JPH0372442B2 - - Google Patents

Info

Publication number
JPH0372442B2
JPH0372442B2 JP20193482A JP20193482A JPH0372442B2 JP H0372442 B2 JPH0372442 B2 JP H0372442B2 JP 20193482 A JP20193482 A JP 20193482A JP 20193482 A JP20193482 A JP 20193482A JP H0372442 B2 JPH0372442 B2 JP H0372442B2
Authority
JP
Japan
Prior art keywords
grindstone
cutting
grinding
displacement means
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20193482A
Other languages
Japanese (ja)
Other versions
JPS5993312A (en
Inventor
Masayasu Fujisawa
Tsuneo Oku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20193482A priority Critical patent/JPS5993312A/en
Publication of JPS5993312A publication Critical patent/JPS5993312A/en
Publication of JPH0372442B2 publication Critical patent/JPH0372442B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はセラミツク等の硬質材料を高精度に研
削切断する高精度研削切断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-precision grinding and cutting device for grinding and cutting hard materials such as ceramics with high precision.

〔従来技術〕[Prior art]

薄膜ヘツド基板をはじめ最近の電子部品材は高
硬度セラミツクを使用するものが多い。この切断
のためダイヤモンド砥石等が使用されるが摩耗が
早く、かつ研削抵抗も高く砥石が屈曲し高精度加
工ができない欠点があつた。
Many recent electronic component materials, including thin-film head substrates, use high-hardness ceramics. A diamond grindstone or the like is used for this cutting, but it has the drawback of rapid wear and high grinding resistance, which causes the grindstone to bend and prevent high-precision machining.

すなわち、従来の硬質材料の切断手段として
は、ワイヤソー、マルチブレードソー、内周スラ
イサ、外周スライサ、ダイサ等が採用されてい
る。ワイヤソー、マルチブレードソーは、切断工
具として砥石を直接使用せず、遊離砥粒を切断工
具に供給しながら研削切断を行うものであるた
め、切断効率が極めて悪く、また切断面にテー
パ、うねり等が生じ易い。従つて、高精度切断が
できない欠点があつた。又、内周スライサはドー
ナツ状薄板ブレードの内周に電着されたダイヤモ
ンド等の砥石で研削切断するものでセラミツク等
に対して切断抵抗が極めて大となる欠点を有して
いる。又、外周スライサおよびダイサは、砥石の
外周側で研削切断するものであるが、予め一定量
の切込み量を決め、そのまま砥石送りして切断す
るクリープフイード研削を行うものである。従つ
て、砥石の側面部に大きな抵抗が生じ、砥石が曲
げられる。このため高精度の切断ができない欠点
があつた。
That is, as conventional hard material cutting means, a wire saw, a multi-blade saw, an inner circumferential slicer, an outer circumferential slicer, a dicer, etc. are employed. Wire saws and multi-blade saws do not directly use a grindstone as a cutting tool, but instead perform grinding while supplying free abrasive grains to the cutting tool, resulting in extremely poor cutting efficiency and the possibility of tapers, waviness, etc. on the cut surface. is likely to occur. Therefore, there was a drawback that high-precision cutting was not possible. In addition, the inner circumferential slicer grinds and cuts the inner circumference of a doughnut-shaped thin plate blade using a grindstone made of diamond or the like electrodeposited on the inner circumference, and has the disadvantage that the cutting resistance is extremely high when cutting ceramics or the like. Further, the outer circumferential slicer and dicer perform grinding and cutting on the outer circumferential side of a grindstone, and perform creep feed grinding in which a certain amount of cutting is determined in advance and the grindstone is fed as it is for cutting. Therefore, a large resistance is generated on the side surface of the grindstone, causing the grindstone to bend. For this reason, there was a drawback that high-precision cutting could not be performed.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の欠点を解決すべく創案された
ものであり、その目的は高精度の研削切断ができ
ると共に、生産コストを低減し得る高精度研削切
断装置を提供することにある。
The present invention was devised to solve the above-mentioned drawbacks, and its purpose is to provide a high-precision grinding and cutting device that can perform grinding and cutting with high precision and reduce production costs.

〔発明の概要〕[Summary of the invention]

本発明は、上記の目的を達成するために、砥石
を切断切込み方向に微少切込みする微少切込み装
置と、砥石の軸部に係合し、砥石を軸線方向に微
少変位させる例えば圧電素子等から構成される第
1の変位手段と、上記砥石をその切断切込み送り
方向に微少傾斜させる例えば圧電素子等から構成
される第2の変位手段と、上記砥石の研削抵抗と
その研削位置とを検出する検出手段と、該検出手
段と上記第1および第2の変位手段に係合し、検
出手段の信号により第1および第2の変位手段を
動作すると共に、上記第1および第2の変位手段
の変位量を制御する制御手段とを備え、上記砥石
を軸方向に変位させると共に切断切込み方向に傾
斜させながら切断し、研削抵抗を減少せしめ、切
断面のうねりを減少させて高精度切断を可能とす
る高精度研削切断装置を特徴とするものである。
In order to achieve the above object, the present invention comprises a micro-cutting device that makes a slight cut in the cutting direction of a grindstone, and a piezoelectric element, etc. that engages with the shaft of the grindstone and slightly displaces the grindstone in the axial direction. a first displacement means configured to slightly incline the grindstone in the cutting feed direction thereof, a second displacement means constituted of, for example, a piezoelectric element, and a detection detecting the grinding resistance of the grindstone and its grinding position. means for engaging the detection means and the first and second displacement means, operating the first and second displacement means in response to a signal from the detection means, and displacing the first and second displacement means; A control means for controlling the cutting amount is provided, and the grinding wheel is displaced in the axial direction and cuts while being inclined in the direction of the cutting depth, thereby reducing grinding resistance and waviness of the cut surface, thereby enabling high-precision cutting. It features a high-precision grinding and cutting device.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図に基づき説明す
る。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

まず、実施例の概要を第1図により説明する。 First, an overview of the embodiment will be explained with reference to FIG.

砥石7を支持する軸部1は、第1の変位手段2
および第2の変位手段3を介して砥石軸本体13
に支承される。砥石軸本体13はベツド18に支
承される微少切込み装置4に係合し、砥石7を切
断切込み方向に微少移動される。第1の変位手段
2は軸部1の外周側に係合する4個の圧電素子2
a,2b,2c,2dから構成され、これ等の圧
電素子2a等は、電圧変化により軸部1の軸線方
向に変位するように設けられ、軸部1およびこれ
に枢着される砥石7を軸線方向に微少変位させ
る。第2の変位手段3は、同じく軸部1の外周側
に係合する4個の圧電素子3a,3b,3c,3
dから構成され、これ等の圧電素子3a等は、電
圧変化により軸部1をその軸線と直交する方向に
微少変位させる。従つて、例えば、圧電素子3a
等に異つた電圧を負荷することにより、軸部1お
よび砥石7を傾斜させることができる。
The shaft portion 1 supporting the grinding wheel 7 has a first displacement means 2
and the grinding wheel shaft body 13 via the second displacement means 3
supported by. The grindstone shaft main body 13 engages with the minute cutting device 4 supported by the bed 18, and the grindstone 7 is slightly moved in the cutting direction. The first displacement means 2 includes four piezoelectric elements 2 that engage with the outer circumferential side of the shaft portion 1.
a, 2b, 2c, and 2d, and these piezoelectric elements 2a, etc. are provided so as to be displaced in the axial direction of the shaft portion 1 due to voltage changes, and are configured to move the shaft portion 1 and the grinding wheel 7 pivoted thereon. Make a slight displacement in the axial direction. The second displacement means 3 includes four piezoelectric elements 3a, 3b, 3c, and 3 that similarly engage with the outer peripheral side of the shaft portion 1.
These piezoelectric elements 3a and the like slightly displace the shaft portion 1 in a direction perpendicular to its axis due to voltage changes. Therefore, for example, the piezoelectric element 3a
By applying different voltages to the shaft portion 1 and the grindstone 7, the shaft portion 1 and the grindstone 7 can be tilted.

検出手段12は、研削抵抗を検出する研削抵抗
センサ8と、研削位置を検出するテーブル位置セ
ンサ9とから構成される。
The detection means 12 includes a grinding resistance sensor 8 that detects grinding resistance and a table position sensor 9 that detects the grinding position.

制御手段11は、検出手段12と第1および第
2の変位手段とに接続し、検知手段12からの信
号により、上記の圧電素子2a等および3a等の
負荷電圧を調節し、砥石7を変位および傾斜せし
めると共に、検知手段12とは関係なく、圧電素
子2a等および3a等の変位を制御し、研削抵抗
を減少させ、切断面のうねりを減少するように切
断条件を調整制御する。
The control means 11 is connected to the detection means 12 and the first and second displacement means, and adjusts the load voltage of the piezoelectric elements 2a, 3a, etc., based on the signal from the detection means 12, and displaces the grindstone 7. and inclination, the displacement of the piezoelectric elements 2a, 3a, etc. is controlled independently of the detection means 12, and the cutting conditions are adjusted and controlled so as to reduce the grinding resistance and the waviness of the cut surface.

以上により、切断面のうねりを減少せしめ、切
断代を少なくして生産コストを減少させることが
できる。
As described above, it is possible to reduce waviness on the cut surface, reduce the cutting allowance, and reduce production costs.

次に、本実施例を更に詳しく説明する。 Next, this example will be explained in more detail.

極薄(例えば0.2m/m厚)の砥石7は、砥石
軸15の一端側に取付けられる。砥石軸15は軸
部1内に枢着され、その他端側にはプーリ16が
取付けられている。軸部1の外周側には、後に説
明する第1および第2の変位手段2および3が係
合し、軸部1はこれ等の変位手段2および3を介
して砥石軸本体13に支承される。砥石軸本体1
3には砥石軸駆動モータ14が設けられ、砥石軸
駆動モータ14の回転はベルト17を介しプーリ
16に伝えられ、これにより砥石軸15および砥
石7は回転される。
An extremely thin (for example, 0.2 m/m thick) grindstone 7 is attached to one end of the grindstone shaft 15 . The grindstone shaft 15 is pivotally mounted within the shaft portion 1, and a pulley 16 is attached to the other end. First and second displacement means 2 and 3, which will be described later, are engaged with the outer peripheral side of the shaft portion 1, and the shaft portion 1 is supported by the grindstone shaft body 13 via these displacement means 2 and 3. Ru. Grinding wheel shaft body 1
3 is provided with a grindstone shaft drive motor 14, and the rotation of the grindstone shaft drive motor 14 is transmitted to a pulley 16 via a belt 17, whereby the grindstone shaft 15 and the grindstone 7 are rotated.

砥石軸本体13は、その下方側に設けられた微
少切込み装置4により、砥石切断切込み方向に微
動自在に支持される。微少切込み装置4は、ヘツ
ド18に取付けられ明示していないが、例えば、
砥石軸本体13をボールねじを介して支承し該ボ
ールねじにパルスモータ等を連結し、該パルスモ
ータを後に説明する制御手段11に接続し制御手
段11の指示により、上記パルスモータを微少回
転し、砥石軸本体13を微少移動せしめるように
構成される。微少切込み量としては切断材料や砥
石7の性質等によつて異なるが2μmないし200μ
mの範囲が設定される。
The grindstone shaft main body 13 is supported by a micro-cutting device 4 provided on the lower side of the main body 13 so as to be freely movable in the cutting direction of the grindstone. Although the minute cutting device 4 is attached to the head 18 and is not clearly shown, for example,
The grindstone shaft main body 13 is supported via a ball screw, a pulse motor or the like is connected to the ball screw, the pulse motor is connected to a control means 11 to be described later, and the pulse motor is slightly rotated according to instructions from the control means 11. , is configured to slightly move the grindstone shaft body 13. The minute depth of cut varies depending on the material to be cut and the properties of the grindstone 7, but is between 2μm and 200μm.
A range of m is set.

第1の変位手段2は、4個の圧電素子2a,2
b,2c,2dから構成される。圧電素子2aお
よび2cは軸部1の軸線方向の同一位置に、軸部
1の外周側に相対向して設けられている。又、圧
電素子2b,2dは軸部1の圧電素子2a,2c
から離れた軸線方向の同一位置に相対向して設け
られている。又、圧電素子2a,2b,2c,2
dはいづれも電圧変化に応じて軸部1の軸線方向
に変位するように取付けられている。従つて、圧
電素子2a等の変位により、軸部1が軸線方向に
変位し、従つてこれに枢着される砥石軸15およ
び砥石7が軸線方向に微少変位する。
The first displacement means 2 includes four piezoelectric elements 2a, 2
Consists of b, 2c, and 2d. The piezoelectric elements 2a and 2c are provided at the same position in the axial direction of the shaft portion 1 and facing each other on the outer peripheral side of the shaft portion 1. Furthermore, the piezoelectric elements 2b and 2d are the piezoelectric elements 2a and 2c of the shaft portion 1.
They are provided facing each other at the same position in the axial direction apart from. Moreover, piezoelectric elements 2a, 2b, 2c, 2
d are attached so as to be displaced in the axial direction of the shaft portion 1 in response to voltage changes. Therefore, due to the displacement of the piezoelectric element 2a, etc., the shaft portion 1 is displaced in the axial direction, and therefore the grindstone shaft 15 and the grindstone 7, which are pivotally connected thereto, are slightly displaced in the axial direction.

第2の変位手段3は、4個の圧電素子3a,3b,
3c,3dから構成される。これ等の圧電素子3a
等は、対応する第1の変位手段2の圧電素子2a
等の外方側に係合すると共に、砥石軸本体13の
内周側に挿設され、第1の変位手段2の圧電素子
2a等を介在して軸部1を支承するように形成さ
れている。従つて、圧電素子3a,3b,3c,
3dのすべてに一定の初期電圧を負荷した後、圧
電素子3aおよび3dをそのままにし、圧電素子
3bおよび3cの初期電圧を増加又は減少させる
ことにより、軸部1を傾斜せしめることができ
る。軸部1が傾斜すると、砥石7をその切断切込
み方向に対し傾斜させることができる。この傾斜
は0ないし0.005radの範囲で適宜に調節すること
ができる。
The second displacement means 3 includes four piezoelectric elements 3a, 3b,
Consists of 3c and 3d. These piezoelectric elements 3a
etc., the corresponding piezoelectric element 2a of the first displacement means 2
It is formed so as to engage with the outer side of the grindstone shaft body 13 and to be inserted into the inner peripheral side of the grindstone shaft body 13 and to support the shaft portion 1 with the piezoelectric element 2a of the first displacement means 2 interposed therebetween. There is. Therefore, piezoelectric elements 3a, 3b, 3c,
After applying a constant initial voltage to all 3d, the shaft 1 can be tilted by leaving the piezoelectric elements 3a and 3d as they are and increasing or decreasing the initial voltage of the piezoelectric elements 3b and 3c. When the shaft portion 1 is tilted, the grindstone 7 can be tilted with respect to the cutting direction. This slope can be adjusted as appropriate in the range of 0 to 0.005 rad.

セラミツク等の硬質材料からなる切断試料6は
テーブル5上に設けられ、テーブル5は割り出し
テーブル10上に載置され、テーブル5は割り出
しテーブル10に沿つて切断方向に摺動すると共
に、砥石の軸線方向に割り出し位置決めされる。
A cut sample 6 made of a hard material such as ceramic is placed on a table 5, and the table 5 is placed on an indexing table 10, and the table 5 slides in the cutting direction along the indexing table 10, and also rotates along the axis of the grindstone. indexed and positioned in the direction.

検出手段12は、上記の如く研削抵抗センサ8
とテーブル位置センサ9とから構成される。研削
抵抗センサ8は切断試料6とテーブル5間に設け
られ、研削抵抗力を、例えばストレーンゲージ等
によつて検出するごときものから形成される。
又、テーブル位置センサ8は、テーブル5と割り
出しテーブル10間に設けられ、テーブル5の移
動位置を例えばマグネスケール等によつて検出す
るもので、特に、砥石7の切断始めおよび切断終
りの出入口位置を検出するものである。
The detection means 12 includes the grinding resistance sensor 8 as described above.
and a table position sensor 9. The grinding resistance sensor 8 is provided between the cut sample 6 and the table 5, and is formed of something that detects the grinding resistance using, for example, a strain gauge.
Further, the table position sensor 8 is provided between the table 5 and the indexing table 10, and detects the moving position of the table 5 using, for example, a Magnescale. This is to detect.

制御装置11は、検出手段12の研削抵抗セン
サ8とテーブル位置センサ9に接続すると共に、
第1の変位手段2の圧電素子2a等と第2の変位
手段3の圧電素子3a等とにそれぞれ接続してい
る。そして、検出手段12による研削抵抗および
研削位置の検出信号により、各圧電素子2a等、
3aを動作し、最適な研削切断条件を設定しうる
演算手段等(図示せず)が設けられている。又検
出手段12と無関係に、各圧電素子2a等、3a
等の電圧を制御し、最適な研削切断条件を設定し
得るマイコン等(図示せず)も設けられている。
The control device 11 is connected to the grinding resistance sensor 8 and the table position sensor 9 of the detection means 12, and
It is connected to the piezoelectric element 2a etc. of the first displacement means 2 and the piezoelectric element 3a etc. of the second displacement means 3, respectively. Then, each piezoelectric element 2a etc. is
3a and is provided with calculation means (not shown) that can set optimal grinding and cutting conditions. Moreover, independent of the detection means 12, each piezoelectric element 2a, etc.
A microcomputer (not shown) is also provided that can control voltages such as, etc., and set optimal grinding and cutting conditions.

次に、本実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

割り出しテーブル10およびテーブル5により
切断試料6の位置決めをし、微少切込み装置4に
より例えば10μm程の切込み量を与えて切断切込
み送りする。従来技術では、前記した如くクリー
プフイード切断をするため、大きな研削抵抗が生
じるが、上記の如き微少切込みより、砥石7の側
面に加わる研削抵抗を小さくすることができる。
勿論、クリープフイード切断と同一の切断能率を
上げるため、テーブル5の送り速度は早くなるが
研削抵抗は上記の如く減少し切断面のうねりが減
少する。
The cutting sample 6 is positioned by the indexing table 10 and the table 5, and the fine cutting device 4 gives a cutting depth of, for example, about 10 μm, and feeds the cutting sample. In the prior art, large grinding resistance is generated due to the creep feed cutting as described above, but the grinding resistance applied to the side surface of the grindstone 7 can be reduced by making a minute cut as described above.
Of course, in order to increase the same cutting efficiency as creep feed cutting, the feed speed of the table 5 is increased, but the grinding resistance is reduced as described above, and the waviness of the cut surface is reduced.

しかしながら、微少切込み切断でも、砥石7の
先端切味分布の非対称性により、砥石7に曲げ力
が作用する。これを減少するため、第2図に示す
如く、第1の変位手段2の圧電素子2a等の電圧
を調節し、砥石7を軸線方向に微小量変位させな
がら微少送りする。すなわち、砥石7を位置か
ら,,の如く移動させながら研削切断をす
る。これにより、上記のうねりを小さくし得る
が、切断切込み量が深くなるに従つて、砥石7の
片側面の抵抗が大きくなり、砥石7が曲る。これ
を防止するため、第3図に示す如く、第2の変位
手段3により砥石7を傾斜させ、この傾斜方向を
図の位置,,,の如く交叉に変化させな
がら研削切断送りをする。以上により切断面のう
ねりを大幅に低減することができる。以上の第1
の変位手段2および第2の変位手段3による変位
量は、研削切断条件、切断試料6の材質、砥石7
の形状、材質切込み量、切込み深さ等により、適
宜最適のものを制御手段11により設定すること
ができる。
However, even when cutting with minute cuts, bending force acts on the grindstone 7 due to the asymmetry of the cutting edge distribution at the tip of the grindstone 7. In order to reduce this, as shown in FIG. 2, the voltage of the piezoelectric element 2a, etc. of the first displacement means 2 is adjusted, and the grindstone 7 is slightly moved while being displaced by a small amount in the axial direction. That is, grinding and cutting are performed while moving the grindstone 7 from one position to another. This makes it possible to reduce the above-mentioned waviness, but as the cutting depth becomes deeper, the resistance on one side of the grindstone 7 increases, causing the grindstone 7 to bend. In order to prevent this, as shown in FIG. 3, the grindstone 7 is tilted by the second displacement means 3, and the grinding and cutting feed is carried out while changing the direction of inclination to the positions shown in the figure. As a result of the above, waviness on the cut surface can be significantly reduced. The first of the above
The amount of displacement by the displacement means 2 and the second displacement means 3 depends on the grinding cutting conditions, the material of the cut sample 6, and the grindstone 7.
The optimum one can be set by the control means 11 depending on the shape of the material, the amount of cut into the material, the depth of cut, etc.

又、上記の砥石7の切断出入口では研削抵抗が
減少するため、他の位置と同一条件で研削切断を
すると、うねりが生ずる。これを防止するため、
研削抵抗センサ8又はテーブル位置センサ9によ
り、その状態を検知し、この信号を制御手段11
に入力し、砥石7の曲り等を演算し、最適の位置
に砥石7を変位すべく調節する。勿論切断出入口
以外の所でも、研削抵抗の変化に応じて、砥石7
の変位調節ができ、最適な研削切断が補償され
る。
Furthermore, since the grinding resistance is reduced at the cutting entrance and exit of the grindstone 7, undulations will occur if grinding and cutting are performed under the same conditions as at other positions. To prevent this,
The grinding resistance sensor 8 or the table position sensor 9 detects the state, and this signal is sent to the control means 11.
, calculates the curvature of the grindstone 7, and adjusts the grindstone 7 to an optimal position. Of course, even at places other than the cutting entrance/exit, the grinding wheel 7
displacement can be adjusted to ensure optimal grinding and cutting.

次に、実験例を説明する。 Next, an experimental example will be explained.

厚さ約4m/mのセラミツクからなる切断試料
を切断能率150mm2/minで厚み0.2m/mの砥石で
切断した場合うねり状態を第4図に示す。図にお
いて、横軸は切断切込み量fμmを示し縦軸はうね
りδμmを示す。点Bは従来技術のクリープフイ
ードで切断した場合を示し、約40μm以上のうね
りδが生じている。これに対し、切断切込み量f
が10μmの本実施例では、点Aで示す如く、うね
りδは10μmと大幅に減少している。但し、上記
の如く、切断切込み量fが深くなつてくると、上
記の如く砥石7が曲り、かえつてうねりδが大き
くなる。この場合でも、第5図に示す如く、砥石
を傾斜させることにより、うねりδを減少するこ
とができる。すなわち、図において、横軸に傾斜
θradをとり、縦軸にうねりδμmをとると傾斜
θradが零のとき40μm以上のうねりδμmのものが
傾斜θが0.005radになると点Cに示す如く6μmと
大幅に減少する。
Figure 4 shows the waviness of a cut sample made of ceramic with a thickness of about 4 m/m when it is cut with a grindstone of 0.2 m/m in thickness at a cutting efficiency of 150 mm 2 /min. In the figure, the horizontal axis represents the cutting depth fμm, and the vertical axis represents the waviness δμm. Point B shows the case of cutting with a conventional creep feed, where waviness δ of approximately 40 μm or more is generated. On the other hand, the cutting depth f
In this example, where the waviness is 10 μm, as shown at point A, the waviness δ is significantly reduced to 10 μm. However, as described above, as the cutting depth f becomes deeper, the grindstone 7 bends as described above, and the waviness δ becomes larger. Even in this case, the waviness δ can be reduced by tilting the grindstone as shown in FIG. In other words, in the figure, if the horizontal axis is the slope θrad and the vertical axis is the waviness δμm, when the slope θrad is zero, the waviness δμm is 40μm or more, but when the slope θ is 0.005rad, it becomes 6μm as shown at point C. decreases to

更に、上記の砥石7の出入口における研削抵抗
の変化による砥石7の曲り等を制御手段11によ
り調節することにより、点Dに示す如く、うねり
δを3μm以下に減少させることができる。
Further, by controlling the bending of the grindstone 7 due to the change in the grinding resistance at the entrance and exit of the grindstone 7 by the control means 11, the waviness δ can be reduced to 3 μm or less, as shown at point D.

以上の如く、うねりδが減少すると、切断に必
要な切断代を減少することができる。切断代の減
少により、切断によつて廃却される切断試料が減
少し、従つて生産コストを10ないし20%程度向上
することができる。
As described above, when the waviness δ is reduced, the cutting allowance required for cutting can be reduced. By reducing the cutting allowance, fewer cut samples are discarded due to cutting, and therefore production costs can be improved by about 10 to 20%.

本実施例において、第1および第2の変位手段
2,3として、圧電素子を用いたが、これに限定
するものではない。又、圧電素子2a等、3a等
を各4個使用したが勿論これに限定するものでな
い。又、圧電素子3a等を圧電素子2a等の外方
に設けたが逆でもよく、又、異つた位置に設ける
ものであつてもよい。
In this embodiment, piezoelectric elements are used as the first and second displacement means 2 and 3, but the present invention is not limited to this. Moreover, although four piezoelectric elements 2a, 3a, etc. are used each, it is needless to say that the present invention is not limited to this. Furthermore, although the piezoelectric element 3a and the like are provided outside the piezoelectric element 2a and the like, the piezoelectric element 3a and the like may be provided in the opposite direction, or may be provided at different positions.

〔発明の効果〕〔Effect of the invention〕

以上の説明によつて明らかな如く、本発明によ
れば、高精度の研削切断が可能となると共に生産
コストを低減し得る効果が上げられる。
As is clear from the above description, according to the present invention, it is possible to perform grinding and cutting with high precision, and the production cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の構成図、第2図は砥
石を軸線方向に変位させながら切断する状態を示
す説明図、第3図は砥石を切断切込み方向に傾斜
させながら切断する状態を示す説明図、第4図は
切断切込み量とうねりとの関係を示す線図、第5
図は傾斜とうねりとの関係を示す線図である。 1……軸部、2……第1の変位手段、3……第
2の変位手段、2a,2b,2c,2d,3a,
3b,3c,3d……圧電素子、4……微少切込
み装置、5……テーブル、6……切断試料、7…
…砥石、8……研削抵抗センサ、9……テーブル
位置センサ、10……割り出しテーブル、11…
…制御手段、12……検知手段、13……砥石軸
本体、14……砥石軸駆動モータ、15……砥石
軸、16……プーリ、17……ベルト、18……
ベツド。
Fig. 1 is a configuration diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram showing a state in which cutting is performed while displacing the grindstone in the axial direction, and Fig. 3 is an explanatory diagram showing a state in which cutting is performed while the grindstone is tilted in the cutting direction. Fig. 4 is a diagram showing the relationship between cutting depth and waviness;
The figure is a diagram showing the relationship between slope and waviness. DESCRIPTION OF SYMBOLS 1... Shaft part, 2... First displacement means, 3... Second displacement means, 2a, 2b, 2c, 2d, 3a,
3b, 3c, 3d...Piezoelectric element, 4...Minute incision device, 5...Table, 6...Cutting sample, 7...
... Grinding wheel, 8 ... Grinding resistance sensor, 9 ... Table position sensor, 10 ... Indexing table, 11 ...
... Control means, 12 ... Detection means, 13 ... Grindstone shaft body, 14 ... Grindstone shaft drive motor, 15 ... Grindstone shaft, 16 ... Pulley, 17 ... Belt, 18 ...
Betsudo.

Claims (1)

【特許請求の範囲】 1 砥石をその切断切込み方向に微少切込みする
微少切込み装置と、上記砥石の軸部に係合し、該
軸部を軸線方向に微少変位する第1の変位手段
と、同じく、上記砥石の軸部に係合し、該軸部を
上記軸線に直交する向きに微少変位して、上記砥
石をその切断切込み方向に傾斜せしめる第2の変
位手段と、上記砥石の研削抵抗およびその研削位
置を検出する検出手段と、該検出手段と第1およ
び第2の変位手段に係合し、上記検出手段の信号
により、上記第1および第2の変位手段を動作す
ると共に、上記第1および第2の変位手段の変位
量を制御する制御手段とを備えることを特徴とす
る高精度研削切断装置。 2 上記微少切込み装置の切込み量が2μmない
し200μmであると共に、第2の変位手段による
上記傾斜が0radないし0.05radであることを特徴
とする特許請求の範囲第1項記載の高精度研削切
断装置。 3 第1の変位手段が、電圧変化により、上記砥
石の軸部の軸線方向に変位する圧電素子であると
共に、第2の変位手段が、同じく電圧変化によ
り、上記軸部の軸線に直交する向きに変位する圧
電素子であることを特徴とする特許請求の範囲第
1項記載の高精度研削切断装置。
[Scope of Claims] 1. A micro-cutting device that makes a slight cut in the cutting direction of the grindstone; and a first displacement means that engages with the shaft portion of the grindstone and slightly displaces the shaft portion in the axial direction; , a second displacement means that engages with the shaft of the grindstone and slightly displaces the shaft in a direction orthogonal to the axis to tilt the grindstone in the cutting direction; a grinding resistance of the grindstone; a detection means for detecting the grinding position; the detection means engages with the first and second displacement means; the detection means operates the first and second displacement means in response to a signal from the detection means; A high-precision grinding and cutting device comprising: a control means for controlling the displacement amount of the first and second displacement means. 2. The high-precision grinding and cutting device according to claim 1, wherein the depth of cut of the minute cutting device is 2 μm to 200 μm, and the inclination by the second displacement means is 0 rad to 0.05 rad. . 3 The first displacement means is a piezoelectric element that is displaced in the axial direction of the shaft of the grindstone by a voltage change, and the second displacement means is a piezoelectric element that is displaced in a direction perpendicular to the axis of the shaft by a voltage change. The high-precision grinding and cutting device according to claim 1, characterized in that the device is a piezoelectric element that is displaced as follows.
JP20193482A 1982-11-19 1982-11-19 High-accuracy grinding cutting device Granted JPS5993312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20193482A JPS5993312A (en) 1982-11-19 1982-11-19 High-accuracy grinding cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20193482A JPS5993312A (en) 1982-11-19 1982-11-19 High-accuracy grinding cutting device

Publications (2)

Publication Number Publication Date
JPS5993312A JPS5993312A (en) 1984-05-29
JPH0372442B2 true JPH0372442B2 (en) 1991-11-18

Family

ID=16449205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20193482A Granted JPS5993312A (en) 1982-11-19 1982-11-19 High-accuracy grinding cutting device

Country Status (1)

Country Link
JP (1) JPS5993312A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073821A (en) * 2008-09-17 2010-04-02 Disco Abrasive Syst Ltd Wafer dividing method
EP2688710B1 (en) * 2011-03-24 2015-03-04 Erwin Junker Maschinenfabrik GmbH Grinding machine device with pivotable mounting of a grinding spindle unit and method for pivoting a grinding spindle unit on a grinding machine
JP6144095B2 (en) * 2013-04-18 2017-06-07 株式会社ディスコ Cutting equipment

Also Published As

Publication number Publication date
JPS5993312A (en) 1984-05-29

Similar Documents

Publication Publication Date Title
US5567199A (en) Workpiece holder for rotary grinding machines for grinding semiconductor wafers, and method of positioning the workpiece holder
JP2805370B2 (en) Method of slice-cutting a rod-shaped workpiece into a thin plate using an inner peripheral saw
WO2001021356A1 (en) Method and device for grinding double sides of thin disk work
JPH04211909A (en) Cutting method of slicing machine
JPH11165247A (en) Chamfering method and its device
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JPH0372442B2 (en)
JP3753770B2 (en) Three-dimensional tilting device
JP2008272914A (en) Groove machining device and method
JP4208364B2 (en) Spherical surface generating device and spherical surface generating method
JP3630950B2 (en) Manufacturing method of spherical lens
JP2713770B2 (en) Method and apparatus for cutting column material
JPH02180554A (en) Method and device for notch grinding of semiconductor wafer
JP3199355B2 (en) Dressing method of inner peripheral blade
JPS59219152A (en) Mirror finishing machine
JP2009269143A (en) Cutter grinding disk
JP2002192460A (en) Grinding device
JP2883279B2 (en) Wrap jig and lap processing method using the same
JP2599996B2 (en) Cutting method of slicing machine
JP2667520B2 (en) Error correction method for slicing machine
JPH09168957A (en) Curved surface finishing machine
JPS62136301A (en) Turning work apparatus
JP2884080B1 (en) Cutting edge forming method and cutting edge forming device for multi-blade grinding tool
JPH1158227A (en) Surface grinding device and method thereof
JPH068140A (en) Circular arc shaping method for grinding wheel