JPH037162B2 - - Google Patents

Info

Publication number
JPH037162B2
JPH037162B2 JP9526583A JP9526583A JPH037162B2 JP H037162 B2 JPH037162 B2 JP H037162B2 JP 9526583 A JP9526583 A JP 9526583A JP 9526583 A JP9526583 A JP 9526583A JP H037162 B2 JPH037162 B2 JP H037162B2
Authority
JP
Japan
Prior art keywords
vibrating element
axis
piezoelectric
degrees
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9526583A
Other languages
Japanese (ja)
Other versions
JPS59221023A (en
Inventor
Sumio Yamada
Yoshiaki Fujiwara
Noboru Wakatsuki
Juji Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9526583A priority Critical patent/JPS59221023A/en
Priority to EP84303505A priority patent/EP0127442B1/en
Priority to US06/613,187 priority patent/US4583019A/en
Priority to DE8484303505T priority patent/DE3484450D1/en
Publication of JPS59221023A publication Critical patent/JPS59221023A/en
Publication of JPH037162B2 publication Critical patent/JPH037162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は圧電振動素子、詳しくはリチウムナイ
オベート(LiNbO3)単結晶を用いた共振特性の
向上せしめられた圧電振動素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a piezoelectric vibrating element, and more particularly to a piezoelectric vibrating element that uses lithium niobate (LiNbO 3 ) single crystal and has improved resonance characteristics.

(2) 技術の背景 水晶やリチウムタンタレート(LiTaO3)など
の圧電体に適当な電極を形成し、この電極に交流
電界を印加すると、圧電体は印加電界と等しい周
波数の応力を生じ、かつ印加電界の周波数が圧電
体の固有周波数に一致すると共振して強勢な振動
が得られる。そしてかかる振動子は高性能である
ため、通信装置などの発振回路、フイルタ、遅延
線等として広く用いられる。
(2) Background of the technology When a suitable electrode is formed on a piezoelectric material such as quartz crystal or lithium tantalate (LiTaO 3 ) and an alternating current electric field is applied to this electrode, the piezoelectric material generates stress with a frequency equal to the applied electric field, and When the frequency of the applied electric field matches the natural frequency of the piezoelectric material, resonance occurs and strong vibrations are obtained. Since such resonators have high performance, they are widely used as oscillation circuits, filters, delay lines, etc. in communication devices.

(3) 従来技術と問題点 第1図は従来のLiTaO3の単結晶を用いた圧電
振動素子の主要構成を示す斜視図で、同図を参照
すると圧電振動素子1は圧電体であるLiTaO3
結晶の素板(以下単に素板と呼ぶ)2の対向主面
2aおよび2bそれぞれに対向電極3および4を
パターン形成した構成のものである。
(3) Prior art and problems Figure 1 is a perspective view showing the main structure of a conventional piezoelectric vibrating element using a single crystal of LiTaO 3 . It has a structure in which opposing electrodes 3 and 4 are patterned on opposing main surfaces 2a and 2b of a single crystal blank plate (hereinafter simply referred to as blank plate) 2, respectively.

かかる構成において対向電極3,4間に交流電
界を印加すると厚みすべりモードの振動が生じ、
この厚みすべり振動は曲線aで模式的に示す如
く、円形電極3がある素板中央部を含む円形の広
い範囲にわたつて起り、この振動は中央部で強
く、周囲へ向かつて弱くなつている。
In this configuration, when an alternating current electric field is applied between the opposing electrodes 3 and 4, thickness shear mode vibration occurs,
As schematically shown by curve a, this thickness shear vibration occurs over a wide circular range including the center of the blank where the circular electrode 3 is located, and this vibration is strong in the center and becomes weaker toward the periphery. .

(4) 発明の目的 本発明は上記従来の問題点に鑑み、小型でかつ
機械結合係数の大きい振動特性の向上せしめられ
た圧電振動素子の提供を目的とする。
(4) Object of the Invention In view of the above-mentioned conventional problems, an object of the present invention is to provide a piezoelectric vibrating element that is small in size, has a large mechanical coupling coefficient, and has improved vibration characteristics.

(5) 発明の構成 そしてこの目的は本発明によれば、リチウムナ
イオベート単結晶の圧電体からなり、該圧電体の
対向主面が、Y軸に垂直でX−Z平面を主面とす
るY板をX軸のまわりにY軸からZ軸の方向へ
165±5度の範囲内で回転させた回転Y板の切出
し面で形成さし、且つ該対向主面の長手方向が前
記回転Y板のX軸に対し90±5度の範囲内の角度
をもつ方向で切出された矩形の圧電体素板を有す
ることを特徴とする圧電振動素子を提供すること
によつて達成される。
(5) Structure of the Invention According to the present invention, this object is made of a piezoelectric body made of lithium niobate single crystal, and the opposing principal surfaces of the piezoelectric body are perpendicular to the Y axis and have an X-Z plane as the principal plane. Move the Y plate around the X axis from the Y axis to the Z axis direction.
It is formed by the cut-out surface of a rotating Y plate rotated within a range of 165±5 degrees, and the longitudinal direction of the opposing main surface makes an angle within a range of 90±5 degrees with respect to the X axis of the rotating Y plate. This is achieved by providing a piezoelectric vibrating element characterized by having a rectangular piezoelectric material plate cut out in a direction.

(6) 発明の実施例 以下本発明実施例を図面により説明する。(6) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

本願の発明者は圧電体としてリチウムナイオベ
ート(LiNbO3)単結晶を用い、このLiNbO3
結晶からのウエハ切出しにおいては、厚みすべり
フアーストモードの機械結合係数が大きく、かつ
厚みすべりスローモードの機械結合係数が小さい
面を選択し、またリチウムナイオベートのウエハ
における振動素子の形成においては、振動素子を
例えばストリツプ型とし、その矩形断面を振動変
化と直角になるよう選択した。
The inventor of this application uses a lithium niobate (LiNbO 3 ) single crystal as a piezoelectric material, and when cutting a wafer from this LiNbO 3 single crystal, the mechanical coupling coefficient of the thickness shear fast mode is large and the mechanical coupling coefficient of the thickness shear slow mode is large. A surface with a small mechanical coupling coefficient was selected, and when forming a vibrating element on a lithium niobate wafer, the vibrating element was, for example, a strip type, and its rectangular cross section was selected to be perpendicular to the vibration change.

第3図は第2図に示すLiNbO3単結晶11にお
けるX軸のまわりの回転角θ(deg)に対する機
械結合係数k(以下単に結合係数と記す)の依存
性を示す線図で、同図において、縦軸は結合係数
k、横軸は回転角θを表し、また曲線は厚み縦
モードにおける結合係数、曲線は厚みすべりス
ローモードにおける結合係数、曲線は厚みすべ
りフアーストモードにおける結合係数それぞれの
角度依存性を示す。これらの曲線が示す結合係数
の変化から厚みすべりフアーストモードの結合係
数が大きく厚みすべりスローモードのそれが小さ
い角度θは、矢印bおよびcで示す35度と165度
付近である。
FIG. 3 is a diagram showing the dependence of the mechanical coupling coefficient k (hereinafter simply referred to as coupling coefficient) on the rotation angle θ (deg) around the X axis in the LiNbO 3 single crystal 11 shown in FIG. , the vertical axis represents the coupling coefficient k, the horizontal axis represents the rotation angle θ, the curve represents the coupling coefficient in the thickness longitudinal mode, the curve represents the coupling coefficient in the thickness shear slow mode, and the curve represents the coupling coefficient in the thickness shear fast mode. Shows angle dependence. From the changes in the coupling coefficients shown by these curves, the angles θ at which the coupling coefficient for the thickness-shear fast mode is large and that for the thickness-shear slow mode are small are around 35 degrees and 165 degrees as indicated by arrows b and c.

上記2つの角度のうちウエハ切出し角度として
は、結合係数kが大きく、かつ第4図に矢印dで
示す如く変位方向Φ(deg)が小さく、ウエハ切
出し面と平行に振動波が進む。165゜とする。
Among the above two angles, the wafer cutting angle has a large coupling coefficient k, and a small displacement direction Φ (deg) as shown by the arrow d in FIG. 4, so that the vibration wave advances parallel to the wafer cutting surface. The angle shall be 165°.

かかるウエハ切出しによつて厚み縦モードおよ
び厚みすべりスローモードの振動をおさえられた
ウエハが得られる。またウエハ切出し角度θは、
変位方向のθ=165゜付近の角度依存性から±5度
の範囲で選択しても本発明の効果を損なうもので
はない。
By such wafer cutting, a wafer in which vibrations in the thickness longitudinal mode and the thickness shear slow mode are suppressed can be obtained. Also, the wafer cutting angle θ is
Considering the angle dependence of the displacement direction near θ=165°, the effect of the present invention will not be impaired even if it is selected within the range of ±5 degrees.

なお上記θ=35゜の場合は、この角度での変位
方向θは約−1.5度であるため振動波は切出し面
と平行に進まないので切出し角度としない。
Note that when θ=35°, the displacement direction θ at this angle is approximately −1.5 degrees, so the vibration wave does not proceed parallel to the cutting surface, so it is not determined as the cutting angle.

第5図は切出し角度165度で切り出したウエハ
における振動波の進行方向を考察するために本願
の発明者によつて得られた直列抵抗Rs(Ω)のX
軸に対する度度依存性を示す線図で、同図におい
て縦軸は直列抵抗Rs、横軸はX軸に対する回転
角度φ(deg)を表し、直列抵抗Rsはφ=90゜で最
小となる。従つて第6図に示す如く、振動波は切
出し角度165゜で切り出されたウエハ12において
矢印eで示すX軸と直角な方向(φ=90゜)に進
むことになり、圧電素子13における圧電体素板
としてはその長手方向が矢印eの方向と同じにな
るよう矩形素板に切出して形成する。
Figure 5 shows the X of the series resistance Rs (Ω) obtained by the inventor of the present application in order to consider the traveling direction of vibration waves in a wafer cut at a cutting angle of 165 degrees.
This is a diagram showing degree dependence with respect to the axis, in which the vertical axis represents the series resistance Rs, the horizontal axis represents the rotation angle φ (deg) with respect to the X axis, and the series resistance Rs is minimum at φ=90°. Therefore, as shown in FIG. 6, the vibration wave propagates in the direction perpendicular to the X-axis (φ=90°) indicated by arrow e in the wafer 12 cut out at a cutting angle of 165°, and the piezoelectric wave in the piezoelectric element 13 The body blank is formed by cutting out a rectangular blank so that its longitudinal direction is the same as the direction of arrow e.

第7図はかくして形成された例えばストリツプ
型圧電振動素子13の主要構成を示す斜視図で、
同図において14はLiNbO3単結晶の圧電体素
板、15は対向電極を示す。
FIG. 7 is a perspective view showing the main structure of, for example, the strip type piezoelectric vibrating element 13 formed in this way.
In the figure, reference numeral 14 indicates a piezoelectric material plate made of LiNbO 3 single crystal, and reference numeral 15 indicates a counter electrode.

かかる圧電素子13における振動は同図に曲線
fで模式的に示す如く、素子13の中央幅方向
(矢印eに直角な方向)全面において強い同等の
振動モードとなり、素板14の両端に向かうにつ
れて弱くなる。かくして素板14の小型化が可能
となる。
As schematically shown by the curve f in the figure, the vibration in the piezoelectric element 13 becomes a strong and equal vibration mode throughout the center width direction of the element 13 (direction perpendicular to the arrow e), and becomes stronger as it moves toward both ends of the blank plate 14. become weak. In this way, the blank plate 14 can be made smaller.

第8図は第6図において振動素子13の長手方
向をφ=90゜方向とした場合の上記ストリツプ型
圧電振動素子の共振特性(アドミツタンス)を示
す線図で、同図において横軸は印加交流の周波数
(MHz)、縦軸は共振強度(dB)を表す。同図を
参照すると、一つの強い共振ピークのみが周波数
4.4MHz付近に見出され、厚みすべりフアースト
モード以外の不要波によるスプリアスが現れない
高特性の共振が得られる。
FIG. 8 is a diagram showing the resonance characteristics (admittance) of the strip type piezoelectric vibrating element when the longitudinal direction of the vibrating element 13 in FIG. The frequency (MHz) and the vertical axis represent the resonance strength (dB). Referring to the same figure, only one strong resonance peak appears at frequency
It is found around 4.4MHz and provides a high-characteristic resonance in which spurious waves other than the thickness-shear first mode do not appear.

第9図はストリツプ型振動素子の長手方向をX
軸と85度(φ=85゜)をなす方向としてウエハよ
り切り出した素子の共振特性を示す図で、同図に
おいて符号hで示す小さなスプリアスが観測され
るが、第8図と同様の高特性の共振が得られる。
また第10図は第9図の場合とは反対に角度φを
90度から5度増加してφ=95゜として切り出した
振動素子の共振特性で、上記の場合と同様に高特
性の共振が得られる。
Figure 9 shows the longitudinal direction of the strip type vibrating element
This is a diagram showing the resonance characteristics of an element cut out from a wafer in a direction that makes 85 degrees (φ = 85 degrees) with the axis. Although a small spurious signal indicated by the symbol h is observed in the diagram, it has the same high characteristics as in Figure 8. resonance can be obtained.
Also, in Fig. 10, the angle φ is
With the resonance characteristics of the vibrating element cut out by increasing 5 degrees from 90 degrees and setting φ=95 degrees, high characteristic resonance can be obtained as in the above case.

第11図はφを80度、また第12図はφを100
度としてウエハより切り出した振動素子の共振特
性を示す線図で、いずれの場合も符号iまたはj
で示す不要波によるスプリアスが強く現れて共振
特性が悪くなつている。
In Figure 11, φ is 80 degrees, and in Figure 12, φ is 100 degrees.
This is a diagram showing the resonance characteristics of a vibrating element cut out from a wafer, with the code i or j in each case.
The spurious waves caused by the unnecessary waves shown in are strong and the resonance characteristics are getting worse.

かくして振動素子のウエハからの切出しにおい
ては、当該素子の長手方向がX軸となす角度φを
φ=90±5゜とすることにより高い共振特性の振動
素子が得られる。
Thus, when cutting out a vibrating element from a wafer, a vibrating element with high resonance characteristics can be obtained by setting the angle φ between the longitudinal direction of the element and the X axis to φ=90±5°.

(7) 発明の効果 以上詳細に説明した如く本発明によれば、リチ
ウムナイオベート単結晶を圧電体とする共振特性
の向上した圧電振動素子が提供され、またこの振
動素子はストリツプ型とすることにより小型化が
可能であるため、圧電振動素子の信頼性および機
能性向上に効果大である。
(7) Effects of the Invention As described in detail above, according to the present invention, a piezoelectric vibrating element with improved resonance characteristics using a lithium niobate single crystal as a piezoelectric material is provided, and this vibrating element may be of a strip type. Since it is possible to downsize the piezoelectric vibrating element, it is highly effective in improving the reliability and functionality of the piezoelectric vibrating element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧電振動素子の斜視図、第2図
は本発明実施例を説明するためのウエハ切出し面
を示す図、第3図はLiNbO3単結晶の機械結合係
数の角度依存性を、また第4図は変位方向の角度
依存性を示す図、第5図は本発明の切出し角度で
切り出したウエハにおける直列抵抗の回転角度依
存性を示す図、第6図は上記ウエハにおける振動
素子の切出し方向を説明するための図、第7図は
本発明に係わる圧電素子の斜視図、第8図から第
12図までは本発明に係わる圧電振動素子の共振
特性を示す図である。 2……LiTaO3単結晶圧電素板、3,4,15
……対向電極、11……LiNbO3単結晶、、12
……ウエハ、13……ストリツプ型圧電振動素
子、14……LiNbO3単結晶圧電素板。
Figure 1 is a perspective view of a conventional piezoelectric vibrating element, Figure 2 is a diagram showing a wafer cutting surface for explaining an embodiment of the present invention, and Figure 3 is a diagram showing the angular dependence of the mechanical coupling coefficient of LiNbO 3 single crystal. , FIG. 4 is a diagram showing the angular dependence of the displacement direction, FIG. 5 is a diagram showing the rotation angle dependence of the series resistance in a wafer cut out at the cutting angle of the present invention, and FIG. FIG. 7 is a perspective view of a piezoelectric element according to the present invention, and FIGS. 8 to 12 are diagrams showing resonance characteristics of the piezoelectric vibrating element according to the present invention. 2...LiTaO 3 single crystal piezoelectric plate, 3, 4, 15
...Counter electrode, 11...LiNbO 3 single crystal, 12
... Wafer, 13 ... Strip type piezoelectric vibrating element, 14 ... LiNbO 3 single crystal piezoelectric element plate.

Claims (1)

【特許請求の範囲】 1 リチウムナイオベート単結晶の圧電体からな
り、該圧電体の対向主面が、Y軸に垂直でX−Z
平面を主面とするY板をX軸のまわりにY軸から
Z軸の方向へ165±5度の範囲内で回転させた回
転Y板の切出し面で形成され、且つ該対向主面の
長手方向が前記回転Y板のX軸に対し90±5度の
範囲内の角度をもつ方向で切出された矩形の圧電
体素板を有することを特徴とした圧電振動素子。 2 前記圧電振動素子をストリツプ型とすること
を特徴とする特許請求の範囲第1項記載の圧電振
動素子。
[Scope of Claims] 1. A piezoelectric material made of a single crystal of lithium niobate, the opposing principal surfaces of which are perpendicular to the Y-axis and arranged in the X-Z direction.
Formed by the cut surface of a rotated Y plate whose main surface is a flat plane, rotated around the X axis within a range of 165 ± 5 degrees in the direction from the Y axis to the Z axis, and the longitudinal direction of the opposing main surface A piezoelectric vibrating element comprising a rectangular piezoelectric material plate cut out in a direction having an angle within a range of 90±5 degrees with respect to the X axis of the rotating Y plate. 2. The piezoelectric vibrating element according to claim 1, wherein the piezoelectric vibrating element is of a strip type.
JP9526583A 1983-05-30 1983-05-30 Piezoelectric oscillation element Granted JPS59221023A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9526583A JPS59221023A (en) 1983-05-30 1983-05-30 Piezoelectric oscillation element
EP84303505A EP0127442B1 (en) 1983-05-30 1984-05-23 Piezoelectric resonator
US06/613,187 US4583019A (en) 1983-05-30 1984-05-23 Piezoelectric resonator using 165° Y-cut LiNbO3
DE8484303505T DE3484450D1 (en) 1983-05-30 1984-05-23 PIEZOELECTRIC RESONATOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9526583A JPS59221023A (en) 1983-05-30 1983-05-30 Piezoelectric oscillation element

Publications (2)

Publication Number Publication Date
JPS59221023A JPS59221023A (en) 1984-12-12
JPH037162B2 true JPH037162B2 (en) 1991-01-31

Family

ID=14132931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9526583A Granted JPS59221023A (en) 1983-05-30 1983-05-30 Piezoelectric oscillation element

Country Status (1)

Country Link
JP (1) JPS59221023A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025312A (en) * 1983-07-22 1985-02-08 Fujitsu Ltd Piezoelectric vibrator

Also Published As

Publication number Publication date
JPS59221023A (en) 1984-12-12

Similar Documents

Publication Publication Date Title
JP3339350B2 (en) Surface acoustic wave device
JP3360541B2 (en) Surface acoustic wave device and design method thereof
JPS632414A (en) Elastic surface wave resonator
US5081389A (en) Crystal cut angles for lithium tantalate crystal for novel surface acoustic wave devices
JPS60137112A (en) Piezoelectric vibrator
US4670681A (en) Singly rotated orientation of quartz crystals for novel surface acoustic wave devices
JPH037162B2 (en)
JPS6231860B2 (en)
JPS6357967B2 (en)
JPH0150135B2 (en)
US6420815B1 (en) Substrate for surface acoustic wave device and surface acoustic wave device
JP2855208B2 (en) LiTaO 3 Lower piezoelectric resonator
JPH0213007A (en) Litao3 thickness-share vibrator
WO2023106334A1 (en) Acoustic wave device
JPS5912810Y2 (en) piezoelectric vibrator
WO2022230723A1 (en) Elastic wave device
WO2022168799A1 (en) Elastic wave device
WO2022249926A1 (en) Piezoelectric bulk wave device and method for manufacturing same
WO2022168796A1 (en) Elastic wave device
JPH0344451B2 (en)
WO2022168797A1 (en) Elastic wave device
JPH10126208A (en) Surface acoustic wave device
JPH0217709A (en) Surface acoustic wave resonator
JPS59127413A (en) Lithium tantalate oscillator
JPS6068712A (en) Highly coupled piezoelectric vibrator