JPH0372879B2 - - Google Patents

Info

Publication number
JPH0372879B2
JPH0372879B2 JP60055810A JP5581085A JPH0372879B2 JP H0372879 B2 JPH0372879 B2 JP H0372879B2 JP 60055810 A JP60055810 A JP 60055810A JP 5581085 A JP5581085 A JP 5581085A JP H0372879 B2 JPH0372879 B2 JP H0372879B2
Authority
JP
Japan
Prior art keywords
film
spacer
undulations
sides
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60055810A
Other languages
Japanese (ja)
Other versions
JPS6249097A (en
Inventor
Norihide Saho
Tadashi Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60055810A priority Critical patent/JPS6249097A/en
Publication of JPS6249097A publication Critical patent/JPS6249097A/en
Publication of JPH0372879B2 publication Critical patent/JPH0372879B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、断熱材および積層方法に係り、特に
低温容器等の断熱に好適な断熱材および積層方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat insulating material and a lamination method, and particularly to a heat insulating material and a lamination method suitable for insulating low temperature containers and the like.

〔発明の背景〕[Background of the invention]

従来の断熱材は、特公昭59−48917号公報に記
載のように、厚さ25μm位のプラスチツクフイル
ムにアルミニウム等の金属を片面または両面に蒸
着し、片面もしくは両面にエンボス加工した輝面
フイルムと、厚さ200μm程度の網目20メツシユ
程度のポリエステル等のプラスチツク繊維で編ん
だネツトのスペーサを交互に積層するようになつ
ていた。しかし、エンボス加工した輝面フイルム
表面の実質面積は投影面積に比べ増加し、その結
果輻射伝熱による熱侵入が増大してしまうという
点について配慮されていなかつた。
Conventional heat insulating materials, as described in Japanese Patent Publication No. 59-48917, are bright surface films made by depositing metals such as aluminum on one or both sides of a plastic film with a thickness of about 25 μm and embossing on one or both sides. Spacers made of nets woven from plastic fibers such as polyester and having a mesh size of about 20 meshes with a thickness of about 200 μm were alternately laminated. However, no consideration was given to the fact that the actual area of the embossed bright film surface increases compared to the projected area, resulting in an increase in heat penetration due to radiant heat transfer.

また、いつぽう米国プレナム・プレス社より
1965年8月に発行されたアドバンシス・イン・ク
ライオジエニツク・エンジニアリング
(Advances in Cryogenic Engjneering)第11巻
の35頁から記載の「宇宙船用軽量断熱材の実験的
検討(Experimental Evaluation of Some
Selectied Lightweight Superinsvlation for
Space Vehicles)」および同米国プレナム・プレ
ス社より1966年7月に発行されたアドバンシス・
イン・クライオジエニツク・エンジニアリング
(Advances in Cryogenic Engjneering)第12巻
の239頁から記載の「シールト板およびタンクに
巻き付けた高性能断熱材の比較(A
Comparison of Shroud−Mounted with Tank
−Mounted High−Pertormance Insvlatiion)」
と題する文献において論じられているように、輝
面膜は両面にアルミニウムを蒸着した平滑なプラ
スチツクフイルムを使用し、スペーサには両面に
アルミニウムを蒸着したデインプルフイルムすな
わち凹凸加工したスペーサを使用している。
Also, from Plenum Press, Inc.
``Experimental Evaluation of Some Lightweight Insulation Materials for Spacecraft'', published in Advances in Cryogenic Engineering, Volume 11, page 35, published in August 1965.
Selected Lightweight Superinsulation for
Space Vehicles) and Advansys, published by Plenum Press in July 1966.
“Comparison of high-performance insulation wrapped around seal plates and tanks (A.
Comparison of Shroud−Mounted with Tank
−Mounted High−Pertormance Insvlatiion)”
As discussed in the literature titled, the bright surface film uses a smooth plastic film with aluminum vapor-deposited on both sides, and the spacer uses a dimpled film, that is, a textured spacer with aluminum vapor-deposited on both sides. .

しかし、この場合スペーサにアルミニウムを蒸
着したことによる熱伝導率の増加すなわち、伝導
伝熱による熱侵入の増大する点については配慮さ
れていなかつた。
However, in this case, no consideration was given to the increase in thermal conductivity due to the vapor deposition of aluminum on the spacer, that is, the increase in heat penetration due to conductive heat transfer.

〔発明の目的〕[Purpose of the invention]

本発明は、積層断熱材において、輻射伝熱およ
び伝導伝熱による熱移動量を少なくし、良好な断
熱性能を得ることのできる断熱材および積層方法
を提供することにある。
An object of the present invention is to provide a heat insulating material and a lamination method that can reduce the amount of heat transfer due to radiant heat transfer and conductive heat transfer in a laminated heat insulating material and obtain good heat insulation performance.

〔発明の概要〕[Summary of the invention]

本発明は、輝面フイルムと、高分子材であるプ
ラスチツクフイルムの片面もしくは両面に凹凸状
の起伏を設け起伏の凸頂部と凹底部との間に金属
蒸着膜の非蒸着部を設け起伏の凸頂部と凹底部と
の片面もしくは両面に金属蒸着膜を設けたスペー
サとによつて断熱材を構成し、輻射伝熱および伝
導伝熱による熱移動量を少なくして、良好な断熱
性能を持つようにしたものであり、また、輝面フ
イルムと、高分子材であるプラスチツクフイルム
の片面もしくは両面に凹凸状の起伏を設けたスペ
ーサとを交互に積層して積層断熱材を形成する積
層方法において、積層断熱材の少なくとも高温側
となる外層部に、起伏の凸頂部と凹底部との間に
金属蒸着膜の非蒸着部を設け起伏の凸頂部と凹底
部との片面もしくは両面に金属蒸着膜を設けたス
ペーサを用いて積層する方法とすることによつ
て、幅射伝熱および伝導伝熱による熱移動量を少
なくして、良好な断熱性能を持つようにしたもの
である。
The present invention provides uneven undulations on one or both sides of a bright surface film and a plastic film which is a polymeric material, and a non-vaporized part of a metal vapor deposited film is provided between the convex top and concave bottom of the undulations. A heat insulating material is composed of a spacer with a metal vapor deposited film on one or both sides of the top and the concave bottom, and the amount of heat transfer due to radiant heat transfer and conductive heat transfer is reduced to provide good heat insulating performance. In addition, in the lamination method of forming a laminated heat insulating material by alternately laminating a bright surface film and a spacer having unevenness on one or both sides of a plastic film, which is a polymeric material, A non-deposited part of the metal vapor deposited film is provided between the convex top and the concave bottom of the undulations in at least the outer layer part on the high temperature side of the laminated insulation material, and a metal vapor deposited film is provided on one or both sides of the convex top and the concave bottom of the undulations. By using a stacking method using provided spacers, the amount of heat transfer due to radial heat transfer and conductive heat transfer is reduced, and good heat insulation performance is achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第6図
により説明する。第2図は、高分子材であるプラ
スチツクフイルムで、例えば、厚さ25μm程度の
ポリイミドフイルムの両面に厚さ800Å程度のア
ルミニウムを蒸着した輝面フイルム10である。
第3図は、高分子材であるプラスチツクフイルム
で、例えば、厚さ25μm程度のポリイミドフイル
ムの片面もしくは両面を凹凸加工したもので、凹
部22と凸部21が縦横方向に等ピツチで形成さ
れたスペーサ20である。積層断熱材は、輝面フ
イルム10とスペーサ20を交互に積層して構成
する。第1図は積層断熱材の断面構造である。輝
面フイルム10は平滑面であるから、積層方向の
投影面積Soと実質面積Saは等しく、蒸着したア
ルミニウムの輻射率をξとすれば、幅射による伝
熱量Qは Qr=Saξ(T4 1−T4 2) となる。ここでT1は高温の放熱面の温度、T2
低温の受熱面の温度である。ξはアルミニウム蒸
着面でほぼ0.02〜0.04程度である。すなわち、従
来の凹凸加工された輝面フイルム10では実質面
積Saがより大きくなり、伝熱量Qrは大きくなる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 2 shows a bright surface film 10 made of a plastic film made of a polymeric material, for example, a polyimide film having a thickness of about 25 μm, and aluminum having a thickness of about 800 Å deposited on both sides of the film.
Fig. 3 shows a plastic film which is a polymeric material, for example, a polyimide film with a thickness of about 25 μm, which has been textured on one or both sides, with depressions 22 and protrusions 21 formed at equal pitches in the vertical and horizontal directions. This is the spacer 20. The laminated heat insulating material is constructed by alternately laminating bright surface films 10 and spacers 20. Figure 1 shows the cross-sectional structure of the laminated insulation material. Since the bright surface film 10 has a smooth surface, the projected area So in the stacking direction and the actual area Sa are equal, and if the emissivity of the deposited aluminum is ξ, then the amount of heat transferred by radiation Q is Qr=Saξ(T 4 1 −T 4 2 ). Here, T 1 is the temperature of the high-temperature heat-radiating surface, and T 2 is the temperature of the low-temperature heat-receiving surface. ξ is approximately 0.02 to 0.04 on the aluminum vapor deposited surface. In other words, in the conventional bright surface film 10 which is textured, the substantial area Sa becomes larger and the amount of heat transfer Qr becomes larger.

いつぽう、温度T1,T2の異なる2輝面フイル
ム10間にはさまれたスペーサ20を通つて移動す
る伝熱量Qcは、ポリイミドフイルムの熱伝導率
をk、上下の輝面フイルム10までの凹凸の面内
の路程L,板厚をtとすれば、単位長当り Qc=t/Lk(T1−T2) で示すことが出来る。ここで、スペーサ材質を変
えなければ、tを小さくLを大きくすればよい。
しかし、tをあまり小さくし過ると、凹凸加工を
したフイルムの剛性が小さくなり形状保持が困難
となり、積層材施工時の巻き付け圧力で凹凸形状
がつぶれてしまいQcの増加を生じてしまう。し
たがつて、板厚25μm程度のポリイミドフイルム
を使用し、凹凸加工すればLは約1〜2mmを保持
できる。この場合の輝面フイルム10とスペーサ
20とから成る積層断熱材の断熱性能を、従来の
凹凸輝面フイルムとネツト状のスペーサとの組合
せから成る積層断熱材の断熱性能と比べると、輝
面フイルムの輻射率は共にアルミニウムを蒸着し
ているので等しい。しかし実質面積は本一実施例
の輝面フイルムの方が、従来の凹凸輝面フイルム
に比べ約40%小さい。また、t/Lの値は、この
場合のスペーサ20が25/1000であるのに対し、
従来の線径70μm,ネツトの開口率85%のネツト
状のスペーサでは(70/200)・(1−0.85)とな
り、この場合のt/Lは従来に比べて半減してい
る。ここで、外径40mmの円筒状の温度77kの液体
窒素容器側面に巻き付けられた積層断熱材の断熱
性能を、真空空間内の温度300〓の放熱面から該
液体窒素容器への容器単位面積当りの侵入熱量q
と、積層断熱材の輝面フイルムの層数の関係で比
較すると、第4図の様になる。第4図中曲線aは
この場合のもので、曲線bは従来の積層断熱材の
値である。
The amount of heat transferred through the spacer 20 sandwiched between the two bright films 10 at different temperatures T 1 and T 2 is the thermal conductivity of the polyimide film k, and the amount of heat transferred to the upper and lower bright films 10 is If the in-plane path length of the unevenness is L and the plate thickness is t, it can be expressed as Qc=t/Lk(T 1 −T 2 ) per unit length. Here, unless the spacer material is changed, t may be made smaller and L may be made larger.
However, if t is made too small, the rigidity of the textured film will decrease, making it difficult to maintain the shape, and the uneven shape will be crushed by the winding pressure during laminated material construction, resulting in an increase in Qc. Therefore, if a polyimide film with a thickness of about 25 μm is used and roughened, L can be maintained at about 1 to 2 mm. Comparing the insulation performance of the laminated insulation material made of the bright surface film 10 and the spacer 20 in this case with that of the conventional laminated insulation material made of a combination of the uneven bright surface film and the net-shaped spacer, it is found that the bright surface film The emissivity of both is the same because aluminum is vapor-deposited. However, the actual area of the bright surface film of this embodiment is about 40% smaller than that of the conventional uneven bright surface film. Also, the value of t/L is 25/1000 for the spacer 20 in this case, while
In a conventional net-shaped spacer with a wire diameter of 70 .mu.m and a net aperture ratio of 85%, the ratio is (70/200).(1-0.85), and t/L in this case is halved compared to the conventional one. Here, the insulation performance of the laminated heat insulating material wrapped around the side of a cylindrical liquid nitrogen container with an outer diameter of 40 mm and a temperature of 77K is calculated per unit area of the container from the heat dissipation surface with a temperature of 300㎓ in the vacuum space to the liquid nitrogen container. amount of heat q
Figure 4 shows a comparison of the number of layers of bright film in the laminated heat insulating material. Curve a in FIG. 4 is the value in this case, and curve b is the value for the conventional laminated insulation material.

このように、輝面フイルム10と凹凸加工した
高分子材であるスペーサ20とを交互に積層して
積層断熱材を構成すれば、積層断熱材の断熱性能
を向上でき、断熱材中の熱移動を小さくすること
ができる。
In this way, by configuring a laminated insulation material by alternately laminating the bright surface film 10 and the spacers 20, which are made of a polymeric material with a textured surface, the insulation performance of the laminated insulation material can be improved, and the heat transfer in the insulation material can be improved. can be made smaller.

さらに、本発明では第5図に示すように、凹凸
状のポリイミドフイルムの片面又は両面に不連続
なアルミニウム蒸着膜31を設けたスペーサ30
と輝面フイルム10とを交互に積層して用いる。
Furthermore, in the present invention, as shown in FIG.
and a bright surface film 10 are alternately laminated and used.

この場合、ポリイミドフイルムの両面に凹凸状
の起伏を設けたスペーサ30の起伏の凸頂部と凹
底部との片面もしくは両面、この場合両面にアル
ミニウム蒸着膜を設け、起伏の凸頂部と凹底部と
の間でアルミニウム蒸着膜を不連続にしてある。
輝面フイルム10は、スペーサ30の上下、すな
わち、起伏の凸頂部と凹底部とに接しているが、
アルミニウム蒸着膜が起伏の凸頂部と凹底部との
間で破断されている、すなわち、非蒸着部を形成
し不連続となつているので、熱がアルミニウム蒸
着膜内を凹底部と凸頂部間で伝わることはない。
すなわち、スペーサ30を通つて移動する伝熱量
Qcは、前記一実施例のスペーサ20に比べ、熱
伝導率kはほとんど変らないが、スペーサ30と
輝面フイルム10とを合わせた一対の輻射率は、
前記一実施例のポリイニドフイルムのみのスペー
サ20と輝面フイルム10との一対の輻射率約
0.9に比べ、0.40と小さい。したがつて、第6図
に示すように、内容器である円筒状の低温容器5
0に巻き付けた断熱材40の端面が真空空間に露
出する箇所Cでは、大気温度からの輻射熱を断熱
材内層部に直接受ける訳で、本実施例ではこの端
面に侵入する輻射熱量を前記アルミニウム蒸着膜
を設けていない凹凸状のスペーサ20を使用した
断熱材に比べ約1/12に低減することができる。ま
た、スペーサを凹凸にして輝面フイルム間の距離
を大きくとれるので、輝面フイルム間の輻射伝熱
量を小さく、かつ、スペーサ内の伝導伝熱量をも
低減できるので、これらを相互に積層した積層断
熱材の断熱性能は、従来の特公昭59−48917号公
報の積層断熱材に比べ、約50%向上できる。
In this case, an aluminum evaporated film is provided on one or both surfaces of the spacer 30, which has uneven undulations on both sides of the polyimide film, or in this case, on both sides. The aluminum evaporated film is made discontinuous in between.
The bright surface film 10 is in contact with the top and bottom of the spacer 30, that is, the convex top and concave bottom of the undulations.
The aluminum vapor deposited film is broken between the convex top and the concave bottom of the undulations, that is, it forms a non-deposited part and is discontinuous, so heat flows inside the aluminum vapor deposited film between the concave bottom and the convex top. It will never be conveyed.
That is, the amount of heat transferred through the spacer 30
Regarding Qc, the thermal conductivity k is almost the same as that of the spacer 20 of the above embodiment, but the emissivity of the pair of the spacer 30 and the bright surface film 10 is as follows:
The emissivity of the pair of the spacer 20 made only of polyinide film and the bright surface film 10 of the above embodiment is approximately
Compared to 0.9, it is smaller at 0.40. Therefore, as shown in FIG. 6, a cylindrical low temperature container 5 as an inner container
At the location C where the end face of the heat insulating material 40 wrapped around 0 is exposed to the vacuum space, the inner layer of the heat insulating material directly receives radiant heat from the atmospheric temperature. It can be reduced to about 1/12 compared to a heat insulating material using uneven spacers 20 without a membrane. In addition, since the spacer can be made uneven to increase the distance between the bright surface films, the amount of radiation heat transfer between the bright surface films can be reduced, and the amount of conductive heat transfer within the spacer can also be reduced. The insulation performance of the insulation material can be improved by approximately 50% compared to the conventional laminated insulation material disclosed in Japanese Patent Publication No. 59-48917.

次に、本発明の第2の実施例を第7図により説
明する。前記一実施例と異なる点はは、積層断熱
材の内層部すなわち低温容器50側の2層のスペ
ーサにはアルミニウム蒸着無しのスペーサ20を
使用し、積層断熱材の外層部すなわち真空空間に
露出する高温側の2層には、不連続のアルミニウ
ム蒸着をしたスペーサ30を使用したことであ
る。これは、施工端部を除く積層断熱材すなわ
ち、熱移動が積層方向に生ずる部分では、断熱材
外層部は幅射伝熱が支配的となり、内層部では、
伝導伝熱が支配的となる。したがつて、輻射伝熱
が支配的となる外層部にアルミニウムを不連続に
蒸着したスペーサ30と輝面フイルム10とを組
合せた本第2の実施例の積層断熱材の断熱性能
は、前記アルミニウム蒸着膜を設けていない凹凸
状のスペーサ20を用いた積層断熱材の断熱性能
に比べ約20%向上する。
Next, a second embodiment of the present invention will be described with reference to FIG. The difference from the above embodiment is that spacers 20 without aluminum deposition are used for the inner layer of the laminated insulation material, that is, the two layer spacers on the low-temperature container 50 side, and the outer layer of the laminated insulation material, that is, the spacer 20 is exposed to the vacuum space. For the two layers on the high temperature side, spacers 30 made of discontinuous aluminum vapor deposition were used. This means that in the laminated insulation except for the construction edges, that is, in the area where heat transfer occurs in the lamination direction, radial heat transfer is dominant in the outer layer of the insulation, and in the inner layer,
Conduction heat transfer becomes dominant. Therefore, the heat insulation performance of the laminated heat insulating material of the second embodiment, which combines the bright surface film 10 and the spacer 30 in which aluminum is discontinuously deposited on the outer layer where radiation heat transfer is dominant, is as follows. The insulation performance is improved by approximately 20% compared to the laminated insulation material using the uneven spacer 20 without a vapor deposited film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、凹凸状のプラスチツクフイル
ムの凸頂部と凹底部との片面又は両面に不連続な
金属蒸着膜を設けたスペーサと輝面フイルムとを
交互に積層して用いることにより、輻射伝熱およ
び伝導伝熱による熱移動量を少なくすることがで
き、良好な断熱性能を得ることができるという効
果がある。
According to the present invention, by alternately laminating and using a bright surface film and a spacer in which a discontinuous metal vapor deposition film is provided on one or both sides of the convex top and concave bottom of the uneven plastic film, radiation can be transmitted. The effect is that the amount of heat transfer due to heat and conductive heat transfer can be reduced, and good heat insulation performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基礎となる積層断熱材を示す
断面図、第2図は第1図の輝面フイルム10を示
す斜視図、第3図は第1図のスペーサ20を示す
斜視図、第4図は第1図の断熱性能を示すグラ
フ、第5図は本発明の第1の実施例である積層断
熱材を示す断面図、第6図は第5図の積層断熱材
を低温容器に積層した断面図、第7図は本発明の
第2の実施例である積層断熱材を低温容器に積層
した断面図である。 10…輝面フイルム、20および30…スペー
サ、50…低温容器。
FIG. 1 is a sectional view showing the laminated heat insulating material that is the basis of the present invention, FIG. 2 is a perspective view showing the bright surface film 10 of FIG. 1, and FIG. 3 is a perspective view showing the spacer 20 of FIG. 1. Fig. 4 is a graph showing the heat insulation performance of Fig. 1, Fig. 5 is a sectional view showing the laminated insulation material according to the first embodiment of the present invention, and Fig. 6 is a graph showing the laminated insulation material of Fig. 5 in a low temperature container. FIG. 7 is a cross-sectional view of a second embodiment of the present invention, in which laminated heat insulating materials are laminated on a low-temperature container. 10... Bright surface film, 20 and 30... Spacer, 50... Low temperature container.

Claims (1)

【特許請求の範囲】 1 輝面フイルムと、高分子材であるプラスチツ
クフイルムの片面もしくは両面に凹凸状の起伏を
設け該起伏の凸頂部と凹底部との間に金属蒸着膜
の非蒸着部を設け該起伏の凸頂部と凹底部との片
面もしくは両面に金属蒸着膜を設けたスペーサと
から成ることを特徴とする断熱材。 2 輝面フイルムと、高分子材であるプラスチツ
クフイルムの片面もしくは両面に凹凸状の起伏を
設けたスペーサとを交互に積層して積層断熱材を
形成する積層方法において、前記積層断熱材の少
なくとも高温側となる外層部に、前記起伏の凸頂
部と凹底部との間に金属蒸着膜の非蒸着部を設け
前記起伏の凸頂部と凹底部との片面もしくは両面
に金属蒸着膜を設けたスペーサを用いて積層する
ことを特徴とする積層方法。
[Scope of Claims] 1. A bright surface film and a plastic film which is a polymeric material are provided with uneven undulations on one or both sides, and a non-evaporated portion of a metal vapor-deposited film is provided between the convex tops and concave bottoms of the undulations. A heat insulating material comprising a spacer having a metal vapor deposited film on one or both sides of the convex top and concave bottom of the undulations. 2. In a laminating method in which a laminated heat insulating material is formed by alternately laminating a bright surface film and a spacer having unevenness on one or both sides of a plastic film, which is a polymeric material, at least the high temperature of the laminated heat insulating material is A spacer is provided in which a non-vaporized part of a metal vapor deposited film is provided between the convex top part and the concave bottom part of the undulations in the outer layer part that is the side, and a metal vapor deposited film is provided on one or both sides of the convex top part and the concave bottom part of the undulations. A laminating method characterized by laminating using
JP60055810A 1985-03-22 1985-03-22 Heat-insulating material and laminating method Granted JPS6249097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60055810A JPS6249097A (en) 1985-03-22 1985-03-22 Heat-insulating material and laminating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60055810A JPS6249097A (en) 1985-03-22 1985-03-22 Heat-insulating material and laminating method

Publications (2)

Publication Number Publication Date
JPS6249097A JPS6249097A (en) 1987-03-03
JPH0372879B2 true JPH0372879B2 (en) 1991-11-20

Family

ID=13009280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60055810A Granted JPS6249097A (en) 1985-03-22 1985-03-22 Heat-insulating material and laminating method

Country Status (1)

Country Link
JP (1) JPS6249097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181684A1 (en) * 2013-05-10 2014-11-13 ニチアス株式会社 Heat insulation material, heat insulation structure and method for producing heat insulation structure
JP2017082473A (en) * 2015-10-27 2017-05-18 克巳 戸上 Heat insulation sheet and building material or construction material including heat insulation sheet and bubble sheet used in heat insulation sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293398A (en) * 1987-05-26 1988-11-30 松下電器産業株式会社 Heat-insulating material
JP2006191434A (en) * 2005-01-07 2006-07-20 Hitachi Kokusai Electric Inc Radio equipment
JP2006226551A (en) * 2005-02-15 2006-08-31 Noritz Corp Vaporization type combustion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181684A1 (en) * 2013-05-10 2014-11-13 ニチアス株式会社 Heat insulation material, heat insulation structure and method for producing heat insulation structure
JP2014219082A (en) * 2013-05-10 2014-11-20 ニチアス株式会社 Heat insulation material, heat insulation structure, and heat insulation structure manufacturing method
JP2017082473A (en) * 2015-10-27 2017-05-18 克巳 戸上 Heat insulation sheet and building material or construction material including heat insulation sheet and bubble sheet used in heat insulation sheet

Also Published As

Publication number Publication date
JPS6249097A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
US6037033A (en) Insulation panel
US5792539A (en) Insulation barrier
US6679318B2 (en) Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability
US4468423A (en) Insulating cell element and structures composed thereof
US6485805B1 (en) Multilayer insulation composite
US4287720A (en) Cryogenic liquid container
JPH0372879B2 (en)
JPH0356719Y2 (en)
JPH0556672B2 (en)
JPS5948917B2 (en) Laminated insulation material for cryogenic temperatures
JP2000028078A (en) Radiation heat reflecting sheet
CN209759569U (en) Heating device and vapor deposition device
JPH0723257Y2 (en) Radiation resistant laminated insulation
JPS63130998A (en) Multi-layer heat insulating material
JPH0521403Y2 (en)
JPH0822579B2 (en) Heat insulating film and manufacturing method thereof
JPH0642860A (en) Heat insulator
JP2632699B2 (en) Insulation structure
JPH0826958B2 (en) Vacuum insulation support method, vacuum insulation container and vacuum insulation panel using the same
JPS61206897A (en) Heat-insulating material and laminating method thereof
JPH07263758A (en) Laminated heat insulating material for use at very low temperature
JPS6060781A (en) Laminar thermal insulant for cryogenic temperature
JPH0337503B2 (en)
JPH0356063Y2 (en)
JPH0415398A (en) Composite vacuum multilayer heat insulating material for extremely low temperature