JPH0373310A - Production of ceramic sintered body - Google Patents

Production of ceramic sintered body

Info

Publication number
JPH0373310A
JPH0373310A JP31783489A JP31783489A JPH0373310A JP H0373310 A JPH0373310 A JP H0373310A JP 31783489 A JP31783489 A JP 31783489A JP 31783489 A JP31783489 A JP 31783489A JP H0373310 A JPH0373310 A JP H0373310A
Authority
JP
Japan
Prior art keywords
pressure
bag
sintered body
ceramic
storage bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31783489A
Other languages
Japanese (ja)
Other versions
JP3026304B2 (en
Inventor
Isao Ikeda
功 池田
Takashi Koba
孝 木場
Hiroyoshi Tonai
藤内 弘喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH0373310A publication Critical patent/JPH0373310A/en
Application granted granted Critical
Publication of JP3026304B2 publication Critical patent/JP3026304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • B29C2043/3238Particular pressure exerting means for making definite articles pressurized liquid acting directly or indirectly on the material to be formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/361Moulds for making articles of definite length, i.e. discrete articles with pressing members independently movable of the parts for opening or closing the mould, e.g. movable pistons
    • B29C2043/3615Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices
    • B29C2043/3628Forming elements, e.g. mandrels or rams or stampers or pistons or plungers or punching devices moving inside a barrel or container like sleeve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To uniform density of a green molded form and to enhance dimensional precision and to lower generation of a crack and to greatly reduce the manufacturing cost by uniaxially pressurizing powder of a ceramic raw material to form the green molded form and thereafter pressure-molding it by wet cold hydrostatic pressing treatment. CONSTITUTION:The pressing faces 3a, 3b of the upper and lower punches 4, 5 are formed in coincidence with the shapes of the upper and lower sides of a sintered body to be formed. A green molded form 1c is obtained by pressing the upper and lower punches 4, 5 at prescribed pressure and uniaxially pressurizing powder 7 of a ceramics raw material. Then this green molded form 1c is introduced into a housing bag 9 which has flexibility and is made of synthetic resin. Such material may be utilized for the housing bag 9 that it is closely stuck to the whole surface of the green molded form 1c and does not permeate water and has flexibility. A housing bag 10 formed into two layers by nylon and PE is desirably utilized from a point wherein toughness is made especially great and excellent in watertightness and inexpensive and capable of heat sealing. This two-layer bag 10 is immersed in a cold hydrostatic pressing device and water utilized as a pressure medium is pressurized at prescribed pressure P. The green molded form 1c isotropically receives hydrostatic pressure P in the whole surface via the film of the two-layer bag 10 and is pressurized in the central direction.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はセラミックス焼結体の製造方法に係り、特に複
雑な形状を有する焼結体であっても製造工程において割
れの発生が少なく、また寸法精度および原料の歩溜りが
高く、安価かつ効率的にセラミックス焼結体を製造する
ことができる量産性に優れたセラミックス焼結体の製造
方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a ceramic sintered body, and in particular, to prevent cracking in the manufacturing process even when the sintered body has a complicated shape. The present invention relates to a method for producing a ceramic sintered body that has low generation, high dimensional accuracy and high raw material yield, and is capable of producing the ceramic sintered body at low cost and efficiency, and has excellent mass productivity.

(従来の技術) 窒化けい素や炭化けい素をはじめとするセラミックスは
硬度が大きく、耐摩耗性、高温強度、耐腐蝕性などの特
性が従来の金属材料と比較して優れ、また密度も約3g
/cilと軽量であることから、自動車、航空機や化学
電気機器などの精密部品材料として広く用途が開発され
量産されている。
(Conventional technology) Ceramics such as silicon nitride and silicon carbide have high hardness, superior properties such as wear resistance, high temperature strength, and corrosion resistance compared to conventional metal materials, and also have a density of about 3g
Due to its light weight of /cil, it has been developed for a wide range of applications and is mass-produced as a precision parts material for automobiles, aircraft, chemical and electrical equipment, etc.

ところでセラミックス焼結体は極めて高い硬度を有する
ため、最終的な製品寸法にまで研削研摩する作業は極め
て困難である。
However, since the ceramic sintered body has extremely high hardness, it is extremely difficult to grind and polish it to the final product size.

そのため従来の焼結体は平板状またはリング状などの単
純な形状のものが一般に使用されていた。
Therefore, conventional sintered bodies have generally been used in simple shapes such as flat plate shapes or ring shapes.

すなわち製品の上下面側形状がいずれも平坦で、段差や
曲面等の起伏がない単純な形状の焼結体が主流となって
いた。
In other words, sintered bodies of simple shapes, in which both the upper and lower surfaces of the product are flat and have no undulations such as steps or curved surfaces, have become mainstream.

これらの焼結体は、原料粉末を一軸加圧プレス成形し、
得られた生成形体を脱脂焼結して形成される。ここで使
用する一軸加圧プレス機の上下パンチの加圧面はいずれ
も平坦に形成されている。
These sintered bodies are made by uniaxially pressing raw material powder,
It is formed by degreasing and sintering the resulting green body. The pressing surfaces of the upper and lower punches of the uniaxial pressure press used here are both formed flat.

したがって形成された生成形体の軸方向の寸法は一定で
あり生成形体の各部位における密度差は生じない。その
ため均一な強度分布を有する焼結体が得られる。
Therefore, the axial dimension of the formed body is constant, and there is no density difference in each part of the formed body. Therefore, a sintered body having a uniform strength distribution can be obtained.

しかしながらセラミックス焼結体の用途開発はその後さ
らに進展し、より複雑な形状を有するセラミックス焼結
体も製造されるに至っている。例えば第8図(a)に示
すようにベアリング用ボールとしての球状焼結体100
や、内燃機関の弁開閉用部材として第8図(b)に示す
ような両端部に曲面をする杆状焼結体200や、第8図
(c)に示すような、上面側形状が球である一方、下面
側形状が円柱であるリベット状焼結体300や、第8図
(d)に示すように上面側に段差を形成した突起付き焼
結体400など、複雑な形状を有する種々のセラミック
ス焼結体が、自動車、家電製品、医療機器の構成部品と
して採用されている。
However, the development of applications for ceramic sintered bodies has progressed further since then, and ceramic sintered bodies having more complicated shapes have come to be manufactured. For example, as shown in FIG. 8(a), a spherical sintered body 100 as a bearing ball
A rod-shaped sintered body 200 with curved surfaces at both ends as shown in FIG. 8(b), and a rod-shaped sintered body 200 with a spherical top surface shape as shown in FIG. 8(c) are used as valve opening/closing members for internal combustion engines. On the other hand, there are various types of sintered bodies with complicated shapes, such as a rivet-like sintered body 300 whose lower surface is cylindrical in shape, and a sintered body 400 with protrusions formed with a step on its upper surface as shown in FIG. 8(d). Ceramic sintered bodies are used as components of automobiles, home appliances, and medical equipment.

これらのセラミックス焼結体のうち、ベアリング用ボー
ルとして使用される球状セラミックス焼結体を例にとり
、従来の製造方法を以下に説明する。
Among these ceramic sintered bodies, a conventional manufacturing method will be described below, taking as an example a spherical ceramic sintered body used as a bearing ball.

この球状セラミックス焼結体は一般に第9図(a)〜(
d)に示す製造工程によって製造される。
This spherical ceramic sintered body is generally made of Figs.
Manufactured by the manufacturing process shown in d).

すなわち、まず金型プレス機等を使用してセラミックス
原料粉末を一軸方向に圧縮固化し、第9図(a)に示す
ような円柱状の生成形体1を形成する。
That is, first, a ceramic raw material powder is uniaxially compressed and solidified using a mold press or the like to form a cylindrical shaped product 1 as shown in FIG. 9(a).

次に得られた円柱状の生成形体1の上下縁部を直線状ま
たは曲線状に面取り加工を行ない、それぞれ第9図(b
)または第9図(C)に示すような球形に近い生成形体
1a、lbを形成する。
Next, the upper and lower edges of the obtained cylindrical generated body 1 are chamfered into a straight line or a curved line, respectively, as shown in FIG. 9 (b).
) or to form nearly spherical shaped bodies 1a, lb as shown in FIG. 9(C).

そして得られた生成形体1a、lbは、脱脂焼結後にラ
ッピングやポリッシング処理等により表面加工を施し、
所定の真球度、直径不同、表面粗さや相互差を得るよう
に調整され、最終的に第9図(d)に示すような高い寸
法精度を有するセラミックス球体2が製造される。
After degreasing and sintering, the resulting formed bodies 1a and lb are surface-treated by lapping, polishing, etc.
Adjustments are made to obtain predetermined sphericity, diameter irregularity, surface roughness, and mutual difference, and finally a ceramic sphere 2 having high dimensional accuracy as shown in FIG. 9(d) is manufactured.

ところで、ベアリング用ボールに使用されるセラミック
ス球体2の形状精度は、ベアリングの回転精度を保証す
るために、JIS  B−1501等によって等級別に
規定されており、例えば第10等級(GIO)のベアリ
ングボールの直径不同は0.25μm10ツト中の寸法
のばらつきを示す相互差は0.5μm程度の値が規格値
とされている。
By the way, the shape accuracy of the ceramic sphere 2 used for the bearing ball is specified by grade according to JIS B-1501 etc. in order to guarantee the rotational accuracy of the bearing. For example, the 10th grade (GIO) bearing ball The standard value for the difference in diameter is 0.25 .mu.m.

このように最終製品となるセラミックス球体2の仕上り
寸法は極めて厳格であり、成形段階から焼結、研摩加工
に至るまで高度な寸法管理が実施される。そのため製造
工程が複雑化し、加工コストが大幅に上昇する欠点があ
る。
As described above, the finished dimensions of the ceramic sphere 2, which is the final product, are extremely strict, and sophisticated dimensional control is carried out from the molding stage to sintering and polishing. This has the disadvantage that the manufacturing process becomes complicated and the processing cost increases significantly.

特に窒化けい素をはじめとするセラミックスの焼結体は
共有結合性が高い物質であり、硬度が極めて高く、非常
に研摩加工等が困難である。ちなみに従来の金属球と比
較した場合、セラミックス球体は、その数十倍ないし数
百倍の加工コストを要する欠点がある。
In particular, sintered ceramics such as silicon nitride are substances with high covalent bonding properties, have extremely high hardness, and are extremely difficult to polish. Incidentally, when compared with conventional metal spheres, ceramic spheres have the disadvantage of requiring processing costs that are several tens to hundreds of times higher.

また第9図(a)に示すように円柱状の生成形体1の上
下縁部を削り取って、球形に近い生成形体1a、lbを
形成しているため、高純度で高価なセラミックス原料粉
末の少滴りが低く、経済性が低下する問題点もある。
Furthermore, as shown in FIG. 9(a), the upper and lower edges of the cylindrical shaped body 1 are scraped off to form the nearly spherical shaped bodies 1a and lb, so that a small amount of high-purity and expensive ceramic raw material powder can be used. There is also the problem that the dripping rate is low and the economical efficiency is reduced.

そのため焼結前の軟質な生成形体の段階で可及的に製品
寸法に近い形状に予め仕上げておくこと、いわゆるニア
ネット成形を行なうことが、この種のセラミックス部品
の加工工数および原料の無駄を低減する上で重要なポイ
ントとなる。
Therefore, it is important to pre-finish the soft formed body into a shape as close to the product dimensions as possible before sintering, or to perform so-called near-net forming, to reduce processing man-hours and waste of raw materials for these types of ceramic parts. This is an important point in reducing

そこで第1図に示すように、製品の半径に対応する半球
状押圧面3a、3bをそれぞれ形成した上バンチ4およ
び下バンチ5をダイス6内に上下方向から嵌入するよう
に設けた金型プレス機を使用して、上下パンチ4.5の
間にセラミックス原料粉末7を充填して押圧し、第2図
に示すようなほぼ球形に近い生成形体ICを一挙に形成
する試みもなされている。
Therefore, as shown in FIG. 1, a mold press is installed in which an upper bunch 4 and a lower bunch 5, each having a hemispherical pressing surface 3a, 3b corresponding to the radius of the product, are fitted into a die 6 from above and below. Attempts have also been made to use a machine to fill and press ceramic raw material powder 7 between upper and lower punches 4.5 to form a nearly spherical shaped body IC as shown in FIG. 2 all at once.

この生成形体1cの中央赤道部には帯状の円柱部8が形
成される。この円柱部8は、圧縮成形時に上下パンチ4
,5を相互に密着するまで押圧することが不可能である
ために形成されるものである。
A band-shaped columnar portion 8 is formed at the central equatorial portion of the generated body 1c. This cylindrical part 8 is formed by the upper and lower punches 4 during compression molding.
, 5 are formed because it is impossible to press them until they come into close contact with each other.

上記金型プレス機による成形操作によれば、セラミック
ス原料粉末から、第2図に示すようなほぼ球形に近い生
成形体1cを形成することができるため、原料粉末の損
失が少なく、原料の歩溜りが向上し、経済性を向上させ
ることができる。
According to the molding operation using the above mold press machine, it is possible to form a nearly spherical shaped body 1c as shown in FIG. can be improved and economical efficiency can be improved.

(発明が解決しようとする課題) しかしながら上記のような従来のセラミックス焼結体の
製造方法のように、金型プレス機を使用してセラミック
ス原料粉末7を一軸方向にのみ加圧して曲面を有する生
成形体を形成する方法においては、各曲面位置における
軸方向距離が異なるため生成形体ICの内部の密度が不
均一になり、寸法精度が低下したり、割れが発生する欠
点があった。特に密度が高い帯状の円柱部8に対して、
その上下の半球部Rの密度が低下し易く、第10図に示
すように円柱部8と半球部Rとの境界に割れ18が発生
し易く、その結果製品の歩溜りが低下し製造コストが上
昇する欠点があった。
(Problem to be Solved by the Invention) However, as in the conventional method for manufacturing a ceramic sintered body as described above, a mold press machine is used to press the ceramic raw material powder 7 only in one axis direction to form a curved surface. In the method of forming a green body, the axial distance at each curved surface position is different, so that the density inside the green body IC becomes non-uniform, resulting in a decrease in dimensional accuracy and the occurrence of cracks. Especially for the band-shaped columnar part 8 with high density,
The density of the upper and lower hemispherical parts R tends to decrease, and as shown in FIG. 10, cracks 18 tend to occur at the boundary between the cylindrical part 8 and the hemispherical part R, resulting in lower product yields and lower manufacturing costs. There was a downside to rising.

一方セラミックスのニアネット成形方法として、近年射
出成形法も一部に採用されている。しかしながら射出成
形法によって形成した成形体は脱脂作業に長時間を要し
、製造効率が低下する欠点がある上に、プレス成形品と
比較して製品の歩留りが低く、安定した成形方法とはな
り得ず、いずれにしろ量産性が劣る問題点があった。
On the other hand, injection molding has recently been adopted as a near-net molding method for ceramics. However, molded bodies formed by injection molding require a long time to degrease, which reduces manufacturing efficiency.In addition, the yield of products is lower than that of press molded products, and it is not a stable molding method. In any case, there was a problem that mass production was inferior.

本発明は上記の問題点を解決するためになされたもので
あり、生成形体の密度を均一化し、寸法精度を向上させ
ることが可能であり、割れの発生を低減して製造コスト
を大幅に低減し得るセラミックス焼結体の製造方法を提
供することを目的とする。
The present invention was made to solve the above problems, and it is possible to make the density of the formed body uniform and improve the dimensional accuracy, reducing the occurrence of cracks and significantly reducing manufacturing costs. The purpose of the present invention is to provide a method for manufacturing a ceramic sintered body that can be manufactured using the following methods.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明に係るセラミックス焼結
体の製造方法は、形成しようとする焼結体の上面側形状
および下面側形状に合せて、押圧面をそれぞれ形成した
上パンチおよび下パンチによってセラミックス原料粉末
を一軸加圧して生成形体を形成した後に、上記生成形体
を湿式冷開静水圧プレス処理により加圧成形し、しかる
後に得られた生成形体を脱脂焼結後、最終的な表面加工
を行なうことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing a ceramic sintered body according to the present invention provides a pressing surface that matches the top and bottom shapes of the sintered body to be formed. After the ceramic raw material powder is uniaxially pressed by the upper punch and lower punch formed to form a green body, the green body is pressure-molded by a wet cold open isostatic press treatment, and then the resulting green body is degreased. It is characterized by performing final surface processing after sintering.

また湿式冷間静水圧プレス処理は、可撓性を有する合成
樹脂製の収容袋に生成形体を収容し、袋内部の圧力を大
気圧以下に保持した状態で収容袋の入口開口部をヒート
シールして密封した後に、密封した収容袋を水中に浸漬
し、静水圧を作用させて等方圧縮することを特徴とする
In addition, in the wet cold isostatic pressing process, the formed body is housed in a flexible synthetic resin storage bag, and the inlet opening of the storage bag is heat-sealed while the pressure inside the bag is maintained below atmospheric pressure. After the storage bag is sealed, the sealed storage bag is immersed in water and isostatically compressed by applying hydrostatic pressure.

(作用) 上記構成に係るセラミックス焼結体の製造方法によれば
、セラミックス原料粉末を一軸加圧して形成した生成形
体を、さらに湿式冷間静水圧プレス法によって加圧成形
しているため、生成形体の全表面は静水圧によって中心
方向に均等に加圧される。その結果、生成形体はより緻
密化され、その密度は全体に均一化される。したがって
寸法精度の低下が少なく、また成形段階および焼結段階
においても割れの発生が少なく、製品の歩溜りを向上さ
せることができる。
(Function) According to the method for producing a ceramic sintered body having the above configuration, the formed body formed by uniaxially pressing the ceramic raw material powder is further pressure-molded by a wet cold isostatic pressing method. The entire surface of the feature is compressed evenly towards the center by hydrostatic pressure. As a result, the resulting body becomes more dense and its density is uniform throughout. Therefore, there is little reduction in dimensional accuracy, and less cracking occurs during the molding and sintering stages, making it possible to improve product yield.

また生成形体は、形成しようとする焼結体の上面側形状
および下面側形状に合せて押圧面をそれぞれ形成した上
下パンチを使用して原料セラミックス粉末を圧縮成形し
て得られるため、はぼ製品形状に近い、いわゆるニアネ
・ソトな生成形体が得られる。
In addition, the formed body is obtained by compression molding the raw ceramic powder using upper and lower punches whose pressing surfaces are respectively formed to match the upper and lower shapes of the sintered body to be formed. A so-called near-soto formed shape, which is close to the shape, can be obtained.

そのため円柱状の生成形体から削り出して成形していた
従来法と比較して、原料粉末に対する製品の歩溜りを大
幅に向上させることができる上に、焼結後の研摩作業を
容易にする効果があり、複雑な形状を有するセラミック
ス焼結体の製造コストを大幅に低減することができる。
Therefore, compared to the conventional method of cutting and molding from a cylindrical shaped body, it is possible to significantly improve the yield of the product based on the raw material powder, and it also has the effect of facilitating the polishing work after sintering. This makes it possible to significantly reduce the manufacturing cost of ceramic sintered bodies with complex shapes.

また可撓性を有する合成樹脂製の収容袋に生成形体を収
容し、この収容袋の入口開口部をヒートシールして密封
した後に、密封した収容袋を水中に浸漬し、静水圧を作
用させる湿式冷間静水圧プレス処理を採用することによ
り、一般的に厚手のゴム袋を収容袋として使用し、その
ゴム袋の入口開口部を締結具で強固に締着する従来の冷
間静水圧プレス処理と比較して、密封処理が極めて容易
となり、作業コストを大幅に低減することができる。
In addition, the generated body is stored in a flexible synthetic resin storage bag, and the entrance opening of the storage bag is sealed by heat sealing, and then the sealed storage bag is immersed in water to apply hydrostatic pressure. By adopting a wet cold isostatic press process, a conventional cold isostatic press typically uses a thick rubber bag as a storage bag and firmly fastens the inlet opening of the rubber bag with a fastener. The sealing process is extremely easy compared to the process, and the work cost can be significantly reduced.

(実施例) 次に本発明の一実施例について添付図面を参照して説明
する。第1図〜第4図は本発明に係るセラミックス焼結
体の製造方法を使用して第9図(d)に示すようなセラ
ミックス球体を製造する各工程を示した図である。
(Example) Next, an example of the present invention will be described with reference to the accompanying drawings. 1 to 4 are diagrams showing each step of manufacturing a ceramic sphere as shown in FIG. 9(d) using the method for manufacturing a ceramic sintered body according to the present invention.

すなわち本実施例に係るセラミックス焼結体の製造方法
は、まず第1図に示すように形成しようとする球状焼結
体の上下面側形状に合せて半球状抑圧面3a、3bを形
成した上下パンチ4,5をダイス6内に昇降自在に嵌挿
した金型プレス機を使用し、上下パンチ4.5間にセラ
ミックス原料粉末7を充填する。
That is, in the method for manufacturing a ceramic sintered body according to this embodiment, first, as shown in FIG. Using a mold press machine in which punches 4 and 5 are fitted into a die 6 so as to be able to move up and down, ceramic raw material powder 7 is filled between the upper and lower punches 4 and 5.

次に上下パンチ4,5を所定圧力で押圧してセラミック
ス原料粉末7を一軸加圧して第2図に示すような生成形
体1Cを得る。
Next, the ceramic raw material powder 7 is uniaxially pressed by pressing the upper and lower punches 4 and 5 with a predetermined pressure to obtain a formed body 1C as shown in FIG.

ここで生成形体1cは中央赤道部に幅すの帯状の円柱部
8を有し、その上下部にそれぞれ上下パンチ4.5によ
って形成された半球部R,Rを有する。この円柱部8の
幅すは上下パンチ4,5を完全に密着し得ないために発
生するものであり、後工程での研摩作業をより容易にす
るためには可及的に小さくすることが望ましい。
Here, the generated body 1c has a band-shaped cylindrical part 8 in the central equatorial region, and hemispherical parts R, R formed by upper and lower punches 4.5 at the upper and lower parts thereof, respectively. This width of the cylindrical portion 8 occurs because the upper and lower punches 4 and 5 cannot be brought into perfect contact with each other, and should be made as small as possible in order to make the polishing work in the subsequent process easier. desirable.

しかし上下パンチ4,5による圧縮度を考慮し、幅すの
生成形体の直径aに対する比率b / aは0゜3以下
に設定するとよい。0.3を超える値にすると最終仕上
工程における焼結体の必要研摩量が急激に増加し研摩工
数が増大するからである。
However, in consideration of the degree of compression by the upper and lower punches 4 and 5, the ratio b/a of the width to the diameter a of the formed shape is preferably set to 0°3 or less. This is because if the value exceeds 0.3, the amount of polishing required for the sintered body in the final finishing step increases rapidly, and the number of polishing steps increases.

次に、得られた生成形体1Cは第3図(a)〜(C)に
示す手順に従って湿式冷間静水圧プレス処理(CIP処
理)により加圧成形される。
Next, the obtained green body 1C is pressure-molded by wet cold isostatic pressing (CIP) according to the procedure shown in FIGS. 3(a) to 3(C).

すなわち準備作業として、まず第3図(a)に示すよう
に可撓性を有する合成樹脂製の収容袋9としてのナイロ
ンーポリエチレン二層袋10を用意し、このナイロンー
ポリエチレン二層袋10内に生成形体1cを投入する。
That is, as a preparatory work, first, as shown in FIG. 3(a), a nylon-polyethylene double-layer bag 10 is prepared as a storage bag 9 made of flexible synthetic resin, and the inside of this nylon-polyethylene double-layer bag 10 is The generated body 1c is put into the container.

ここで、収容袋9としては、生成形体1cの全面に密着
し、水を透過せず可撓性を有する材料であればよいが、
特に靭性が高く水密性に優れ、かつ安価でヒートシール
が可能な点からナイロンとポリエチレンとで2屑に形成
した収容袋が望ましい。特に融点が比較的に低いナイロ
ンを内層にし、その外側に、ナイロンより融点が高いポ
リエチレンを外層として2層に形成した収容袋はシール
性が優れている。
Here, the storage bag 9 may be made of any material that is in close contact with the entire surface of the formed body 1c, does not allow water to pass through, and has flexibility.
In particular, a storage bag made of two pieces of nylon and polyethylene is desirable because it has high toughness, excellent watertightness, is inexpensive, and can be heat-sealed. In particular, a two-layer storage bag with an inner layer made of nylon, which has a relatively low melting point, and an outer layer made of polyethylene, which has a higher melting point than nylon, has excellent sealing properties.

次に、生成形体1Cを投入したナイロンーポリエチレン
二層袋10内に水が侵入することを防止するために、第
3図(b)で示すようにナイロンーポリエチレン二層袋
10の入口部を加熱して融着させる、いわゆるヒートシ
ール法によってヒートシール線11を形成し密封する。
Next, in order to prevent water from entering the nylon-polyethylene double-layer bag 10 into which the formed body 1C is placed, the entrance of the nylon-polyethylene double-layer bag 10 is closed as shown in FIG. 3(b). A heat seal line 11 is formed and sealed by a so-called heat seal method in which the wires are heated and fused.

ヒートシール時の加熱温度はナイロンの融点とポリエチ
レンの融点との中間温度に設定するとよい。この温度設
定によりナイロン製の内層のみが封止部において溶融し
、収容袋9を効果的に封止することができる。
The heating temperature during heat sealing is preferably set to an intermediate temperature between the melting point of nylon and the melting point of polyethylene. By setting this temperature, only the inner layer made of nylon melts at the sealing portion, and the storage bag 9 can be effectively sealed.

このとき収容袋9の内部に空気が多量に残存すると、湿
式冷間静水圧プレス処理時に残存空気が加圧され、生成
した高圧空気によって収容袋9が破損するおそれが高く
なる。そのためヒートシール時における収容袋9内の圧
力は可及的に低いことが望ましいが、収容袋9内に生成
形体1cを収容した後に収容袋9を軽く押圧して内部の
気体を排除し、収容袋9内部の圧力が大気圧以下となっ
ていれば充分である。
If a large amount of air remains inside the storage bag 9 at this time, the remaining air will be pressurized during the wet cold isostatic pressing process, and there is a high possibility that the storage bag 9 will be damaged by the generated high-pressure air. Therefore, it is desirable that the pressure inside the storage bag 9 during heat sealing is as low as possible, but after storing the formed body 1c in the storage bag 9, the storage bag 9 is lightly pressed to eliminate the gas inside, and the It is sufficient that the pressure inside the bag 9 is below atmospheric pressure.

そして第3図(C)に示すように密封したナイロンーポ
リエチレン二層袋10を冷間静水圧プレス装置(CI 
P)内に浸漬し、加圧媒体としての水を所定圧力Pに加
圧する。生成形体1cはナイロンーポリエチレン二層袋
10の皮膜を介して全表面において等方向に静水圧Pを
受け、中心方向に加圧される。その結果、生成形体IC
はより緻密化され、その密度は全体について均一化され
る。
Then, as shown in FIG. 3(C), the sealed nylon-polyethylene double layer bag 10 is placed in a cold isostatic press machine (CI).
P) and pressurizes water as a pressurizing medium to a predetermined pressure P. The formed body 1c is subjected to hydrostatic pressure P in the same direction on its entire surface through the membrane of the nylon-polyethylene double-layer bag 10, and is pressurized toward the center. As a result, the generated form IC
becomes more compact and its density becomes uniform throughout.

また加圧用水はナイロンーポリエチレン二層袋10によ
って遮断され、生成形体ICの内部に加圧用水が侵入す
ることによる品質の低下が防止される。
In addition, pressurized water is blocked by the nylon-polyethylene double layer bag 10, thereby preventing quality deterioration due to pressurizing water entering the inside of the formed body IC.

冷間静水圧プレス処理が完了すると、生成形体ICはナ
イロンーポリエチレン二層袋10ごと取り出される。そ
してナイロンーポリエチレン二層袋JOは破かれて開放
され、内部より生成形体ICが取り出される。
When the cold isostatic pressing process is completed, the resulting formed IC is taken out together with the nylon-polyethylene double layer bag 10. The nylon-polyethylene double layer bag JO is then torn open and the formed body IC is taken out from inside.

取り出された生成形体ICは脱脂焼結処理を施され、焼
結体15とされた後に、第4図に示すバレル研摩装fi
lll12によって、その表面を粗加工される。
The removed formed body IC is subjected to a degreasing and sintering process to form a sintered body 15, and then subjected to a barrel polishing machine fi shown in FIG.
The surface is roughly processed by lll12.

ここでバレル研摩装置12は、例えば水平面上を回転す
る基板13上面に付設されたメタルボンド研摩砥石14
と、生成形体ICを焼結して得た焼結体15を収容する
円筒状の装置本体16と、装置本体16上部を閉止する
カバー17とから構成されている。
Here, the barrel polishing device 12 includes, for example, a metal bond polishing grindstone 14 attached to the upper surface of a substrate 13 rotating on a horizontal plane.
, a cylindrical device main body 16 that accommodates a sintered body 15 obtained by sintering the formed body IC, and a cover 17 that closes the upper part of the device main body 16.

回転するメタルボンド研摩砥石14上を転動することに
より、焼結体15は第2図に示す帯状の円柱部8が削り
取られ研摩される。こうして得られた焼結体15は、さ
らにラッピングやポリッシング処理によって所要の直径
不同、真球度、表面粗さ、相互差となるように最終的な
表面加工が付されて製品としてのセラミックス球体とな
る。
By rolling on the rotating metal bond polishing grindstone 14, the sintered body 15 is polished by scraping off the band-shaped cylindrical portion 8 shown in FIG. The sintered body 15 obtained in this way is further subjected to final surface processing by lapping and polishing to achieve the required diameter inconsistency, sphericity, surface roughness, and mutual difference, and becomes a ceramic sphere as a product. Become.

上記実施例に係るセラミックス焼結体の製造方法によれ
ば、セラミックス原料粉末7を一軸加圧して成形した生
成形体ICを、さらに湿式冷間静水圧プレス処理によっ
て等方圧縮して加圧成形しているため、生成形体1cは
全表面にわたり均等に加圧され、密度が均一化される。
According to the method for manufacturing a ceramic sintered body according to the above embodiment, the formed body IC formed by uniaxially pressing the ceramic raw material powder 7 is further isostatically compressed by wet cold isostatic pressing treatment and pressure molded. Therefore, the formed body 1c is pressurized evenly over the entire surface, and the density is made uniform.

その結果、寸法精度の低下が少なく、製造途中における
割れの発生も少なく、製品の歩溜りを向上させることが
できる。
As a result, there is little reduction in dimensional accuracy, less occurrence of cracks during manufacturing, and it is possible to improve product yield.

また生成形体ICは、半球状押圧面3a、  3bを形
成した上下パンチ4.5を使用して原料粉末7を圧縮成
形して得られるため、はぼ球形に近い形状に形成される
。そのため円柱状の生成形体から削り出して成形してい
た従来法と比較して、原料粉末に対する製品の歩溜りを
大幅に向上させることができる上に、焼結後の研摩作業
を容易にする効果があり、セラミックス球体の製造コス
トを大幅に低減することができる。
Moreover, since the formed body IC is obtained by compression molding the raw material powder 7 using the upper and lower punches 4.5 having hemispherical pressing surfaces 3a and 3b, it is formed into a shape close to a spherical shape. Therefore, compared to the conventional method of cutting and molding from a cylindrical shaped body, it is possible to significantly improve the yield of the product based on the raw material powder, and it also has the effect of facilitating the polishing work after sintering. This makes it possible to significantly reduce the manufacturing cost of ceramic spheres.

また冷間静水圧プレス処理において可撓性を有するナイ
ロンとポリエチレンとで2層に形成した収容袋9を使用
し、ヒートシールによって入口開口部を密封する方法を
採用しているため、生成形体1cを収容した後の開口部
の密封処理が極めて用意であり、作業コストを大幅に低
減することができる。
In addition, in the cold isostatic pressing process, a storage bag 9 made of two layers of flexible nylon and polyethylene is used, and the inlet opening is sealed by heat sealing, so that the formed body 1c The sealing process of the opening after accommodating the container is extremely easy, and the work cost can be significantly reduced.

すなわち従来一般的に採用されている冷間静水圧プレス
処理においては、ゴム製の厚手の収容袋に生成形体1c
を収容し、収容袋内部に空気が残留しないように、予め
収容袋内を真空引きする操作が必要とされた。しかし本
実施例のように収容袋として可撓性を有する薄手のナイ
ロンーポリエチレン二層袋10を使用すれば、手で収容
袋全体を押圧するのみで、内部の空気を迅速に排除する
ことが可能となり、冷間静水圧プレス処理の準備作業を
簡素にすることができる。
In other words, in the cold isostatic pressing process that has been generally adopted, the formed body 1c is placed in a thick rubber storage bag.
It was necessary to evacuate the inside of the bag in advance to prevent air from remaining inside the bag. However, if a flexible thin nylon-polyethylene double-layer bag 10 is used as the storage bag as in this embodiment, the air inside can be quickly expelled simply by pressing the entire storage bag with your hand. This makes it possible to simplify the preparation work for cold isostatic pressing.

次に上記実施例のセラミックス焼結体の製造方法を使用
して具体的にセラミックス球体を製造した場合の効果に
ついて、従来法と比較して説明する。
Next, the effects of specifically manufacturing a ceramic sphere using the method for manufacturing a ceramic sintered body of the above embodiment will be explained in comparison with a conventional method.

実施例1および比較例1 実施例1として513N4粉末に焼結助剤としてイツト
リア(Y2O2)およびアルミナ(AJ203)をそれ
ぞれ5重量%、5重量%配合し、ボールミルで48時間
、湿式混合して得られたスラリー状混合体にバインダー
を添加した後にスプレードライヤーで乾燥し、平均粒径
60μmを有する混合体の粉末を造粒した。次に造粒し
た粉末を使用して第1図に示す金型プレス機に圧力50
0kg/alで上下パンチを押圧して直径9.5閣の生
成形体を500個形成した。
Example 1 and Comparative Example 1 As Example 1, 513N4 powder was mixed with 5% by weight and 5% by weight of alumina (Y2O2) and alumina (AJ203) as sintering aids, respectively, and wet-mixed in a ball mill for 48 hours. A binder was added to the resulting slurry-like mixture, which was then dried with a spray dryer to granulate a powder of the mixture having an average particle size of 60 μm. Next, using the granulated powder, press the die press machine shown in Fig. 1 at 50°C.
The upper and lower punches were pressed at 0 kg/al to form 500 formed bodies with a diameter of 9.5 mm.

次に得られた生成形体1cを第3図(a)〜(C)に示
すようにナイロンとポリエチレンとの2層構造に形成し
た収容袋9に1個ずつ充填し、収容袋の入口開口部をヒ
ートシール後、圧力2000kg/corで5分間湿式
冷間静水圧プレス処理を行なった。
Next, the obtained formed bodies 1c are filled one by one into a storage bag 9 formed into a two-layer structure of nylon and polyethylene as shown in FIGS. 3(a) to 3(C), and the inlet opening of the storage bag is After heat-sealing, wet cold isostatic pressing was performed at a pressure of 2000 kg/cor for 5 minutes.

次に得られた生成形体1cをN2ガス雰囲気において7
00℃で脱脂後、1800℃で常圧焼結し、さらに温度
1800℃、圧力1000kg/adで1時間熱間静水
圧プレス(HI P)処理を行なった。
Next, the obtained formed body 1c was placed in a N2 gas atmosphere for 7
After degreasing at 00°C, normal pressure sintering was performed at 1800°C, and further hot isostatic pressing (HIP) treatment was performed at a temperature of 1800°C and a pressure of 1000 kg/ad for 1 hour.

さらにHIP処理によって得た焼結体を第4図に示すバ
レル研摩装置で処理後、ダイヤモンドペーストをコンパ
ウンドとしてラップ研摩加工を行ない、直径不同0.4
μm1真空度0.4μm1表面粗さ0.032μmRa
、相互差0.8μmの寸法精度が得られるまでの合計製
造時間および製造途中において割れを生じた焼結体数を
計測した。
Furthermore, the sintered body obtained by HIP treatment was treated with a barrel polishing device shown in Fig. 4, and then lap polishing was performed using diamond paste as a compound.
μm1 Vacuum degree 0.4μm1 Surface roughness 0.032μmRa
The total manufacturing time until dimensional accuracy with a mutual difference of 0.8 μm was obtained and the number of sintered bodies that cracked during manufacturing were measured.

一方、比較例1として実施例1と同様な寸法を有する生
成形体を用い、湿式冷間静水圧プレス処理を行なわない
従来の製造方法に従って同数のセラミックス球体を製造
した場合における製造時間および割れが発生した焼結体
数を同様に計測し、第1表に示す結果を得た。
On the other hand, as Comparative Example 1, the same number of ceramic spheres were manufactured according to the conventional manufacturing method without wet cold isostatic pressing using a formed body having the same dimensions as in Example 1, and the manufacturing time and cracking occurred. The number of sintered bodies was measured in the same manner, and the results shown in Table 1 were obtained.

第1表 第1表の結果から明らかなように本実施例のセラミック
ス球体の製造方法によれば、生成形体段階における寸法
精度の低下が少ないため、研摩加工による仕上げが容易
となり製造時間が短縮される。
As is clear from the results in Table 1, according to the method for manufacturing ceramic spheres of this example, there is little decrease in dimensional accuracy at the stage of the formed body, so finishing by polishing is easy and manufacturing time is shortened. Ru.

また湿式冷間静水圧プレス処理によって生成形体の緻密
化および密度の均一化を図っているため、割れの発生も
少なく、製品の少滴りも大幅に改善された。
In addition, wet cold isostatic pressing is used to make the resulting product denser and more uniform in density, resulting in fewer cracks and a significant improvement in product dripping.

実施例2として実施例1と同様な原料組成および処理条
件によって一軸加圧成形した後に、生成形体をナイロン
−ポリエチレン二層袋に充填し、湿式冷間静水圧プレス
処理を行ない、さらに脱脂焼結してセラミックス球体を
100個製造した。
As Example 2, after uniaxial pressure molding was performed using the same raw material composition and processing conditions as in Example 1, the formed body was filled into a nylon-polyethylene double layer bag, subjected to wet cold isostatic pressing treatment, and further degreased and sintered. 100 ceramic spheres were manufactured.

一方比較例として実施例1の一軸加圧プレス成形機で形
成した生成形体を従来の厚手のゴムモールド(収容袋)
に装填後、内部を真空引きしゴムモールドの開口部を金
具で封止した後に、実施例2と同様な加圧条件で湿式冷
間静水圧プレス処理を行ない、かつ実施例2と同一の条
件で脱脂焼結して100個の焼結体を製造した。また比
較例3として実施例1の一軸加圧プレス成形機で形成し
た生成形体をそのまま脱脂焼結して100個の焼結体を
製造した。
On the other hand, as a comparative example, the formed body formed by the uniaxial pressure press molding machine of Example 1 was molded into a conventional thick rubber mold (accommodation bag).
After loading, the inside was evacuated and the opening of the rubber mold was sealed with metal fittings, and then wet cold isostatic pressing was performed under the same pressurizing conditions as in Example 2, and under the same conditions as in Example 2. 100 sintered bodies were manufactured by degreasing and sintering. Further, as Comparative Example 3, the green body formed using the uniaxial pressure press molding machine of Example 1 was directly degreased and sintered to produce 100 sintered bodies.

そして実施例2および比較例2〜3にて得られた各焼結
体について焼結密度、ボアの発生状況、クラックの発生
状況および最終的に製品として合格した焼結体の歩留り
を測定算出し下記第2表に示す結果を得た。
Then, for each sintered body obtained in Example 2 and Comparative Examples 2 and 3, the sintered density, the occurrence of bores, the occurrence of cracks, and the yield of the sintered body that finally passed as a product were measured and calculated. The results shown in Table 2 below were obtained.

第2表の結果から明らかなように実施例2に係るセラミ
ックス焼結体の製造方法によれば、焼結体密度が高く、
欠陥がない高品質のセラミックス焼結体を高い歩留りで
製造することができる。
As is clear from the results in Table 2, according to the method for manufacturing a ceramic sintered body according to Example 2, the sintered body density is high;
A high-quality ceramic sintered body with no defects can be manufactured at a high yield.

一方比較例2によればゴムモールド内に生成形体を収容
しCIP処理を行なっているため、焼結体密度は実施例
2ど同様ではあるが、ゴムモールドの開口を完全に封止
することが困難であり、CIP処理時に加圧水がゴムモ
ールド内に侵入して生成形体を汚染する割合が高く、製
品の歩留りは80%程度に低下した。
On the other hand, according to Comparative Example 2, the formed body was housed in a rubber mold and the CIP treatment was performed, so although the density of the sintered body was the same as in Example 2, it was not possible to completely seal the opening of the rubber mold. This was difficult, and there was a high rate of pressurized water entering the rubber mold and contaminating the formed body during the CIP treatment, and the yield of the product decreased to about 80%.

また比較例3ではCIP処理を行なっていないため、生
成形体の緻密化および密度の均一化が進行せず、大部分
の焼結体にボアが発生し、クラックの発生も多く、歩留
りは10%程度に低下してしまう。
In addition, in Comparative Example 3, since CIP treatment was not performed, the densification and uniformity of the density of the formed body did not progress, and most of the sintered bodies had bores, many cracks occurred, and the yield was 10%. It will decrease to a certain extent.

次に本発明の他の実施例について第5図〜第7図を参照
して説明する。第5図に示す一軸加圧プレス成形機は第
8図(C)に示すようなリベット状焼結体300を形成
するために使用される成形機であり、焼結体300の上
面側形状に合せて形成した半球状押圧面3Cを有する上
バンチ4aと、焼結体300の下面側形状に合せて形成
した段状押圧面19を形成した下バンチ5aとをダイス
6内に上下方向からそれぞれ嵌入するようにして構成さ
れる。下バンチ5aの軸穴にはコアパンチ20が昇降自
在に配設される。
Next, another embodiment of the present invention will be described with reference to FIGS. 5 to 7. The uniaxial pressure press molding machine shown in FIG. 5 is a molding machine used to form a rivet-like sintered body 300 as shown in FIG. An upper bunch 4a having a hemispherical pressing surface 3C formed together and a lower bunch 5a having a stepped pressing surface 19 formed to match the shape of the lower surface of the sintered body 300 are inserted into the die 6 from above and below, respectively. It is configured to fit in. A core punch 20 is disposed in the shaft hole of the lower bunch 5a so as to be movable up and down.

そして上下バンチ4a、5aおよびコアバンチ20の間
隙部にセラミックス原料粉末7を充填して押圧すると、
第6図に示すようなリベット形状の生成形体1dが得ら
れる。
Then, when the ceramic raw material powder 7 is filled into the gap between the upper and lower bunches 4a, 5a and the core bunch 20 and pressed,
A rivet-shaped generated body 1d as shown in FIG. 6 is obtained.

次に得られた生成形体1dを第7図に示すようにナイロ
ンーポリエチレン二層袋10で形成した収容袋9内に配
置し、密封する。各生成形体1dは、収容袋9に縦横に
形成したヒートシール線11によって区画される各領域
21・・・毎に1個ずつ密封される。
Next, the obtained green body 1d is placed in a storage bag 9 formed of a nylon-polyethylene double layer bag 10, as shown in FIG. 7, and sealed. Each of the formed bodies 1d is sealed one by one in each area 21 defined by the heat-sealing lines 11 formed in the vertical and horizontal directions in the storage bag 9.

密封された生成形体1dはCIP装置に装填される。そ
して所定静水圧が、収容袋9を介して各生成形体1d表
面に等方向に作用し、生成形体1dは緻密化される。
The sealed green body 1d is loaded into a CIP device. Then, a predetermined hydrostatic pressure is applied uniformly to the surface of each formed body 1d through the storage bag 9, and the formed body 1d is densified.

本実施例方法によれば、複雑なリベット形状を有する焼
結体であっても同様に効率よく製造することが可能であ
る上、特に1枚の収容袋9に収容する複数の生成形体1
dをヒートシール線11によって区画形成された各領域
21・・・に1個ずつ分離して配置しているため、CI
P処理時において隣接した生成形体同志が接触すること
が少ない。
According to the method of this embodiment, even a sintered body having a complicated rivet shape can be manufactured efficiently, and in particular, a plurality of formed bodies 1 can be housed in one storage bag 9.
Since the CI
Adjacent formed bodies rarely come into contact with each other during P processing.

そのため、生成形体の損傷が少なく、製品の歩留りを大
きくすることができる。
Therefore, there is less damage to the formed body, and the yield of the product can be increased.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明に係るセラミックス焼結体の製造
方法によれば、セラミックス原料粉末を一軸加圧して形
成した生成形体を、さらに湿式冷間静水圧プレス法によ
って加圧成形しているため、生成形体の全表面は等方向
に静水圧によって中心方向に均等に加圧される。その結
果、緻密化がより進行し、生成形体の密度は全体につい
て均一化される。したがって寸法精度の低下が少なく、
また成形段階および焼結段階においても割れの発生が少
なく、製品の歩溜りを大幅に向上させることができる。
As explained above, according to the method for manufacturing a ceramic sintered body according to the present invention, the formed body formed by uniaxially pressing the ceramic raw material powder is further pressure-molded by a wet cold isostatic pressing method. The entire surface of the generated form is pressurized evenly towards the center by isostatic hydrostatic pressure. As a result, densification progresses further and the density of the formed body becomes uniform throughout. Therefore, there is less loss of dimensional accuracy,
Furthermore, cracks are less likely to occur during the molding and sintering stages, and the product yield can be greatly improved.

また生成形体は、形成しようとする焼結体の上面側形状
および下面側形状に合せて押圧面を形成した上下パンチ
を使用して、原料セラミックス粉末を圧縮成形して得ら
れるため、はぼ焼結体の形状に近いニアネットな生成形
体が得られる。
In addition, the formed body is obtained by compression molding the raw ceramic powder using upper and lower punches whose pressing surfaces match the upper and lower shapes of the sintered body to be formed. A near-net generated shape that is close to the shape of the solid body can be obtained.

そのため円柱状の生成形体から削り出して成形していた
従来法と比較して、原料粉末に対する製品の歩溜りを大
幅に向上させることができる上に、焼結後の研摩作業を
容易にする効果があり、セラミックス焼結体の製造コス
トを大幅に低減することができる。
Therefore, compared to the conventional method of cutting and molding from a cylindrical shaped body, it is possible to significantly improve the yield of the product based on the raw material powder, and it also has the effect of facilitating the polishing work after sintering. This makes it possible to significantly reduce the manufacturing cost of ceramic sintered bodies.

また可撓性を有する合成樹脂製の収容袋に生成形体を収
容し、この収容袋の入口開口部をヒートシールして密封
した後に、密封した収容袋を水中に浸漬し、静水圧を作
用させて等方圧縮する湿式冷間静水圧プレス処理を採用
することにより、厚手のゴム袋を収容袋として使用し、
そのゴム袋の入口部を締結具で強固に締着する従来の冷
間静水圧プレス処理と比較して、密封処理が極めて容易
となり、作業コストを大幅に低減することができる。
In addition, the formed body is stored in a flexible synthetic resin storage bag, and the entrance opening of the storage bag is sealed by heat sealing, and then the sealed storage bag is immersed in water to apply hydrostatic pressure. By adopting a wet cold isostatic press process that compresses the product isostatically, a thick rubber bag can be used as a storage bag.
Compared to the conventional cold isostatic pressing process in which the inlet part of the rubber bag is firmly fastened with a fastener, the sealing process is extremely easy and the work cost can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であり、セラミックス原料粉
末を一軸加圧して生成形体を形成する状態を示す断面図
、第2図は生成形体の形状例を示す正面図、第3図(a
)〜(C)は湿式冷間静水圧プレス処理の実施手順を示
す正面図であり、第3図(a)は収容袋に生成形体を投
入する状態を示す正面図、第3図(b)は収容袋の開口
をヒートシールして密封した状態を示す正面図、第3図
(c)は生成形体を収容した収容袋に静水圧を作用させ
た状態を示す正面図、第4図はバレル研磨装置の構成を
示す断面図、第5図は本発明方法で使用する一軸加圧プ
レス成形機の他の構成例を示す断面図、第6図は第5図
に示す成形機を使用して形成した生成形体の形状例を示
す正面図、第7図は収容袋内に複数の生成形体を相互に
分離して配置密封した状態を示す斜視図、第8図(a)
〜(d)はそれぞれセラミックス焼結体の形状例を示す
正面図、第9図(a)〜(d)は従来のセラミックス球
体の製造手順を示す図であり、第9図(a)は円柱状に
形成した生成形体の斜視図、第9図(b)、  (c)
はそれぞれ円柱状生成形体の角部をそれぞれ直線状また
は曲線状に面取りした状態を示す斜視図、第9図(d)
は最終的な表面加工を完了したセラミックス球体を示す
斜視図、第10図は第2図におけるX部拡大断面図であ
る。 1、  la、  Ib、  lc・・・生成形体、2
・・・セラミックス球体、3a、3b、3c・・・半球
状押圧面、4.4a・・・上ハンチ、5.5a・・・下
バンチ、6・・・ダイス、7・・・セラミックス原料粉
末、8・・・円柱部、9・・・収容袋、10・・・ナイ
ロン−ポリエチレン二層袋、11・・・ヒートシール線
、12・・・バレル研摩装置、13・・・基板、14・
・・メタルボンド研摩砥石、15・・・焼結体、16・
・・装置本体、17・・・カバー18・・・割れ、19
・・・段状押圧面、20・・・コアパンチ、2・・・領
域、R・・・半球部。 $ 1図 $2回 (a) こIノ (() 第 4 図 基 回 2/ 2/ 回 第 θ 回
Fig. 1 is an embodiment of the present invention, and is a sectional view showing a state in which a ceramic raw material powder is uniaxially pressed to form a formed body, Fig. 2 is a front view showing an example of the shape of the formed body, and Fig. 3 ( a
) to (C) are front views showing the implementation procedure of the wet cold isostatic press treatment, FIG. 3(c) is a front view showing the state in which the opening of the storage bag is sealed by heat sealing, FIG. 3(c) is a front view showing the state in which hydrostatic pressure is applied to the storage bag containing the generated body, and FIG. 4 is the barrel. 5 is a cross-sectional view showing another example of the structure of the uniaxial pressure press molding machine used in the method of the present invention, and FIG. 6 is a cross-sectional view showing the configuration of the polishing device. FIG. 7 is a front view showing an example of the shape of the formed formed body; FIG. 7 is a perspective view showing a state in which a plurality of formed bodies are separated from each other and sealed in a storage bag; FIG. 8(a)
9(d) are front views showing examples of shapes of ceramic sintered bodies, FIGS. 9(a) to 9(d) are views showing conventional manufacturing procedures of ceramic spheres, and FIG. 9(a) is a circular view. Perspective views of generated bodies formed into columnar shapes, FIGS. 9(b) and (c)
FIG. 9(d) is a perspective view showing a state in which the corners of the cylindrical generated shape are chamfered in a straight line or a curve, respectively.
1 is a perspective view showing a ceramic sphere that has undergone final surface processing, and FIG. 10 is an enlarged sectional view of the X section in FIG. 2. 1, la, Ib, lc... generated form, 2
... Ceramic sphere, 3a, 3b, 3c... Hemispherical pressing surface, 4.4a... Upper haunch, 5.5a... Lower bunch, 6... Dice, 7... Ceramic raw material powder , 8... Cylindrical part, 9... Storage bag, 10... Nylon-polyethylene double layer bag, 11... Heat seal wire, 12... Barrel polishing device, 13... Substrate, 14...
...Metal bond polishing whetstone, 15...Sintered body, 16.
...Device body, 17...Cover 18...Cracked, 19
... Stepped pressing surface, 20 ... Core punch, 2 ... Region, R ... Hemispherical part. $1 Figure $2 times (a) KoIノ(() Figure 4 Base times 2/ 2/ times θ times

Claims (1)

【特許請求の範囲】 1、形成しようとする焼結体の上面側形状および下面側
形状に合せて、押圧面をそれぞれ形成した上パンチおよ
び下パンチによってセラミックス原料粉末を一軸加圧し
て生成形体を形成した後に、上記生成形体を湿式冷間静
水圧プレス処理により加圧成形し、しかる後に得られた
生成形体を脱脂焼結後、最終的な表面加工を行なうこと
を特徴とするセラミックス焼結体の製造方法。 2、湿式冷間静水圧プレス処理は、可撓性を有する合成
樹脂製の収容袋に生成形体を収容し、袋内部の圧力を大
気圧以下に保持した状態で収容袋の入口開口部をヒート
シールして密封した後に、密封した収容袋を水中に浸漬
し、静水圧を作用させて等方圧縮することを特徴とする
請求項1記載のセラミックス焼結体の製造方法。
[Claims] 1. The ceramic raw material powder is uniaxially pressed by an upper punch and a lower punch whose pressing surfaces are respectively formed to match the upper and lower shapes of the sintered body to be formed to form a formed body. A ceramic sintered body characterized in that, after being formed, the above-mentioned green body is pressure-formed by wet cold isostatic pressing, and then the green body obtained is degreased and sintered, and then subjected to a final surface treatment. manufacturing method. 2. In the wet cold isostatic pressing process, the formed body is placed in a flexible synthetic resin storage bag, and the inlet opening of the storage bag is heated while the pressure inside the bag is maintained below atmospheric pressure. 2. The method for producing a ceramic sintered body according to claim 1, wherein after sealing, the sealed storage bag is immersed in water and isostatically compressed by applying hydrostatic pressure.
JP1-317834A 1989-05-16 1989-12-08 Manufacturing method of ceramic sintered body Expired - Lifetime JP3026304B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12038589 1989-05-16
JP1-120385 1989-05-16

Publications (2)

Publication Number Publication Date
JPH0373310A true JPH0373310A (en) 1991-03-28
JP3026304B2 JP3026304B2 (en) 2000-03-27

Family

ID=

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337386A (en) * 1999-05-31 2000-12-05 Kyocera Corp Ceramic rolling element raw material, its manufacture and rolling element using it
JP2001192258A (en) * 1999-12-28 2001-07-17 Toshiba Corp Ceramic sintered compact, method of producing the same, and sliding member, bearing ball and bearing using the same
US7029623B2 (en) 2000-07-21 2006-04-18 Ngk Spark Plug Co., Ltd. Ceramic ball, ball bearing, motor having bearing, hard disk drive, polygon scanner, and method for manufacturing ceramic ball
JP2010110896A (en) * 2008-11-04 2010-05-20 Kohjin Co Ltd Packaging material used in isotropic hydrostatic pressure forming method
JP2011093789A (en) * 2009-09-30 2011-05-12 Hitachi Metals Ltd Ceramic ball stock sphere, mold for forming ceramic ball stock sphere and method for manufacturing ceramic ball stock sphere
CN105081331A (en) * 2015-05-12 2015-11-25 哈尔滨理工大学 Preparation for composite ceramic bearings for CPU fans
US10077201B2 (en) * 2014-05-27 2018-09-18 Olympus Corporation Optical element manufacturing device and optical element shaping mold set

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240326A (en) * 1975-09-26 1977-03-29 Matsushita Electric Ind Co Ltd Speaker
JPS62278004A (en) * 1986-05-26 1987-12-02 古河電気工業株式会社 Manufacture of ceramics sintered body
JPH0191999A (en) * 1987-10-01 1989-04-11 Nkk Corp Forming of powder body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240326A (en) * 1975-09-26 1977-03-29 Matsushita Electric Ind Co Ltd Speaker
JPS62278004A (en) * 1986-05-26 1987-12-02 古河電気工業株式会社 Manufacture of ceramics sintered body
JPH0191999A (en) * 1987-10-01 1989-04-11 Nkk Corp Forming of powder body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337386A (en) * 1999-05-31 2000-12-05 Kyocera Corp Ceramic rolling element raw material, its manufacture and rolling element using it
JP2001192258A (en) * 1999-12-28 2001-07-17 Toshiba Corp Ceramic sintered compact, method of producing the same, and sliding member, bearing ball and bearing using the same
JP4642956B2 (en) * 1999-12-28 2011-03-02 株式会社東芝 Bearing ball, bearing, and method of manufacturing bearing ball
US7029623B2 (en) 2000-07-21 2006-04-18 Ngk Spark Plug Co., Ltd. Ceramic ball, ball bearing, motor having bearing, hard disk drive, polygon scanner, and method for manufacturing ceramic ball
JP2010110896A (en) * 2008-11-04 2010-05-20 Kohjin Co Ltd Packaging material used in isotropic hydrostatic pressure forming method
JP2011093789A (en) * 2009-09-30 2011-05-12 Hitachi Metals Ltd Ceramic ball stock sphere, mold for forming ceramic ball stock sphere and method for manufacturing ceramic ball stock sphere
US10077201B2 (en) * 2014-05-27 2018-09-18 Olympus Corporation Optical element manufacturing device and optical element shaping mold set
CN105081331A (en) * 2015-05-12 2015-11-25 哈尔滨理工大学 Preparation for composite ceramic bearings for CPU fans

Similar Documents

Publication Publication Date Title
US8357030B2 (en) Apparatus and method for manufacturing abrasive tools
US5850590A (en) Method for making a porous sintered material
JPH0373310A (en) Production of ceramic sintered body
JP3026304B2 (en) Manufacturing method of ceramic sintered body
JPH02240201A (en) Forming die for compact body and manufacture of compact body
JPH07504619A (en) Method for manufacturing abrasive tools and tools manufactured using this method
CN113635226A (en) Ceramic internal grinding wheel grinding complex, double-layer grinding wheel and preparation method
JPH06229422A (en) Manufacture of ceramic rolling bearing member
JP3380703B2 (en) Manufacturing method of ceramic ball
JP2003137640A (en) Rough ceramic ball and method for manufacturing the same
CN113319751B (en) Method for manufacturing metal bond diamond grinding wheel and equipment for manufacturing metal bond diamond grinding wheel
JP3965422B2 (en) Diamond pellet, manufacturing method thereof, and surface plate for grinding machine
JP2549019B2 (en) Manufacturing method of molded body
JPS59209770A (en) Method of manufacturing diamond cutting grindstone
JPS59205404A (en) Powder solidifying method
CN117285333A (en) Manufacturing process of alumina ceramic numerical control cutter
JPH0790313A (en) Hydrostatic press forming method of titanium powder
JPH0536206B2 (en)
US6193771B1 (en) Method for making depressed center abrasive wheels
JPH046883Y2 (en)
JPH01130908A (en) Manufacture of ceramics ball
JPH0360466A (en) Production of silicon nitride sintered body
JPH083736A (en) Strontium titanate sputtering target
JP2712894B2 (en) Method of forming fine pieces
JP2012061583A (en) Grind stone, and method for producing grind stone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees