JPH0373395B2 - - Google Patents

Info

Publication number
JPH0373395B2
JPH0373395B2 JP59155368A JP15536884A JPH0373395B2 JP H0373395 B2 JPH0373395 B2 JP H0373395B2 JP 59155368 A JP59155368 A JP 59155368A JP 15536884 A JP15536884 A JP 15536884A JP H0373395 B2 JPH0373395 B2 JP H0373395B2
Authority
JP
Japan
Prior art keywords
laser beam
laser
trimming
scanner
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59155368A
Other languages
Japanese (ja)
Other versions
JPS6133786A (en
Inventor
Osami Asai
Takeshi Urushibara
Toshio Hosogai
Mikihiko Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15536884A priority Critical patent/JPS6133786A/en
Publication of JPS6133786A publication Critical patent/JPS6133786A/en
Publication of JPH0373395B2 publication Critical patent/JPH0373395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明はVTRなどの厚膜モジユールの製造に
用いられるレーザトリミング装置に関するもので
ある。 〔発明の背景〕 従来のこの種レーザトリミング装置は第1図に
示すように、Qスイツチ2を共振器内に内蔵した
YAGレーザ発振器1(以下、発振器と称す)か
ら出力されたパルス状のレーザ光3は、ミラー4
で反射された後に光学スキヤナ5に入力する。こ
の光学スキヤナ5はレーザ光3を微小スポツトに
集光し、かつ基板7上に設けた抵抗体6上を二次
元に走査・位置決めする。この抵抗体6を含む電
気回路からの検査信号9は計測・制御部8で計測
され、この計測結果に基づいて計測・制御部8か
ら制御信号10,11が出力される。その一方の
制御信号10は光学スキヤナ5を操作し、レーザ
光3の走査・位置決め制御を行い、他方の制御信
号11は発振器1のQスイツチ2を操作し、レー
ザ光3のオン、オフ制御を行う。 上記のような構成からなる従来のレーザトリミ
ング装置におけるトリミング時タイムチヤートを
第2図について詳述する。 調整項目A1のトリミングを開始するには、ま
ず条件設定(イ)を行い、基板7上の電気回路に計
測・制御部8から電源電圧、試験信号および各種
回路制御信号を送り、前記電気回路を調整項目
A1の調整仕様に沿つた動作状態にする。次の回
路安定時間(以下、安定時間と称す)(ロ)では、条
件設定(イ)の各種信号の印加により過渡状態となつ
た電気回路のじよう乱が静まり、検査信号9が測
定可能な状態になるのを待つ。 そして計測時間(ハ)では、計測・制御部8で検査
信号9の測定が行われる。計算時間(ニ)では、計
測・制御部8が検査信号9の測定結果に所定の演
算処理を施し、次の動作時間(ホ)では、レーザ光3
を走査するときに必要な抵抗体6上の始点と終点
の座標、走査速度およびレーザ光3のパルス発振
周波数を決定すると共に、計測・制御部8は始点
と終点の座標と走査速度の各制御情報を制御信号
10を介して光学スキヤナ5へ伝達し、この光学
スキヤナ5を操作してレーザ光3を始点から終点
まで走査する。同時にレーザ光3のパルス発振周
波数およびパルス発振オン・オフの制御情報は、
制御信号11を介してQスイツチ2へ伝達され、
このQスイツチ2を操作して始点から終点に至る
間、レーザ光3を発振、出力させて抵抗体6の一
部を除去加工する。 この結果、抵抗体6の抵抗値は増加し、間接的
に検査信号9の値が変化するので、計測時間(ハ)、
計算時間(ニ)および動作時間(ホ)の順序を数回繰返
し、検査信号9の値を徐々に目標値に近づけ、こ
の値が最後の計測時間(ハ)で目標値になつたことを
確認し、その調整項目のトリミングを終了する。
調整項目A1の場合には、安定時間ロの後に計測
時間(ハ)、計算時間(ニ)および動作時間(ホ)の順序を3
回繰返し、最後に計測時間(ハ)で終了する。 ついで調整項目A2に対する条件設定(イ)が開始
され、以降は調整項目A1と同様の手順でトリミ
ングが進行する。その調整項目A1のトリミング
時間は約8秒であり、調整項目A2では5〜10秒
を要した。また、前記A2の動作時間(ホ)は調整項
目A1全体の7〜8%に過ぎず、逆に安定時間(ロ)
は28%と大きい。調整項目A2以降の安定時間(ロ)
のうちには最大で50%に達するものがあつた。 さらに調整項目A2以降の計測時間(ハ)のうちに
は、トリミングによる検査信号9の乱れが静まる
までを待つ時間も含まれているため、機能トリミ
ングは単純抵抗トリミングと比較してトリミング
時間が10倍以上も長く、かつ安定時間(ロ)および隠
れた安定時間の割合が大きいので、トリミング処
理能力は小さくなる恐れがあつた。 〔発明の目的〕 本発明は上記にかんがみ、従来装置と同程度の
価格でトリミング処理能力を高めたレーザトリミ
ング装置、すなわちコストパーフオーマンスの良
好なレーザトリミング装置を提供することを目的
とするものである。 〔発明の概要〕 本発明は上記目的を達成するために、Qスイツ
チを内蔵するレーザ発振器からのレーザ光をビー
ムスプリツタにより分割し、この分割されたレー
ザ光の各光路に、そのレーザ光のしや断および通
過制御を行う光シヤツタと、レーザ光を微小スポ
ツトに集光させて被加工物上を走査させる光学ス
キヤナと、前記被加工物を装着した基板を順次に
配設し、前記被加工物を含む電気回路からの検査
信号を入力する計測・制御部を設け、この計測、
制御部から出力される各制御信号により、前記Q
スイツチ、各光シヤツタおよび各光学スキヤナを
それぞれ制御することにより、前記各被加工物の
トリミングを交互に、または同時に行うようにし
たことを特徴とするものである。 〔発明の実施例〕 以下、本発明の一実施例を図面について説明す
る。 第3図は本実施例の構成図であり、YAGレー
ザ発振器1(以下発振器と称す)はQスイツチ2
を共振器内に内蔵し、パルス発振のレーザ光3を
出力する。このレーザ光3はビームスプリツタ4
aによりレーザ光3aと3bに等分割され、その
一方のレーザ光3aは光シヤツタ4aを、他方の
レーザ光3bはミラー4bで反射されて光シヤツ
タ4bをそれぞれ通過した後、光学スキヤナ5
a,5bに入力する。この光学スキヤナ5a,5
bはレーザ光3a,3bを微小スポツトに集光
し、基板7a,7bの上面にそれぞれ設置された
低抗体6a,6b上をそれぞれ二次元に走査し位
置決めする。 計測・制御部8は上記抵抗体6a,6bを含む
各電気回路からの検査信号9a,9bをそれぞれ
計測し、これらの計測結果に基づいて制御信号1
0a,10bを出力し、これらの制御信号10
a,10bにより光学スキヤナ5a,5bをそれ
ぞれ操作し、これらの光学スキヤナ5a,5bの
走査、位置決め制御をそれぞれ行う。同時に制御
信号10a,10bにより光シヤツタ12a,1
2bを操作し、レーザ光3a,3bの通過、しや
断制御をそれぞれ行うと共に、制御信号11によ
りQスイツチ2を操作してレーザ光3のオン・オ
フ制御を行う。 前記光シヤツタ12a,12bは第4図に示す
ように、スキヤナ本体30と、このスキヤナ本体
30を内蔵するスキヤナケース30aとしアルミ
材製ミラー50と、出力端子63を有するセンサ
62と、前記ミラー50およびセンサ62を覆う
アルミ材製カバー60とからなり、このカバー6
0の内面は黒染め処理が施されている。前記セン
サ62はカバー60の内側に固定されている。 上記スキヤナ本体30は、回転軸31に一体に
結合された可動片32と、この可動片32を中心
として円形状に取り囲むように配置されたヨーク
33,35および磁石34,36とからなり、ヨ
ーク33,35には第5図に示すように、コイル
37,38がそれぞれ巻回されている。ヨーク3
3,35は磁極33a,33bおよび35a,3
5bをそれぞれ備え、可動鉄片32と対向して狭
い間隙を形成している。前記磁石34の磁力線3
9は前記間隙を通過し、ヨーク33、磁極33
a、可動片32、磁極3b、ヨーク35および磁
石34を順次に連結する磁路を形成し、これと同
様に磁石36の磁力線40は、ヨーク33、磁極
33b、可動片32、磁極35aおよび磁石36
を順次に連結する磁路を形成する。 一方、コイル37により発生する磁力線41
は、ヨーク33、磁極33b、可動鉄片32およ
び磁極33aを順次に連結する磁路を形成し、ま
たコイル38により発生する磁力線42は、ヨー
ク35、磁極35a、可動片32および磁極35
bを連結する磁路を形成する。コイル37,38
に電流iを通電しないときには、磁力線41,4
2が発生しないため、可動鉄片32は磁力線3
9,40により、磁極33aと33bおよび磁極
35aと35bにそれぞれ均等に吸引されて力学
的安定位置を確立する。 上記コイル37,38に電流iを通電すると、
磁力線41,42がそれぞれ発生し、磁極33a
では磁力線39と41が逆方向となり、可動鉄片
32との吸引力を弱め、逆に磁極33bでは磁力
線40,41が同方向となり、可動鉄片32との
吸引力をを強める。上記と同様にして磁極35a
では可動鉄片32との吸引力を弱め、磁極35b
では可動鉄片32との吸引力を強める。このため
可動鉄片32は矢印K方向に回転し、可動鉄片3
2と磁極33a,33b,35a,35bの各磁
極との間に働く吸引力が釣り合つた回転位置で静
止する。 前記スキヤナ本体30の回転軸31の一端とコ
イル37,38とを接続する回転軸駆動信号用の
入力端子43は、スキヤナケース30aを貫通し
て導出されている。その入力端子43に直流電圧
(+5〜−5V)を印加すると、回転軸31は中立
位置から前記電圧値に比例した角度(+15〜−
15゜)だけ回転するようにセツトされている。 前記ミラー50は円柱状に形成され、その上部
に回転中心線を含む平面からなり、かつ梨地加工
を施したレーザ光反射面52(以下、反射面と称
す)が設けられ、かつ止めねじ51を介して回転
軸31に固定されている。前記反射面52は、入
力端子43への印加電圧が零Vの場合には、第4
図の実線で示すようにレーザ光の光路をしや断す
る回転位置にあるので、カバー60に設けた開口
61を通過したレーザ光3は前記反射面52で反
射され、レーザ光3Rとなつてレーザ光検出用セ
ンサ62(以下、センサと称す)に入力する。こ
のようにセンサ62にレーザ光3Rが入力する
と、レーザ光検出用の出力端子63には電流出力
がえられる。 一方、前記入力端子43への印加電圧が+5V
のときの反射面52は、第4図の破線で示すよう
にレーザ光光路と平行な回転位置にあるので、カ
バー60の開口61を経て入射したレーザ光3
は、反射面52の側部を通過して開口64よりレ
ーザ光3Pとなつて出て行く。したがつて、セン
サ62はレーザ光3Pを検知することができない
から、出力端子63には電流出力はえられない。 第6図は光シヤツタ12a,12bの駆動用ド
ライバの説明図で、この図の制御部70にはスキ
ヤナ本体30の駆動アンプおよびセンサ62の検
出アンプ(共に図示せず)を含まれている。シヤ
ツタ信号71は前記駆動アンプを介してスキヤナ
本体の入力端子43に伝達され、また前記センサ
62の出力端子63の電流出力は、検出アンプを
介してシヤツタ開閉動作確認信号72(以下、確
認信号と称す)となる。 前記光シヤツタ12a,12b(以下、光シヤ
ツタ12と称す)の動作を第7図に示すタイムチ
ヤートについて説明する。 光シヤツタ12をオンにする場合には、時刻
T1でシヤツタ信号71をHからLに切換えると、
入力端子43の電圧が零Vから+5Vへ急速に上
昇し、同時にミラー50が回転し始め、時刻T2
に至るとミラー50の反射面52は完全にレーザ
光光路をしや断し、レーザ光3Rがセンサ62に
入力し始めるから、確認信号72はHからLに変
化する。さらにミラー50は回転を続行し、時刻
T3で回転角度が+15゜になつて回転を停止する。 上記と反対に光シヤツタ12をオフにする場合
には、シヤツタ信号71を時刻T4でHからLに
切換えると、入力端子43の電圧が+5Vから零
Vへ急速に低下するので、同時にミラー50も回
転して回転角度が+15゜から低下して0゜に近づく。
そして、時刻T5になると、レーザ光3Rがセン
サ62から外れるので、確認信号72はLからH
に転じ、時刻T6に近づくと、反射面52がレー
ザ光光路とほぼ平行になる。このためレーザ光3
Pは開口64から漏洩し始め、時刻T6になると、
ミラー50は回転角度0゜となつて回転を停止し、
レーザ光3はそのままレーザ光3Pとなつて光シ
ヤツタ12を通過する。 次に光シヤツタ12a,12bおよび光学スキ
ヤナ5a,5bにより構成されるトリミングステ
ーシヨンをSTa,STbとし、本実施例におけるト
リミング方法を第8図について詳述する。 STaでは調整項目A1,A2の順序でトリミング
を行い、STbでは調整項目B1,B2の順序でトリ
ミングを行う。この場合、STaとSTbが交互にト
リミングを行う。例えばSTaではレーザ光3aで
抵抗体6aのトリミングを行うとき、STbでは光
シヤツタ12bでレーザ光3bをしや断してトリ
ミングを行わず、逆にSTbがトリミングを行うと
き、STaではトリミングを行わない。STaとSTb
において同時にトリミング開始条件が成立したと
きには、STaがSTbに優先してトリミングを開始
する。 いま、STaは調整項目A1の条件設定(イ)、STb
は調整項目B1の条件設定(イ)を同時に開始したと
する。条件設定(イ)では、基板7a,7b上の電気
回路へ計測・制御部8から電源電圧、試験信号お
よび各種制御信号を送り、前記回路を調整項目
A1とB1の調整仕様に合つた動作状態にする。つ
いで、STa,STbはそれぞれの条件設定(イ)を経て
安定時間(ロ)に入るが、この安定時間(ロ)は調整項目
ごとに必要最低限の安定時間が調整仕様として定
められている。ここでは条件設定(イ)による各種信
号印加で過渡状態となつた電気回路のじよう乱が
静まり、検査信号9a,9bが測定可能になるま
で待つものとする。 条件設定(イ)と安定時間(ロ)を終了した時点では、
STa,STbはトリミング開始条件を獲得するが、
実施例ではSTaがSTbに先んじて安定時間(ロ)を終
了するので、STaのみが計測時間(ハ)、計算時間(ニ)
および動作時間(ホ)と続くトリミングを行い、一
方、STbはそのまま安定時間(ロ)を延長する。 STaは第1回目の計測時間(ハ)と同時にシヤツタ
開(ヘ)を行い、計測時間(ハ)では計測・制御部8が検
査信号9aを計測する。またシヤツタ開(ヘ)では、
計測・制御部8は制御信号10aを出力して光シ
ヤツタ12aを操作して、レーザ光3aが光シヤ
ツタ12aを通過できるようにする。本実施例の
場合、光シヤツタ12a,12bの開閉に要する
動作時間は約10msであつた。次の計算時間(ニ)で
は、計測・制御部8が検査信号9aの測定結果に
より定まつた演算処理を施す。 次の動作時間(ホ)では、レーザ光3aが抵抗体6
aの上を走査するときの始点と終点、走査速度お
よびレーザ光3aのパルス発振周波数を決定す
る。また動作時間(ホ)では、計測・制御部8は始点
と終点および走査速度の各制御情報を制御信号1
0aを用いて光学スキヤナ5aに伝達し、この光
学スキヤナ5aを操作してレーザ光3aを抵抗体
6a上の始点から終点まで走査する。同時にレー
ザ光3aのパルス発振周波数およびパルス発振の
開始・停止の制御情報を、制御信号11を介して
Qスイツチ2へ伝達してこれを操作し、光スキヤ
ナ5aがレーザ光3aを始点から走査開始させる
ときに同期してQスイツチ2をオンとし、レーザ
光3の発振開始(チ)を行い、終点で走査終了させる
ときに同期してQスイツチ2をオフとし、レーザ
光3の発振停止を行う。 この結果、低抗体6aの一部が除去加工され、
抵抗値は増加するから、検査信号9aの値が変化
するので、計測時間(ハ)、計算時間(ニ)および動作時
間(ホ)の順序を数回繰返して、検査信号9aの値を
徐々に目標値に近づけ、最後に計測時間(ハ)で目標
値に一致したことを確認して、その調整項目のト
リミングを終了する。 なお、第γ回目の計算時間(ニ)の終点と第(γ+
1)回目の計算時間の始点が一致するように決定
するため、複数回の動作時間(ホ)で抵抗体6aに設
けられた加工溝は連続溝となる。調整項目A1
は、計測時間(ハ)、計算時間(ニ)および動作時間(ホ)の
順序を4回繰返し、最後にもう一度計測時間(ハ)を
行つて終了する。 次の瞬間、STaは調整項目A2の条件設定(イ)と
光シヤツタ閉(ト)を行い、STbは光シヤツタ開(ヘ)と
計算時間(ハ)を行う。この時点において、STaでは
調整項目A2の条件設定(イ)と安定時間(ロ)は未処理
であり、STbでは調整項目B1の条件設定(イ)と安
定時間(ロ)は処理済みである。したがつて、トリミ
ングはSTbからトリミング開始条件の成立した
STbに移行する。計測・制御部8は制御信号10
aを用いて光シヤツタ12aを閉じてレーザ光3
aをしや断し、逆に制御信号10bを用いて光シ
ヤツタ12bを開いてレーザ光3bの通過を可能
にする。以降、STbはSTaと同様な手順で調整項
目B1のトリミングを実行する。 上述した本実施例によれば、次に列記する長所
がある。 (a) STaとSTbで交互にトリミングを行うため、
入力切換機能を付加した計測部で一台で対応で
き、従来のように独立の計測部を二台必要とし
ないから計測部が安価となる。 (b) 光シヤツタ12a,12bのミラー50をア
ルミ製とし、重量と駆動トルクとの比を小さく
することにより、前記光シヤツタの高速応答性
(10ms)が可能となつた。 (c) 上記ミラー50に設けた反射面52のレーザ
光に対する反射率を向上させることにより、セ
ンサ62に入力するレーザ光3Rの必要強度を
確保すると共に、反射面52を梨地加工してレ
ーザ光3Rの強度を調整することにより、セン
サ62前のレーザ光強度調整用の光減衰器が不
要となつた。 (d) カバー60の内面を黒染め処理することによ
り、反射面52による散乱光がカバー6の内面
で二次反射するのを防止することができる。こ
のため光シヤツタ12a,12bの閉鎖時に、
レーザ光がカバー60の開口61,64から漏
洩するのを低減させ、かつ光シヤツタ12a,
12bの閉動作をセンサ62で確認するように
したから安全性を向上させることができる。 (e) 本実施例と従来例の処理能力比および価格を
比べると、下記表のとおりである。
[Field of Application of the Invention] The present invention relates to a laser trimming device used for manufacturing thick film modules such as VTRs. [Background of the Invention] As shown in Fig. 1, a conventional laser trimming device of this type has a Q switch 2 built into a resonator.
A pulsed laser beam 3 output from a YAG laser oscillator 1 (hereinafter referred to as an oscillator) is transmitted to a mirror 4.
after being reflected by the optical scanner 5. The optical scanner 5 focuses the laser beam 3 onto a minute spot, and two-dimensionally scans and positions the resistor 6 provided on the substrate 7. A test signal 9 from an electric circuit including this resistor 6 is measured by a measurement/control unit 8, and control signals 10, 11 are output from the measurement/control unit 8 based on the measurement results. One control signal 10 operates the optical scanner 5 to control the scanning and positioning of the laser beam 3, and the other control signal 11 operates the Q switch 2 of the oscillator 1 to control the on/off of the laser beam 3. conduct. A time chart during trimming in the conventional laser trimming device having the above configuration will be described in detail with reference to FIG. To start trimming of adjustment item A1 , first set the conditions (a), send the power supply voltage, test signal, and various circuit control signals from the measurement/control unit 8 to the electric circuit on the board 7, and then Adjust the item
A Make the operating state in accordance with the adjustment specifications in 1 . During the next circuit stabilization time (hereinafter referred to as stabilization time) (b), the disturbance in the electrical circuit that has entered a transient state due to the application of the various signals in condition setting (a) subsides, and the test signal 9 becomes measurable. Wait until the condition is reached. Then, at measurement time (c), the measurement/control unit 8 measures the test signal 9. In the calculation time (d), the measurement/control unit 8 performs predetermined arithmetic processing on the measurement results of the inspection signal 9, and in the next operation time (e), the laser beam 3
In addition to determining the coordinates of the starting point and ending point on the resistor 6, the scanning speed, and the pulse oscillation frequency of the laser beam 3 necessary for scanning, the measurement/control unit 8 also controls the coordinates of the starting point and ending point and the scanning speed. The information is transmitted to the optical scanner 5 via the control signal 10, and the optical scanner 5 is operated to scan the laser beam 3 from the starting point to the ending point. At the same time, the pulse oscillation frequency of the laser beam 3 and the pulse oscillation on/off control information are
transmitted to the Q switch 2 via the control signal 11,
The Q switch 2 is operated to oscillate and output the laser beam 3 while moving from the starting point to the ending point, thereby removing a portion of the resistor 6. As a result, the resistance value of the resistor 6 increases and the value of the test signal 9 changes indirectly, so the measurement time (c)
Repeat the order of calculation time (d) and operation time (e) several times to gradually bring the value of inspection signal 9 closer to the target value, and confirm that this value has reached the target value at the last measurement time (c). Then, trimming for that adjustment item is finished.
In the case of adjustment item A 1 , the order of measurement time (c), calculation time (d), and operation time (e) is changed to 3 after stability time (b).
Repeat several times, and finally end at the measurement time (c). Next, condition setting (a) for adjustment item A 2 is started, and thereafter trimming proceeds in the same procedure as adjustment item A 1 . The trimming time for adjustment item A1 was about 8 seconds, and for adjustment item A2 it took 5 to 10 seconds. In addition, the operation time (e) of A 2 above is only 7 to 8% of the entire adjustment item A 1 , and on the contrary, the stability time (b)
is as large as 28%. Adjustment item A Stability time after 2 (b)
In some cases, it reached up to 50%. Furthermore, the measurement time (c) after adjustment item A2 includes the time to wait until the disturbance in the inspection signal 9 due to trimming subsides, so the trimming time for functional trimming is shorter than that for simple resistance trimming. Since it is more than 10 times longer and the ratio of stability time (b) and hidden stability time is large, there was a risk that the trimming processing capacity would be reduced. [Object of the Invention] In view of the above, an object of the present invention is to provide a laser trimming device with improved trimming processing capacity at a price comparable to that of conventional devices, that is, a laser trimming device with good cost performance. be. [Summary of the Invention] In order to achieve the above object, the present invention splits a laser beam from a laser oscillator with a built-in Q switch using a beam splitter, and divides the laser beam into each optical path of the divided laser beam. An optical shutter that performs shedding and passage control, an optical scanner that focuses laser light onto a minute spot and scans the workpiece, and a substrate on which the workpiece is mounted are sequentially arranged, and the A measurement/control unit is provided to input inspection signals from the electrical circuit including the workpiece, and this measurement,
By each control signal output from the control section, the Q
The present invention is characterized in that the workpieces are trimmed alternately or simultaneously by controlling a switch, each optical shutter, and each optical scanner. [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a configuration diagram of this embodiment, in which the YAG laser oscillator 1 (hereinafter referred to as the oscillator) is connected to the Q switch 2.
is built into the resonator and outputs a pulsed laser beam 3. This laser beam 3 is transmitted to a beam splitter 4
One of the laser beams 3a is reflected by a mirror 4b and passed through the optical shutter 4b.
Input to a and 5b. This optical scanner 5a, 5
b focuses the laser beams 3a and 3b onto a minute spot, and scans and positions the low antibodies 6a and 6b placed on the upper surfaces of the substrates 7a and 7b in two dimensions, respectively. The measurement/control unit 8 measures test signals 9a and 9b from each electric circuit including the resistors 6a and 6b, and generates a control signal 1 based on these measurement results.
0a, 10b, and these control signals 10
The optical scanners 5a and 5b are operated by the optical scanners 5a and 10b, respectively, and the scanning and positioning of these optical scanners 5a and 5b are controlled, respectively. At the same time, optical shutters 12a and 1 are activated by control signals 10a and 10b.
2b to control passage and cutoff of the laser beams 3a and 3b, respectively, and operate the Q switch 2 in accordance with the control signal 11 to control on/off of the laser beam 3. As shown in FIG. 4, the optical shutters 12a and 12b include a scanner body 30, a scanner case 30a containing the scanner body 30, an aluminum mirror 50, a sensor 62 having an output terminal 63, and the mirror 50 and the scanner case 30a. The cover 60 is made of aluminum and covers the sensor 62.
The inner surface of 0 is dyed black. The sensor 62 is fixed inside the cover 60. The scanner main body 30 is composed of a movable piece 32 integrally connected to a rotating shaft 31, yokes 33, 35 and magnets 34, 36 arranged to surround the movable piece 32 in a circular shape. As shown in FIG. 5, coils 37 and 38 are wound around the coils 33 and 35, respectively. York 3
3, 35 are magnetic poles 33a, 33b and 35a, 3
5b, which face the movable iron piece 32 and form a narrow gap. Lines of magnetic force 3 of the magnet 34
9 passes through the gap, the yoke 33 and the magnetic pole 33
a, a magnetic path is formed that sequentially connects the movable piece 32, the magnetic pole 3b, the yoke 35, and the magnet 34, and similarly, the magnetic field lines 40 of the magnet 36 connect the yoke 33, the magnetic pole 33b, the movable piece 32, the magnetic pole 35a, and the magnet 36
form a magnetic path that sequentially connects the On the other hand, magnetic lines of force 41 generated by the coil 37
forms a magnetic path that sequentially connects the yoke 33, the magnetic pole 33b, the movable iron piece 32, and the magnetic pole 33a, and the magnetic field lines 42 generated by the coil 38 connect the yoke 35, the magnetic pole 35a, the movable iron piece 32, and the magnetic pole 35.
Form a magnetic path connecting b. Coils 37, 38
When the current i is not applied to the magnetic field lines 41, 4
2 does not occur, the movable iron piece 32 follows the magnetic field lines 3
9 and 40, they are equally attracted to the magnetic poles 33a and 33b and the magnetic poles 35a and 35b, respectively, to establish a dynamically stable position. When current i is applied to the coils 37 and 38,
Magnetic lines of force 41 and 42 are generated, respectively, and the magnetic pole 33a
At the magnetic pole 33b, the lines of magnetic force 39 and 41 are in opposite directions, weakening the attraction force with the movable iron piece 32, and conversely, at the magnetic pole 33b, the lines of magnetic force 40, 41 are in the same direction, strengthening the attraction force with the movable iron piece 32. In the same manner as above, the magnetic pole 35a
Then, the attraction force with the movable iron piece 32 is weakened, and the magnetic pole 35b
Then, the suction force with the movable iron piece 32 is strengthened. Therefore, the movable iron piece 32 rotates in the direction of arrow K, and the movable iron piece 32 rotates in the direction of arrow K.
2 and each of the magnetic poles 33a, 33b, 35a, and 35b are at rest at a rotational position where the attractive forces are balanced. An input terminal 43 for a rotary shaft drive signal that connects one end of the rotary shaft 31 of the scanner main body 30 and the coils 37, 38 is led out through the scanner case 30a. When a DC voltage (+5 to -5V) is applied to the input terminal 43, the rotating shaft 31 moves from the neutral position at an angle (+15 to -5V) proportional to the voltage value.
It is set to rotate by 15°). The mirror 50 is formed in a cylindrical shape, and is provided with a laser beam reflecting surface 52 (hereinafter referred to as a reflecting surface) which is a plane including the center line of rotation and has a satin finish on its upper part, and has a set screw 51. It is fixed to the rotating shaft 31 via the rotary shaft 31. When the voltage applied to the input terminal 43 is zero V, the reflective surface 52
As shown by the solid line in the figure, it is at a rotational position that cuts the optical path of the laser beam, so the laser beam 3 that has passed through the opening 61 provided in the cover 60 is reflected by the reflective surface 52 and becomes laser beam 3R. It is input to a laser light detection sensor 62 (hereinafter referred to as a sensor). When the laser beam 3R is input to the sensor 62 in this manner, a current output is obtained at the output terminal 63 for laser beam detection. On the other hand, the voltage applied to the input terminal 43 is +5V.
At this time, the reflective surface 52 is at a rotational position parallel to the laser beam optical path as shown by the broken line in FIG.
passes through the side of the reflective surface 52 and exits from the opening 64 as a laser beam 3P. Therefore, since the sensor 62 cannot detect the laser beam 3P, no current output can be obtained at the output terminal 63. FIG. 6 is an explanatory diagram of the driver for driving the optical shutters 12a and 12b, and the control section 70 in this figure includes a drive amplifier for the scanner main body 30 and a detection amplifier for the sensor 62 (both not shown). The shutter signal 71 is transmitted to the input terminal 43 of the scanner main body via the drive amplifier, and the current output of the output terminal 63 of the sensor 62 is transmitted via the detection amplifier to a shutter opening/closing operation confirmation signal 72 (hereinafter referred to as confirmation signal). ). The operation of the optical shutters 12a and 12b (hereinafter referred to as optical shutters 12) will be explained with reference to the time chart shown in FIG. When turning on the optical shutter 12, the time
When the shutter signal 71 is switched from H to L at T1 ,
The voltage at the input terminal 43 rapidly rises from 0V to +5V, and at the same time the mirror 50 begins to rotate, and at time T 2
When reaching , the reflective surface 52 of the mirror 50 completely cuts off the laser beam optical path, and the laser beam 3R begins to enter the sensor 62, so the confirmation signal 72 changes from H to L. Furthermore, the mirror 50 continues to rotate and the time
At T 3 , the rotation angle reaches +15° and the rotation stops. In contrast to the above, when turning off the optical shutter 12, when the shutter signal 71 is switched from H to L at time T4 , the voltage at the input terminal 43 rapidly decreases from +5V to 0V, and at the same time the mirror 50 The rotation angle decreases from +15° and approaches 0°.
Then, at time T5 , the laser beam 3R leaves the sensor 62, so the confirmation signal 72 changes from L to H.
When the time T 6 approaches, the reflecting surface 52 becomes almost parallel to the laser beam path. Therefore, the laser beam 3
P begins to leak from the opening 64, and at time T 6 ,
The mirror 50 reaches a rotation angle of 0° and stops rotating.
The laser beam 3 directly becomes a laser beam 3P and passes through the optical shutter 12. Next, trimming stations constituted by optical shutters 12a, 12b and optical scanners 5a, 5b are referred to as STa and STb, and the trimming method in this embodiment will be described in detail with reference to FIG. In STa, trimming is performed in the order of adjustment items A 1 and A 2 , and in STb, trimming is performed in the order of adjustment items B 1 and B 2 . In this case, STa and STb perform trimming alternately. For example, in STa, when trimming the resistor 6a with laser beam 3a, in STb, the optical shutter 12b cuts off the laser beam 3b and does not perform trimming, and conversely, when STb performs trimming, in STa, trimming is not performed. do not have. STa and STb
When the trimming start conditions are satisfied at the same time, STa starts trimming with priority over STb. Now, STa is the condition setting for adjustment item A 1 (a), STb
Assume that condition setting (a) for adjustment item B 1 is started at the same time. In the condition setting (a), the measurement/control unit 8 sends the power supply voltage, test signals, and various control signals to the electric circuits on the boards 7a and 7b, and the circuits are adjusted to the adjustment items.
Bring the operating state to meet the adjustment specifications of A 1 and B 1 . Next, STa and STb go through their respective condition settings (a) and enter a stabilization time (b), but this stabilization time (b) is defined as the minimum necessary stabilization time for each adjustment item as an adjustment specification. Here, it is assumed that the disturbance in the electric circuit, which has entered a transient state due to the application of various signals according to condition setting (a), has subsided and the test signals 9a and 9b are waited until it becomes possible to measure them. After completing the condition setting (a) and stabilization time (b),
STa and STb acquire the trimming start conditions, but
In the example, STa ends the stabilization time (B) before STb, so only STa has the measurement time (C) and calculation time (D).
and operation time (e) and subsequent trimming, while STb continues to extend the stabilization time (b). STa opens the shutter (f) at the same time as the first measurement time (c), and at the measurement time (c), the measurement/control unit 8 measures the test signal 9a. Also, in the shutter opening (F),
The measurement/control unit 8 outputs a control signal 10a to operate the optical shutter 12a so that the laser beam 3a can pass through the optical shutter 12a. In the case of this embodiment, the operation time required to open and close the optical shutters 12a and 12b was approximately 10 ms. In the next calculation time (d), the measurement/control unit 8 performs arithmetic processing determined by the measurement results of the test signal 9a. In the next operating time (E), the laser beam 3a is transmitted to the resistor 6.
The starting point and ending point, scanning speed, and pulse oscillation frequency of the laser beam 3a are determined when scanning the area 3a. In addition, during the operation time (e), the measurement/control unit 8 sends control information such as the start point, end point, and scanning speed to the control signal 1.
0a to the optical scanner 5a, and the optical scanner 5a is operated to scan the laser beam 3a from the starting point to the ending point on the resistor 6a. At the same time, the pulse oscillation frequency of the laser beam 3a and control information for starting and stopping the pulse oscillation are transmitted to the Q switch 2 via the control signal 11 and operated, and the optical scanner 5a starts scanning the laser beam 3a from the starting point. When scanning is completed, the Q switch 2 is turned on and the oscillation of the laser beam 3 is started (h), and when the scanning is completed at the end point, the Q switch 2 is synchronously turned off and the oscillation of the laser beam 3 is stopped. . As a result, part of the low antibody 6a is removed,
Since the resistance value increases, the value of the test signal 9a changes, so repeat the order of measurement time (c), calculation time (d), and operation time (e) several times to gradually change the value of the test signal 9a. Close to the target value, and finally confirm that the measurement time (c) matches the target value, and finish trimming that adjustment item. Note that the end point of the γ-th calculation time (d) and the (γ+
1) Since the starting points of the first calculation time are determined to coincide with each other, the machined grooves formed on the resistor 6a during the plurality of operation times (e) become continuous grooves. In adjustment item A1 , the order of measurement time (c), calculation time (d), and operation time (e) is repeated four times, and finally, measurement time (c) is performed once again to finish. At the next moment, STa sets the conditions for adjustment item A2 (a) and closes the optical shutter (g), and STb opens the optical shutter (f) and calculates the calculation time (c). At this point, in STa, the condition setting (a) and stability time (b) of adjustment item A 2 have not been processed, and in STb, the condition setting (a) and stability time (b) of adjustment item B 1 have been processed. be. Therefore, trimming starts from STb when the trimming start conditions are met.
Migrate to STb. The measurement/control unit 8 receives a control signal 10
a to close the optical shutter 12a and release the laser beam 3.
a, and conversely open the optical shutter 12b using the control signal 10b to allow the passage of the laser beam 3b. Thereafter, STb performs trimming of adjustment item B1 in the same procedure as STa. This embodiment described above has the following advantages. (a) Trimming is performed alternately in STa and STb, so
A single measuring section with an input switching function can handle the problem, and unlike the conventional method, two independent measuring sections are not required, making the measuring section inexpensive. (b) By making the mirrors 50 of the optical shutters 12a and 12b made of aluminum and reducing the ratio of weight to driving torque, the optical shutters can achieve high-speed response (10 ms). (c) By improving the reflectance of the reflective surface 52 provided on the mirror 50 to the laser beam, the required intensity of the laser beam 3R input to the sensor 62 is ensured, and the reflective surface 52 is processed with a satin finish to emit the laser beam. By adjusting the intensity of 3R, an optical attenuator for adjusting the laser beam intensity in front of the sensor 62 is no longer necessary. (d) By blackening the inner surface of the cover 60, it is possible to prevent the light scattered by the reflective surface 52 from being secondarily reflected on the inner surface of the cover 6. Therefore, when the optical shutters 12a and 12b are closed,
The leakage of laser light from the openings 61, 64 of the cover 60 is reduced, and the optical shutters 12a,
Since the closing operation of 12b is confirmed by the sensor 62, safety can be improved. (e) A comparison of the processing capacity ratio and price of this embodiment and the conventional example is as shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、一台の
レーザ発振器で実質的に2〜3トリミングステー
シヨンを構成することができ、かつ従来のトリミ
ング装置の同程度の価格で、しかも処理能力を大
幅に向上させることができる。すなわちコストパ
フオーマンスの良好なトリミング装置をうること
ができる。
As explained above, according to the present invention, it is possible to substantially configure two to three trimming stations with one laser oscillator, and at the same price as conventional trimming devices, the processing capacity is significantly increased. can be improved. In other words, a trimming device with good cost performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のレーザトリミング
装置の構成図およびそのトリミング時のタイムチ
ヤートを示す図、第3図は本発明のレーザトリミ
ング装置の一実施例を示す構成図、第4図は同実
施例の光シヤツタの一部切開斜視図、第5図は第
4図のスキヤナの動作原理の説明図、第6図は光
シヤツタ駆動用ドライバの説明図、第7図は光シ
ヤツタの動作説明用のタイムチヤートを示す図、
第8図および第9図は本実施例における相異なる
トリミング法をそれぞれ説明するタイムチヤート
を示す図である。 1……レーザ発振器、2……Qスイツチ、3,
3a,3b……レーザ光、4a……ビームスプリ
ツタ、5a,5b……光学スキヤナ、6a,6b
……被加工物、7a,7b……基板、8……計
測・制御部、9a,9b……検査信号、10a,
10b……制御信号、12a,12b……光シヤ
ツタ、30a……スキヤナケース、30……スキ
ヤナ本体、31……回転軸、33,35……ヨー
ク、34,36……磁石、43……入力端子、5
0……ミラー、52……レーザ光反射面、60…
…カバー、61,64……レーザ光流入出口、6
2……センサ、63……レーザ光検出用出力端
子。
1 and 2 are diagrams showing the configuration of a conventional laser trimming device and a time chart during trimming, FIG. 3 is a configuration diagram showing an embodiment of the laser trimming device of the present invention, and FIG. A partially cutaway perspective view of the optical shutter of the same embodiment, FIG. 5 is an explanatory diagram of the operating principle of the scanner in FIG. 4, FIG. 6 is an explanatory diagram of the driver for driving the optical shutter, and FIG. 7 is an illustration of the operation of the optical shutter. Diagram showing an explanatory time chart,
FIGS. 8 and 9 are time charts illustrating different trimming methods in this embodiment, respectively. 1...Laser oscillator, 2...Q switch, 3,
3a, 3b... Laser light, 4a... Beam splitter, 5a, 5b... Optical scanner, 6a, 6b
...Workpiece, 7a, 7b...Substrate, 8...Measurement/control unit, 9a, 9b...Inspection signal, 10a,
10b... Control signal, 12a, 12b... Optical shutter, 30a... Scanner case, 30... Scanner body, 31... Rotating shaft, 33, 35... Yoke, 34, 36... Magnet, 43... Input terminal ,5
0...Mirror, 52...Laser beam reflecting surface, 60...
...Cover, 61, 64...Laser light inlet/outlet, 6
2...Sensor, 63...Output terminal for laser light detection.

Claims (1)

【特許請求の範囲】 1 Qスイツチを内蔵するレーザ発振器からのレ
ーザ光をビームスプリツタにより分割し、この分
割されたレーザ光の各光路に、そのレーザ光のし
や断および通過制御を行う光シヤツタと、レーザ
光を微小スポツトに集光させて被加工物上を走査
させる光学スキヤナと、前記被加工物を装着した
基板を順次に配設し、前記被加工物を含む電気回
路からの検査信号を入力する計測・制御部を設
け、この計測・制御部から出力される各制御信号
により、前記Qスイツチ、各光シヤツタおよび各
光学スキヤナをそれぞれ制御することにより、前
記各被加工のトリミングを交互に、または同時に
行うようにしたことを特徴とするレーザトリミン
グ装置。 2 上記光シヤツタは、回転軸に一体に結合され
た可動鉄片と、この可動鉄片を中心として円形
に、かつ狭い間隙を保つて取囲むように対設さ
れ、しかもコイルを巻回した一組のヨークおよび
一組の磁石とからなるスキヤナ本体と、このスキ
ヤナ本体を内蔵し、かつ前記コイルに接続する入
力端子の貫通するスキヤナケースと、円柱状に形
成され、その上部に回転中心線を含む平面からな
り、かつ梨地加工を施したレーザ光反射面を有
し、しかも前記回転軸に固定したミラーと、前記
レーザ光反射面と対設し、レーザ光検出用出力端
子を備えるセンサと、これらのミラーとセンサを
内蔵し、かつレーザ光の流入出口を備え、しかも
内側面に黒染め処理を施したカバーとからなるこ
とを特徴とする特許請求の範囲第1項記載のレー
ザトリミング装置。
[Claims] 1. A beam splitter splits a laser beam from a laser oscillator with a built-in Q-switch, and a light beam is provided in each optical path of the divided laser beam to control the cutting and passing of the laser beam. A shutter, an optical scanner that focuses a laser beam onto a minute spot and scans the workpiece, and a board on which the workpiece is attached are sequentially arranged, and the electrical circuit including the workpiece is inspected. A measurement/control unit for inputting signals is provided, and each control signal output from the measurement/control unit controls the Q switch, each optical shutter, and each optical scanner, thereby trimming each of the workpieces. A laser trimming device characterized in that the laser trimming is performed alternately or simultaneously. 2 The above-mentioned optical shutter consists of a movable iron piece integrally connected to a rotating shaft, and a set of coils wound around the movable iron piece, which are arranged oppositely in a circular manner surrounding the movable iron piece with a narrow gap between them. A scanner body consisting of a yoke and a set of magnets, a scanner case that houses the scanner body and through which an input terminal connected to the coil passes, and a scanner case that is formed in a cylindrical shape and includes a rotation center line at the top thereof. a mirror that has a laser beam reflecting surface that is polished and has a matte finish and that is fixed to the rotating shaft; a sensor that is disposed opposite to the laser beam reflecting surface and that includes an output terminal for detecting laser beam; and these mirrors. 2. The laser trimming device according to claim 1, further comprising a cover having a built-in sensor, an inlet/outlet for laser light, and a cover having an inner surface treated with black.
JP15536884A 1984-07-27 1984-07-27 Laser light trimming device Granted JPS6133786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15536884A JPS6133786A (en) 1984-07-27 1984-07-27 Laser light trimming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15536884A JPS6133786A (en) 1984-07-27 1984-07-27 Laser light trimming device

Publications (2)

Publication Number Publication Date
JPS6133786A JPS6133786A (en) 1986-02-17
JPH0373395B2 true JPH0373395B2 (en) 1991-11-21

Family

ID=15604396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15536884A Granted JPS6133786A (en) 1984-07-27 1984-07-27 Laser light trimming device

Country Status (1)

Country Link
JP (1) JPS6133786A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634190C2 (en) * 1996-08-23 2002-01-31 Baasel Carl Lasertech Multi-head laser engraving machine
US7732732B2 (en) 1996-11-20 2010-06-08 Ibiden Co., Ltd. Laser machining apparatus, and apparatus and method for manufacturing a multilayered printed wiring board
EP1852209B1 (en) 1996-11-20 2013-08-14 Ibiden Co., Ltd. Laser machining apparatus for manufacturing a multilayered printed wiring board
KR101361205B1 (en) * 2011-12-20 2014-03-12 삼성디스플레이 주식회사 Laser processing apparatus

Also Published As

Publication number Publication date
JPS6133786A (en) 1986-02-17

Similar Documents

Publication Publication Date Title
JPH0373395B2 (en)
JP4533640B2 (en) Galvano scanner control method and galvano scanner
JP3456130B2 (en) Distance measuring device
JP3543731B2 (en) Laser trimming method and laser trimming apparatus
JP2000060164A (en) Ultrasonic motor and electronic equipment with ultrasonic motor
US4280761A (en) Electromagnetic shutter driving circuit
JPH04132059A (en) Magneto-optical disk device
JP2002303817A (en) Scanner and laser machining device
JPH03176705A (en) Driving circuit for actuator
JP2000061666A (en) Laser texture device
JP2002196274A (en) Method and apparatus for controlling galvano scanner
JPH07280555A (en) Focusing type displacement measuring apparatus
JPH08281434A (en) Method and equipment for groove copying
JPH06160007A (en) Detector for position of rotary body
SU1092667A1 (en) Device for improving combination of direct current reversible electric machine
JPH0374006B2 (en)
JPH05218531A (en) Shutter mechanism of laser oscillator
JPH04368489A (en) Rotor position detecting method for brushless motor
SU1339488A1 (en) Servo system with limited angle of turn of output shaft
JPH0376725B2 (en)
JPH04314019A (en) Bream scanner
JPH0915049A (en) Optical path length varying mechanism
JP2004271993A (en) Scanner device
JP2669055B2 (en) Laser trimming device
JPS5948352B2 (en) Lightwave ranging device with automatic light control device