」と呼ばれて
いる半溶融状態を経た白化状態が生じ、きれいな仕上が
りを得ることができない。従来の架橋熱収縮性フィルム
の場合には表面部も架橋度が高いため、たとえ密度が低
くとも、この様な問題は発生し難い。しかしながら、本
発明の架橋熱収縮性積層フィルムは、ヒートシール性を
良好にするために表面層の架橋度を抑えたものである。
このため、この様な問題を発生し難くするためには、表
面層を形成する線状低密度エチレン−αオレフィン共重
合体の密度はできるだけ大きいほうが好ましく、少なく
とも0.910g/cm3以上の密度を有することが好
ましい。
The density of the linear low-density ethylene-α-olefin copolymer forming the surface layer is not particularly limited, but is preferably 0.910 g / cm 3 or more. Linear low density ethylene-α forming surface layer
When the density of the olefin copolymer is low, the melting point is low and the heat resistance is inferior, so when the heat shrink wrapping is performed, the temperature of the heat shrink tunnel is increased for the purpose of obtaining a good heat shrink finish,
On the surface of the film after the heat shrinkage, a whitening state occurs through a semi-molten state generally called "burn", and a clean finish cannot be obtained. In the case of a conventional crosslinked heat-shrinkable film, the surface portion also has a high degree of crosslinking, so that even if the density is low, such a problem hardly occurs. However, the crosslinked heat-shrinkable laminated film of the present invention is one in which the degree of crosslinking of the surface layer is suppressed in order to improve the heat sealability.
Therefore, in order to prevent such problems from occurring, it is preferable that the density of the linear low-density ethylene-α-olefin copolymer forming the surface layer is as large as possible, and the density is at least 0.910 g / cm 3 or more. It is preferable to have

【0014】本発明の架橋熱収縮性積層フィルムにおい
て、各層の厚み構成は特に限定されないが、基層の厚み
の割合が全体厚みに対し30〜80%の範囲内であるこ
とが好ましい。基層の厚みの割合が小さすぎると延伸加
工性が悪く、かりに延伸できたとしても、得られた熱収
縮性フィルムは熱収縮特性に劣るものとなる。また、基
層の厚みの割合が大きすぎると、表面層の厚みの割合が
低下し、ヒートシール強度の低下を招く。フィルムの全
体厚みも特に限定されないが、熱収縮包装用としては1
0〜40μmであることが好ましい。
In the crosslinked heat-shrinkable laminated film of the present invention, the thickness constitution of each layer is not particularly limited, but the ratio of the thickness of the base layer is preferably in the range of 30 to 80% with respect to the total thickness. If the ratio of the thickness of the base layer is too small, the stretching processability is poor, and even if the stretching can be performed, the obtained heat-shrinkable film is inferior in heat-shrinkability. On the other hand, if the ratio of the thickness of the base layer is too large, the ratio of the thickness of the surface layer is reduced, and the heat sealing strength is reduced. Although the overall thickness of the film is not particularly limited, it is 1 mm for heat shrink wrapping.
It is preferably from 0 to 40 μm.

【0015】尚、本発明の主旨を変更しない範囲内にお
いて、各層に他の樹脂や滑剤、アンチブロッキング剤、
防曇剤、静電防止剤等の添加剤を混入したり、あるい
は、新たな層を設けたるすることは何等妨げられるもの
ではない。
[0015] In addition, other resins, lubricants, anti-blocking agents,
Mixing additives such as an antifogging agent and an antistatic agent or providing a new layer is not hindered at all.

【0016】本発明の架橋熱収縮性積層フィルムを製造
する方法としては以下の様な方法がある。即ち、まず、
線状低密度エチレン−αオレフィン共重合体からなる基
層の両面に、基層を形成する線状低密度エチレン−αオ
レフィン共重合体より密度の大きい線状低密度エチレン
−αオレフィン共重合体からなる表面層を有する積層フ
ィルムをつくる。この積層フィルムの製造方法は特に限
定されるものではなく、従来の公知の方法で行えばよ
い。例えば、三枚の成形されたフィルムを貼合わせる方
法でも押出ラミネートする方法でも、また、コーティン
グする方法でもよいが、特に、複数の押出機と多層ダイ
スを用いたインフレーション成形法あるいはTダイ成形
法等による共押出し法が最適である。
As a method for producing the crosslinked heat-shrinkable laminated film of the present invention, there are the following methods. That is, first,
On both sides of a base layer made of a linear low-density ethylene-α-olefin copolymer, a linear low-density ethylene-α-olefin copolymer having a higher density than the linear low-density ethylene-α-olefin copolymer forming the base layer Make a laminated film with a surface layer. The method for producing the laminated film is not particularly limited, and may be performed by a conventionally known method. For example, a method of laminating three molded films, a method of extrusion lamination, and a method of coating may be used. In particular, an inflation molding method using a plurality of extruders and a multilayer die, a T-die molding method, or the like. Is most suitable.

【0017】次いでこの積層フィルムにα線、β線、γ
線、中性子線、加速電子線等の電離性放射線を照射して
積層フィルムを構成する線状低密度エチレン−αオレフ
ィン共重合体を架橋する。尚、照射する電離放射線とし
て加速電子線を用いる場合には、延伸前のフィルムの厚
さ方向に対し、できるかぎり均一な照射が可能な照射設
備および照射条件を選択する必要がある。
Next, α-ray, β-ray, γ
The linear low-density ethylene-α-olefin copolymer constituting the laminated film is cross-linked by irradiating ionizing radiation such as a beam, a neutron beam and an accelerating electron beam. When an accelerating electron beam is used as the ionizing radiation to be irradiated, it is necessary to select irradiation equipment and irradiation conditions capable of performing irradiation as uniformly as possible in the thickness direction of the film before stretching.

【0018】そして、この架橋した積層フィルムを加熱
して延伸することにより本発明の架橋熱収縮性積層フィ
ルムが得られる。延伸する手段としては、積層フィルム
がシート状であるかチューブ状であるかによって異なる
が公知のテンター方式またはチューブラー方式の延伸装
置が適宜用いられる。また、延伸倍率は必要に応じて、
一軸当り2〜5倍程度延伸すればよい。そして、引き続
いて、弛緩を与えながら熱固定を行ってもよい。本発明
の架橋熱収縮性積層フィルムは、表面層を基層より密度
の高い線状低密度エチレン−αオレフィン共重合体で形
成することにより、基層を形成する樹脂だけを選択的に
高度に架橋し、表面層は基層に比べあまり架橋させない
ものである。このため、本発明の架橋熱収縮性積層フィ
ルムは、従来の線状低密度エチレン−αオレフィン共重
合体から形成される架橋熱収縮性フィルムの優れた性質
を残したままで、欠点であったヒートシール性の悪さを
改良することができる。
The crosslinked heat-shrinkable laminated film of the present invention can be obtained by heating and stretching this crosslinked laminated film. As a means for stretching, a known tenter-type or tubular-type stretching apparatus is appropriately used depending on whether the laminated film is in a sheet shape or a tube shape. Also, the stretching ratio can be adjusted as needed.
It may be stretched about 2 to 5 times per axis. Subsequently, heat setting may be performed while giving relaxation. The crosslinked heat-shrinkable laminated film of the present invention, by forming the surface layer from a linear low-density ethylene-α-olefin copolymer having a higher density than the base layer, selectively selectively crosslinks only the resin forming the base layer to a high degree. The surface layer is less crosslinked than the base layer. For this reason, the crosslinked heat-shrinkable laminated film of the present invention is disadvantageous in that it retains the excellent properties of the conventional crosslinked heat-shrinkable film formed from a linear low-density ethylene-α-olefin copolymer, and has a disadvantage. Poor sealing performance can be improved.

【0019】[0019]

【実施例】以下、実施例を示し、本発明をより具体的に
説明するが、本発明はこれに限定されるものではない。
尚、本発明においては、架橋熱収縮性積層フィルムの諸
特性については以下の方法により測定した。 ・熱収縮率(縦方向) 縦方向の長さL0のフィルムを各温度のグリセリン浴中
で1分間自由収縮させ、収縮後の縦方向の長さLを測
り、次の式より求めた。 収縮率(縦方向)(%)=(L0−L)/L0×100 ・熱収縮応力(縦方向) 幅10mm、長さ50mmの試験片をチャック間が30
mmになるように熱収縮応力測定機に装着し、各温度の
グリセリン浴中に浸漬させる。その際、チャック間に生
じる応力を熱収縮応力として単位「kg/cm2」で求
めた。 ・ヒートシール強度 フィルム2枚を各フィルムの縦方向を揃えた状態で重ね
て、横方向に赤熱状態のホットワイヤーで溶断シールす
る。次に、この試料から幅15mm、長さ70mmの溶
断シール部が中心に位置する引張試験用試験片を切り出
す。そして、この試験片をチャック間が30mmになる
ように引張試験機に装着し、引張速度300mm/mi
nにて破断に要する最高強度として測定する。この値が
Kg/15mmの単位で示したヒートシール強度であ
る。尚、一般的に、本発明の熱収縮性フィルムのような
熱収縮性フィルムによって物品を熱収縮包装する際に
は、輸送および取扱上の問題から、少なくとも1.30
Kg/15mmのヒートシール強度を有することが好ま
しい。 ・耐熱温度 上部面が10cm×10cmの正方形に切り抜かれた段
ボール紙製の縦20cm横20cm高さ5cmの箱を熱
収縮フィルムを用いラフに密封包装し、エアー抜き用の
ピン孔を適宜設ける。次に、これを一定の温度に設定し
た熱収縮トンネルに通し収縮包装したのち、箱が切り抜
かれた部分のフィルムの状態を観察する。そして、この
操作を熱収城トンネルの温度を5℃ずつ上昇させていき
ながら繰り返し、「白化」せず良好な収縮包装仕上がり
が得られる最高温度を「耐熱温度」として求めた。この
耐熱温度は「やけ」を生じることなしに良好な熱収縮包
装仕上がりが得られる最高の熱収縮トンネル温度であ
る。
EXAMPLES The present invention will be described below more specifically with reference to examples, but the present invention is not limited to these examples.
In the present invention, various properties of the crosslinked heat-shrinkable laminated film were measured by the following methods. Thermal shrinkage (machine direction) the vertical length L 0 film was 1 minute free shrink in glycerine bath for each temperature, measure the vertical length L after shrinkage was determined from the following equation. Shrinkage ratio (vertical direction) (%) = (L 0 −L) / L 0 × 100 Thermal shrinkage stress (vertical direction) A test piece having a width of 10 mm and a length of 50 mm is inserted into a gap between chucks of 30 mm.
mm and mounted in a glycerin bath at each temperature. At that time, the stress generated between the chucks was determined as a heat shrinkage stress in a unit of “kg / cm 2 ”.・ Heat seal strength Two films are stacked in a state where the longitudinal direction of each film is aligned, and the film is sealed by fusing with a hot wire in a red hot state in the lateral direction. Next, a test specimen for a tensile test having a fusing seal portion having a width of 15 mm and a length of 70 mm positioned at the center is cut out from the sample. Then, this test piece was mounted on a tensile tester so that the distance between the chucks was 30 mm, and the tensile speed was 300 mm / mi.
Measured as the maximum strength required for breaking at n. This value is the heat seal strength in the unit of Kg / 15 mm. In general, when a heat-shrinkable film such as the heat-shrinkable film of the present invention is used to heat-shrink-wrap an article, at least 1.30 is required due to transportation and handling problems.
It is preferable to have a heat seal strength of Kg / 15 mm. Heat-resistant temperature A box made of corrugated cardboard, 20 cm long, 20 cm wide and 5 cm high, whose upper surface is cut into a square of 10 cm × 10 cm, is roughly hermetically sealed using a heat-shrinkable film, and pin holes for air release are provided as appropriate. Next, this is passed through a heat shrink tunnel set at a certain temperature and shrink-wrapped, and then the state of the film in the portion where the box is cut out is observed. This operation was repeated while increasing the temperature of the heat collection tunnel by 5 ° C. in increments of 5 ° C., and the maximum temperature at which a good shrink wrapping finish without “whitening” was obtained was determined as the “heat-resistant temperature”. This heat resistant temperature is the highest heat shrink tunnel temperature at which a good heat shrink wrap finish is obtained without "burn".

【0020】(実施例1,2,3)表1に示した密度
0.930g/cm3の線状低密度エチレン−αオレフ
ィン共重合体(樹脂番号5)を両表面層とし、密度0.
890g/cm3の線状低密度エチレン−αオレフィン
共重合体(樹脂番号1)を基層とするチューブ状共押出
し三層未延伸原反シートを、3台の押出し機と3層共押
出用サーキュラーダイによって得た。得られた3層未延
伸原反シートの全体厚みは約220μで、各層の厚み比
は、一方の最外層から約1:3:1であった。尚、押出
し成形に際しては、上記共押出し直後に、従来の水冷方
法によって急冷させた。そして、この3層未延伸原反シ
ートを、日新ハイボルテージ社製の電子線加速機に通じ
て、窒素雰囲気中で7、15および25Mradの電子
線を照射した。ついで、これらの3層未延伸原反シート
を、従来のインフレーション方式によって縦方向、横方
向共に4.0倍に延伸したが容易に延伸された多層二軸
延伸フィルムを得ることができた。そして、この多層二
軸延伸フィルムに弛緩を与えながら熱固定を行い、全体
厚みが15μの熱収縮性積層フィルムを得た。得られた
フィルムの樹脂構成およびヒートシール強度等の物性の
測定値を表2に示した。いずれのフィルムも各温度にお
いて高い熱収縮率と熱収縮応力を示し、ヒートシール強
度も良好であった。また、フィルム強度および透明性も
良好であった。
(Examples 1, 2, 3) A linear low-density ethylene-α-olefin copolymer (resin number 5) having a density of 0.930 g / cm 3 shown in Table 1 was used as both surface layers.
A tube-shaped co-extruded three-layer unstretched raw sheet having a base layer of a linear low-density ethylene-α-olefin copolymer of 890 g / cm 3 (resin No. 1) was subjected to three extruders and a circular for three-layer co-extrusion. Obtained by die. The total thickness of the obtained three-layer unstretched raw sheet was about 220 μ, and the thickness ratio of each layer was about 1: 3: 1 from one outermost layer. At the time of extrusion molding, immediately after the co-extrusion, rapid cooling was performed by a conventional water cooling method. Then, the three-layer unstretched raw sheet was irradiated with electron beams of 7, 15, and 25 Mrad in a nitrogen atmosphere through an electron beam accelerator manufactured by Nissin High Voltage. Next, these three-layer unstretched raw sheets were stretched 4.0 times in both the machine direction and the transverse direction by a conventional inflation method, but an easily stretched multilayer biaxially stretched film could be obtained. The multilayer biaxially stretched film was heat-set while being relaxed to obtain a heat-shrinkable laminated film having a total thickness of 15 μm. Table 2 shows the measured values of the resin composition and physical properties such as heat seal strength of the obtained film. Each film showed high heat shrinkage and heat shrinkage stress at each temperature, and also had good heat seal strength. In addition, the film strength and transparency were good.

【0021】(実施例4)表1に示した密度0.921
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号4)を両表面層とし、密度0.905g/
cm3の線状低密度エチレン−αオレフィン共重合体
(樹脂番号2)を基層とするチューブ状共押出し三層未
延伸原反シートを、実施例1、2および3と直じ方法に
よって得た。そして、このチューブ状共押出し三層未延
伸原反シートを用い実施例1、2および3と同じ方法で
15Mradの電子線を照射した。さらに、実施例1、
2および3と同じ方法によって全体厚みが15μ熱収縮
性積層フィルムの試作を行った。その結果、延伸は容易
に行なうことが出来た。また、得られたフィルムの樹脂
構成およびヒートシール強度等の物性の測定値を表2に
示したが、いずれのフィルムも各温度において高い熱収
縮率と熱収縮応力を示し、ヒートシール強度も良好であ
った。また、フィルム強度および透明性も良好であっ
た。
Example 4 Density 0.921 shown in Table 1
g / cm 3 of a linear low-density ethylene-α-olefin copolymer (resin number 4) as both surface layers, and a density of 0.905 g / cm 3
A tubular co-extruded three-layer unstretched raw sheet having a base layer of a linear low-density ethylene-α-olefin copolymer (resin No. 2) of cm 3 was obtained in the same manner as in Examples 1, 2 and 3. . Then, using this tubular co-extruded three-layer unstretched raw sheet, an electron beam of 15 Mrad was irradiated in the same manner as in Examples 1, 2 and 3. Further, Example 1,
A 15 μm heat-shrinkable laminated film having a total thickness of 15 μm was produced in the same manner as in 2 and 3. As a result, stretching could be easily performed. In addition, the measured values of physical properties such as the resin composition and heat seal strength of the obtained film are shown in Table 2, and all the films show high heat shrinkage and heat shrinkage stress at each temperature, and have good heat seal strength. Met. In addition, the film strength and transparency were good.

【0022】(実施例5)表1に示した密度0.912
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号3)を両表面層とし、密度0.890g/
cm3の線状低密度エチレン−αオレフィン共重合体
(樹脂番号1)を基層とするチューブ状共押出し三層未
延伸原反シートを、実施例1、2および3と同じ方法に
よって得た。そして、このチューブ状共押出し三層未延
伸原反シートを実施例1、2および3と同じ方法で10
Mradの電子線を照射した。さらに、このチューブ状
共押出し三層未延伸原反シートにより実施例1、2およ
び3と同じ方法によって全体厚みが15μ熱収縮性積層
フィルムの試作を行った。その結果、延伸は容易に行え
ることが出来た。また、得られたフィルムの樹脂構成お
よびヒートシール強度等の物性の測定値を表2に示した
が、いずれのフィルムも各温度において高い熱収縮率と
熱収縮応力を示し、ヒートシール強度も良好であった。
また、フィルム強度および透明性も良好であった。
Example 5 Density 0.912 shown in Table 1
g / cm 3 of a linear low-density ethylene-α-olefin copolymer (resin No. 3) as both surface layers, and a density of 0.890 g / cm 3.
A tubular coextruded three-layer unstretched raw sheet having a linear low-density ethylene-α-olefin copolymer (resin number 1) of cm 3 as a base layer was obtained by the same method as in Examples 1, 2 and 3. Then, this tubular co-extruded three-layer unstretched raw sheet was prepared in the same manner as in Examples 1, 2 and 3 for 10 times.
An Mrad electron beam was applied. Further, a trial production of a heat-shrinkable laminated film having a total thickness of 15 μm was performed by using the tubular co-extruded three-layer unstretched raw sheet in the same manner as in Examples 1, 2 and 3. As a result, stretching could be easily performed. In addition, the measured values of physical properties such as the resin composition and the heat seal strength of the obtained film are shown in Table 2, and all the films show high heat shrinkage and heat shrinkage stress at each temperature, and also have good heat seal strength. Met.
In addition, the film strength and transparency were good.

【0023】(実施例6)表1に示した密度0.905
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号2)を両表面層とし、密度0.890g/
cm3の線状低密度エチレン−αオレフィン共重合体
(樹脂番号1)を基層とするチューブ状共押出し三層未
延伸原反シートを、実施例1、2および3と同じ方法に
よって得た。そして、このチューブ状共押出し三層未延
伸原反シートに実施例1,2および3と同じ方法で10
Mardの電子線を照射した。さらに、このチューブ状
共押出し三層未延伸原反シートにより実施例1,2およ
び3と同じ方法によって全体厚みが15μ熱収縮性積層
フィルムの試作を行った。その結果、延伸は容易に行な
うことが出来た。また、得られたフィルムの樹脂構成お
よびヒートシール強度等の物性の測定値を表2に示した
が、いずれのフィルムも各温度において高い熱収縮率と
熱収縮応力を示し、ヒートシール強度も良好であった。
また、フィルム強度および透明性も良好であった。但
し、耐熱温度は他の実施例および比較例と比べ低く、高
温での熱収縮包装適性に劣っていた。
Example 6 Density 0.905 shown in Table 1
g / cm 3 of a linear low-density ethylene-α-olefin copolymer (resin number 2) for both surface layers, and a density of 0.890 g / cm 3
A tubular coextruded three-layer unstretched raw sheet having a linear low-density ethylene-α-olefin copolymer (resin number 1) of cm 3 as a base layer was obtained by the same method as in Examples 1, 2 and 3. The tubular co-extruded three-layer unstretched raw sheet is then coated with the same method as in Examples 1, 2 and 3 for 10 times.
Irradiated with a Mard electron beam. Further, a trial production of a heat-shrinkable laminated film having a total thickness of 15 μm was performed using the tubular co-extruded three-layer unstretched raw sheet in the same manner as in Examples 1, 2 and 3. As a result, stretching could be easily performed. In addition, the measured values of physical properties such as the resin composition and the heat seal strength of the obtained film are shown in Table 2, and all the films show high heat shrinkage and heat shrinkage stress at each temperature, and also have good heat seal strength. Met.
In addition, the film strength and transparency were good. However, the heat resistance temperature was lower than those of other Examples and Comparative Examples, and the heat shrink wrapping suitability at high temperatures was poor.

【0024】(比較例1,2)実施例1,2および3と
同じ樹脂構成および方法で得たチューブ状共押出し三層
未延伸原反シートに、実施例1、2および3と同じ方法
で4、および35Mardの電子線を照射した。次に、
実施例1、2および3と同じ方法で延伸を試みた。その
結果、4Mradの電子線を照射したものは延伸できな
かった。また、35Mradの電子線を照射したもの
は、良好に伸延できたものの、得られた全体厚みが15
μ熱収縮性積層フィルムのヒートシール強度は表2に示
すごとく低かった。
(Comparative Examples 1 and 2) A tubular coextruded three-layer unstretched raw sheet obtained by the same resin composition and method as in Examples 1, 2 and 3 was applied in the same manner as in Examples 1, 2 and 3. 4 and 35 Mard electron beams. next,
Stretching was attempted in the same manner as in Examples 1, 2 and 3. As a result, the film irradiated with the 4 Mrad electron beam could not be stretched. In the case of irradiation with an electron beam of 35 Mrad, although the elongation was good, the obtained overall thickness was 15 mm.
The heat seal strength of the μ heat shrinkable laminated film was low as shown in Table 2.

【0025】(比較例3,4)表1に示した密度0.9
12g/cm3の線状低密度エチレン−αオレフィン共
重合体(樹脂番号3)を両表面層とし、密度0.905
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号2)を基層とするチューブ状共押出し三層
未延伸原反シートを、実施例1,2および3と同じ方法
によって得た。そして、このチューブ状共押出し三層未
延伸原反シートに実施例1、2および3と同じ方法で1
0及び15Mradの電子線を照射した。さらに、この
チューブ状共押出し三層未延伸原反シートにより実施例
1,2および3と同じ方法によって全体厚みが15μ熱
収縮性積層フィルムの試作を行った。その結果、10M
radの電子線を照射したものは延伸できなかった。ま
た、15Mradの電子線を照射したものは、良好に延
伸できたものの、得られた全体厚みが15μ熱収縮性積
層フィルムのヒートシール強度は表2に示すごとく低か
った。
(Comparative Examples 3 and 4) Density 0.9 shown in Table 1
A linear low-density ethylene-α-olefin copolymer (resin number 3) of 12 g / cm 3 was used as both surface layers, and had a density of 0.905.
A tubular coextruded three-layer unstretched raw sheet having a g / cm 3 linear low-density ethylene-α-olefin copolymer (resin No. 2) as a base layer was obtained by the same method as in Examples 1, 2, and 3. Was. Then, the tubular co-extruded three-layer unstretched raw sheet was treated with the same method as in Examples 1, 2 and 3 to obtain 1 sheet.
Irradiation with electron beams of 0 and 15 Mrad was performed. Further, a trial production of a heat-shrinkable laminated film having a total thickness of 15 μm was performed using the tubular co-extruded three-layer unstretched raw sheet in the same manner as in Examples 1, 2 and 3. As a result, 10M
Irradiated with rad electron beam could not be stretched. When irradiated with a 15 Mrad electron beam, although the film could be stretched favorably, the obtained overall thickness of the heat-shrinkable laminated film having a thickness of 15 μm was low as shown in Table 2.

【0026】(比較例5)表1に示した密度0.921
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号4)からなるチューブ状共押出し単層未延
伸原反シートを、実施例1および2と同じ方法で得た。
そして、このチューブ状共押出し単層未延伸原反シート
に実施例1、2および3と同じ方法で15Mradの電
子線を照射した。そして、実施例1、2および3と同じ
方法で延伸を試みたが、良好に延伸できなかった。
Comparative Example 5 Density 0.921 shown in Table 1
A tubular coextruded single-layer unstretched raw sheet made of a linear low-density ethylene-α-olefin copolymer (resin No. 4) of g / cm 3 was obtained in the same manner as in Examples 1 and 2.
Then, the tubular co-extruded single-layer unstretched raw sheet was irradiated with an electron beam of 15 Mrad in the same manner as in Examples 1, 2 and 3. Then, stretching was attempted in the same manner as in Examples 1, 2 and 3, but could not be satisfactorily stretched.

【0027】(比較例6)表1に示した密度0.905
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号2)からなるチューブ状共押出し単層未延
伸原反シートを、実施例1,2および3と同じ方法で得
た。そして、このチューブ状共押出し単層未延伸原反シ
ートに実施例1,2および3と同じ方法で15Mrad
の電子線を照射した。さらに、このチューブ状共押出し
単層未延伸原反シートにより実施例1,2および3と同
じ方法によって全体厚みが15μ熱収縮性積層フィルム
の試作を行った。その結果、延伸は容易に行なうことが
出来た。しかしながら、得られたフィルムのヒートシー
ル強度は、表2から判るように不十分であった。又、耐
熱温度は他の実施例および比較例と比べ低く、高温での
熱収縮包装適性に劣っていた。
(Comparative Example 6) Density 0.905 shown in Table 1.
A tubular coextruded single-layer unstretched raw sheet made of a linear low-density ethylene-α-olefin copolymer (resin No. 2) of g / cm 3 was obtained in the same manner as in Examples 1, 2 and 3. Then, 15 Mrad was applied to this tubular co-extruded single-layer unstretched raw sheet in the same manner as in Examples 1, 2 and 3.
Was irradiated. Further, a trial production of a heat-shrinkable laminated film having a total thickness of 15 μm was performed using the tubular co-extruded single-layer unstretched raw sheet in the same manner as in Examples 1, 2, and 3. As a result, stretching could be easily performed. However, the heat seal strength of the obtained film was insufficient as can be seen from Table 2. Further, the heat resistance temperature was lower than those of the other Examples and Comparative Examples, and the suitability for heat shrink wrapping at high temperatures was poor.

【0028】(比較例7)表1に示した密度0.930
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号5)を両表面層とし、密度0.940g/
cm3のエチレン−酢酸ビニル共重合体(樹脂番号6、
酢ビ含量15重量%)を基層とするチューブ状共押出し
三層延伸原反シートを、実施例1、2および3と同じ方
法によって得た。そして、このチューブ状共押出し三層
満延伸原反シートに実施例1,2および3と同じ方法で
10Mradの電子線を照射した。さらに、このチュー
ブ状共押出し三層未延伸原反シートにより実施例1,2
および3と同じ方法によって全体厚みが15μ熱収縮性
積層フィルムの試作を行った。その結果、延伸は容易に
行なうことが出来た。しかしながら、得られた熱収縮性
積層フィルムの引張強度および透明性(ヘイズ)は表2
に示すごとく不十分であった。
(Comparative Example 7) Density 0.930 shown in Table 1
g / cm 3 linear low-density ethylene-α-olefin copolymer (resin No. 5) was used as both surface layers, and the density was 0.940 g / cm 3.
cm 3 of ethylene-vinyl acetate copolymer (resin number 6,
A tubular coextruded three-layer stretched raw sheet having a base layer (vinyl acetate content: 15% by weight) was obtained by the same method as in Examples 1, 2 and 3. Then, the tube-shaped co-extruded three-layer fully stretched raw sheet was irradiated with an electron beam of 10 Mrad in the same manner as in Examples 1, 2 and 3. Further, the three-layer unstretched raw sheet in the form of a tube was co-extruded in Examples 1 and 2.
A 15 μm heat-shrinkable laminated film having a total thickness of 15 μm was produced in the same manner as in Examples 3 and 3. As a result, stretching could be easily performed. However, the tensile strength and transparency (haze) of the obtained heat-shrinkable laminated film are shown in Table 2.
Was insufficient as shown in FIG.

【0029】(比較例8)表1に示した密度0.930
g/cm3の線状低密度エチレン−αオレフィン共重合
体(樹脂番号5)を両表面層とし、密度0.921g/
cm3の低密度エチレン単独重合体(樹脂番号7)を基
層とするチューブ状共押出し三層未延伸原反シートを、
実施例1,2および3と同じ方法によって得た。そし
て、このチューブ状共押出し三層未延伸原反シートに実
施例1,2および3と同じ方法で10Mradの電子線
を照射した。さらに、このチューブ状共押出し三層未延
伸原反シートにより実施例1,2および3と同じ方法に
よって全体厚みが15μ熱収縮性積層フィルムの試作を
行った。その結果、延伸は容易に行えることが出来た。
しかしながら、得られた熱収縮性積層フィルムの引張強
度および透明性(ヘイズ)は表2に示すごとく不十分で
あった。
Comparative Example 8 Density 0.930 shown in Table 1
g / cm 3 of a linear low-density ethylene-α-olefin copolymer (resin number 5) as both surface layers, and a density of 0.921 g / cm 3.
A tubular coextruded three-layer unstretched raw sheet having a low-density ethylene homopolymer (resin number 7) of 3 cm3 as a base layer,
Obtained by the same method as in Examples 1, 2 and 3. Then, the tube-shaped co-extruded three-layer unstretched raw sheet was irradiated with an electron beam of 10 Mrad in the same manner as in Examples 1, 2 and 3. Further, a trial production of a heat-shrinkable laminated film having a total thickness of 15 μm was performed using the tubular co-extruded three-layer unstretched raw sheet in the same manner as in Examples 1, 2 and 3. As a result, stretching could be easily performed.
However, the tensile strength and transparency (haze) of the obtained heat-shrinkable laminated film were insufficient as shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2−(1)】 [Table 2- (1)]

【表2−(2)】 [Table 2- (2)]

【0032】[0032]

【発明の効果】本発明の架橋熱収縮性積層フィルムは、
表面層を基層より密度の高い線状低密度エチレン−αオ
レフィン共重合体で形成することにより、基層を形成す
る樹脂のみを選択的に高度に架橋し、表面層は基層に比
べて余り架橋させないものである。そのため、本発明の
積層フィルムは、従来の架橋熱収縮性積層フィルムのよ
うに、線状低密度エチレン−αオレフィン共重合体の優
れた性質が、種類の異なる樹脂を積層することにより損
なわれることなく、また架橋抑制剤等の添加剤を使用す
る必要もなく、線状低密度エチレン−αオレフィン共重
合体本来の優れた性質、例えば透明性、フィルム強度を
維持したままで、熱収縮率や熱収縮応力に優れ、しかも
ヒートシール性にも優れている。
The cross-linked heat-shrinkable laminated film of the present invention comprises:
By forming the surface layer with a linear low-density ethylene-α-olefin copolymer having a higher density than the base layer, only the resin forming the base layer is selectively and highly crosslinked, and the surface layer is not crosslinked much as compared with the base layer. Things. Therefore, the laminated film of the present invention, like the conventional crosslinked heat-shrinkable laminated film, the excellent properties of the linear low-density ethylene-α-olefin copolymer are impaired by laminating different kinds of resins. Without the need to use additives such as a crosslinking inhibitor, the linear low-density ethylene-α-olefin copolymer original excellent properties, such as transparency, while maintaining the film strength, heat shrinkage and Excellent heat shrinkage stress and excellent heat sealability.

フロントページの続き (56)参考文献 特開 平1−22548(JP,A) 特開 昭50−72942(JP,A) 特開 昭50−12167(JP,A) 特開 昭63−262242(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 B29C 61/00 - 61/10 Continuation of front page (56) References JP-A-1-22548 (JP, A) JP-A-50-72942 (JP, A) JP-A-50-12167 (JP, A) JP-A-63-262242 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 1/00-35/00 B29C 61/00-61/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 線状低密度エチレン−αオレフィン共重
合体から形成される基層の両面に、該基層を形成する線
状低密度エチレン−αオレフィン共重合体より密度が少
なくとも0.01g/cm3以上大きい線状低密度エチ
レン−αオレフィン共重合体から形成される表面層を有
する積層フィルムに、電離性放射線を5〜30Mrad
照射したのち、加熱延伸してなる架橋熱収縮性積層フィ
ルム。
1. A base layer formed from a linear low-density ethylene-α-olefin copolymer, having a density of at least 0.01 g / cm on both sides of the base layer formed from the linear low-density ethylene-α-olefin copolymer. A laminated film having a surface layer formed from a linear low-density ethylene-α-olefin copolymer having a size of 3 or more is irradiated with ionizing radiation by 5 to 30 Mrad.
A crosslinked heat-shrinkable laminated film obtained by irradiating and then heat-stretching.
【請求項2】 表面層を形成する線状低密度エチレン−
αオレフィン共重合体の密度が0.910g/cm3
上であることを特徴とする請求項1記載の架橋熱収縮性
積層フィルム。
2. A linear low-density ethylene forming a surface layer.
2. The crosslinked heat-shrinkable laminated film according to claim 1, wherein the density of the α-olefin copolymer is 0.910 g / cm 3 or more.
JP03352695A 1991-12-16 1991-12-16 Crosslinked heat shrinkable laminated film Expired - Fee Related JP3097874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03352695A JP3097874B2 (en) 1991-12-16 1991-12-16 Crosslinked heat shrinkable laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03352695A JP3097874B2 (en) 1991-12-16 1991-12-16 Crosslinked heat shrinkable laminated film

Publications (2)

Publication Number Publication Date
JPH05162270A JPH05162270A (en) 1993-06-29
JP3097874B2 true JP3097874B2 (en) 2000-10-10

Family

ID=18425805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03352695A Expired - Fee Related JP3097874B2 (en) 1991-12-16 1991-12-16 Crosslinked heat shrinkable laminated film

Country Status (1)

Country Link
JP (1) JP3097874B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721743B1 (en) * 1997-09-26 2007-08-16 산젠 가꼬 가부시키가이샤 Laminated film
JP3614810B2 (en) * 2001-11-01 2005-01-26 株式会社興人 Polyethylene-based crosslinked shrink film
CN115254562B (en) * 2022-06-20 2023-10-03 东莞理工学院 Buffer layer applied to flexible OLED screen bending and bonding and curing method thereof

Also Published As

Publication number Publication date
JPH05162270A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP2634628B2 (en) Flexible stretch film
JP2733249B2 (en) Thermoplastic multilayer heat shrinkable packaging film and method for producing the same
FI103721B (en) A multilayer shrink film with little shrinkage
JPS63262242A (en) Film having low shrinkage energy
JPH0852781A (en) Multilayer polyolefin film containing reused polymer derivedfrom crosslinked film
JPH0469060B2 (en)
EP0763422A1 (en) Multi-layer shrink film comprising low modulus polypropylene
US6344250B1 (en) Multilayered polyolefin high shrinkage, low shrink force shrink film
JP2014223808A (en) Polyethylenic crosslinked shrinkable film
EP0528980A1 (en) Multilayer heat shrinkable polymeric film containing recycle polymer
KR100317008B1 (en) Heat-shrinkable polyolefin laminate film
JP3097874B2 (en) Crosslinked heat shrinkable laminated film
JPS60171149A (en) Polyester composite film
JP4551564B2 (en) Method for producing biaxially stretched heat-shrinkable polyolefin multilayer film and film obtained by the method
JP3751965B2 (en) Polyolefin multilayer shrink film
US5635286A (en) Heat shrinkable polyethylene laminate film
JPS62173251A (en) Easy-cut film
JPH0531803A (en) Manufacture of antistatic polyethylene crosslinking oriented film
GB2135240A (en) Linear polyethylene shrink films
JP3112553B2 (en) Multi-layer stretch shrink film
JPH038658B2 (en)
JP3498759B2 (en) Method for producing heat-shrinkable multilayer film
JP3068920B2 (en) Polyethylene heat-shrinkable laminated film
CA2207698C (en) Multilayered polyolefin high shrinkage, low shrink force shrink film
JP2957660B2 (en) Heat shrinkable laminated film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees