JPH037152B2 - - Google Patents

Info

Publication number
JPH037152B2
JPH037152B2 JP57089625A JP8962582A JPH037152B2 JP H037152 B2 JPH037152 B2 JP H037152B2 JP 57089625 A JP57089625 A JP 57089625A JP 8962582 A JP8962582 A JP 8962582A JP H037152 B2 JPH037152 B2 JP H037152B2
Authority
JP
Japan
Prior art keywords
submount
semiconductor laser
laser element
center
area near
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57089625A
Other languages
Japanese (ja)
Other versions
JPS58207689A (en
Inventor
Makoto Shimaoka
Toshihiro Yamada
Tatsuji Sakamoto
Atsushi Sasayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57089625A priority Critical patent/JPS58207689A/en
Publication of JPS58207689A publication Critical patent/JPS58207689A/en
Publication of JPH037152B2 publication Critical patent/JPH037152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To extend operating life of semiconductor laser element by mounting a semiconductor laser element to the area near the center of a submount and by giving an inclination to the one side surface of the submount so that the edge of submount is not irradiated with the laser beam. CONSTITUTION:A submount 7 is composed of molybdenum or silicon and is brazed to a step 6 consisting of copper or iron through a brazing material 8. A semiconductor laser element 9 is brazed to the area near the center of mount 7 with a brazing material 10 and the one side end of submount 7 is the inclined surface 7a being cut at the angle of at least 30 degrees for the bottom surface and is coupled at the contact position with the reflecting surface 9a. Moreover, since the lower end of inclined surface 7a is coupled to the edge of stem 6. Therefore, if a semiconductor laser element 9 is placed on the area near the center of submount 7, when it emits the laser beam, the stable laser beam can be obtained without irregular reflection of laser beam. Since a semiconductor laser element 9 is coupled to the area near the center of submount 7, difference of line expansion coefficient to the semiconductor laser element 9 is reduced, suppressing the generation of strain.

Description

【発明の詳細な説明】 本発明は半導体レーザ装置に関し、特に半導体
レーザ素子の接合構造に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device, and particularly to a bonding structure of a semiconductor laser element.

半導体レーザを室温で連続発振させて動作寿命
を向上させるためには、半導体レーザ素子で発生
した熱をすみやかに外部放散すること、半導体レ
ーザ素子に対して盃を発生させないサブマウント
を使用するなどの必要がある。
In order to continuously oscillate a semiconductor laser at room temperature and improve its operating life, it is necessary to promptly dissipate the heat generated by the semiconductor laser element to the outside, and to use a submount that does not generate a cup for the semiconductor laser element. There is a need.

このため従来の半導体レーザ装置の接合構造は
第1図に示す如くステム1にあらかじめサブマウ
ント2をろう材3を介して接合し、さらにこのサ
ブマウント2上に半導体レーザ素子4をろう材3
を介して接合する構造が一般的であつた。上記の
接合構造において、ステム1には銅あるいは鉄材
をサブマウント2には銅、銀、モリブデンあるい
はシリコンを、ロウ材にはインジウム、錫、金一
シリコンあるいは半田などの半導体材料が使用さ
れている。
For this reason, the conventional bonding structure of a semiconductor laser device is as shown in FIG.
The most common structure was to connect the parts through a . In the above joint structure, the stem 1 is made of copper or iron, the submount 2 is made of copper, silver, molybdenum, or silicon, and the brazing material is made of a semiconductor material such as indium, tin, gold-silicon, or solder. .

サブマウント2は熱放散性の点から熱伝導性の
高い銅あるいは銀などを使用する必要があるが、
これら材料は半導体レーザ素子との線膨張係数差
が大きいためろう材3を介してサブマウント2に
接合し高温から常温へ冷却を行なうと半導体レー
ザ素子4にひずみが発生し動作寿命を著しく低下
させる欠点がある。また、サブマウント2にモリ
ブデンあるいはシリコンを使用した場合には上記
銅あるいは銀などと比較すると、熱伝導性は減少
する半導体レーザ素子4との線膨張係数差が小さ
いためひずみ発生は少ない。たとえば、サブマウ
ント2にシリコンを使用した場合、半導体レーザ
素子中央部に発生するひずみ値は銅を使つた場合
の約40%となるが、寿命向上に対しては十分低い
ひずみ値であるとは言えない。
Submount 2 needs to be made of highly thermally conductive material such as copper or silver from the viewpoint of heat dissipation.
These materials have a large difference in coefficient of linear expansion with the semiconductor laser element, so when they are bonded to the submount 2 via the brazing material 3 and cooled from high temperature to room temperature, the semiconductor laser element 4 is strained, significantly shortening its operating life. There are drawbacks. Further, when molybdenum or silicon is used for the submount 2, compared to the above-mentioned copper or silver, the difference in linear expansion coefficient between the material and the semiconductor laser element 4, which reduces thermal conductivity, is small, so less strain occurs. For example, when silicon is used for the submount 2, the strain generated in the center of the semiconductor laser element is approximately 40% of that when copper is used, but this is not a sufficiently low strain value to improve the lifespan. I can not say.

また、半導体レーザ素子4の放射パターンは第
2図に示すように、反射面4aでスポツトに発振
され、光進行方向に沿つて円錐状に拡大して行く
特徴を持つているため、光の乱反射を防ぎ、安定
した光を得るには、光進行方向にサブマウントが
位置しないようにする即ち半導体レーザ素子の端
面をサブマウントの端面に合わせて搭載せざるを
得ない。
Furthermore, as shown in FIG. 2, the radiation pattern of the semiconductor laser element 4 has the characteristic that it is oscillated in a spot on the reflecting surface 4a and expands in a conical shape along the direction of light propagation, resulting in diffuse reflection of light. In order to prevent this and obtain stable light, it is necessary to prevent the submount from being located in the direction in which the light travels, that is, to mount the semiconductor laser element such that the end face of the semiconductor laser element is aligned with the end face of the submount.

本発明は上記の点に鑑み半導体レーザ素子に加
わるひずみを極力少なくし、動作寿命を向上させ
る接合構造を具える半導体レーザ装置を提供する
ことを目的としたものである。
In view of the above points, it is an object of the present invention to provide a semiconductor laser device having a bonding structure that minimizes strain applied to a semiconductor laser element and improves its operating life.

本発明の特徴とするところは、ステム上にマウ
ントしたサブマウントと、このサブマウント上に
マウントした半導体レーザ素子とから成る半導体
レーザ装置において、ステムは鉄材、サブマウン
トはシリコンで形成し、前記半導体レーザ素子を
サブマウントの中央部付近に半田材でマウント
し、この半導体レーザ素子からレーザ光を出力し
たとき、前記サブマウント端面にレーザ光が照射
しない程度に、サブマウントの一側端面を底面に
対して少なくとも30°の角度をつけた傾斜面とし
たものである。
The present invention is characterized in that in a semiconductor laser device comprising a submount mounted on a stem and a semiconductor laser element mounted on the submount, the stem is made of iron, the submount is made of silicon, and the semiconductor A laser element is mounted near the center of the submount with solder material, and one end face of the submount is attached to the bottom face to the extent that when laser light is output from this semiconductor laser element, the laser light does not irradiate the end face of the submount. The surface is inclined at an angle of at least 30° to the surface.

以下、本発明の半導体レーザ装置の一実施例を
説明するが、その前に原理について説明する。
An embodiment of the semiconductor laser device of the present invention will be described below, but before that, the principle will be explained.

銅からなるステムに例えばシリコンからなるサ
ブマウントを半田ろう材を介して接合した時、高
温から常温への冷却においてステムとサブマウン
トとの線膨張係数差によりサブマウント上には第
3図に示すようなひずみが発生する。第3図にお
いて、横軸にはサブマウント中央部から端部への
距離がとつてあり、縦軸にはひずみ量がとつてあ
る。このひずみ値はサブマウントの中央部に行く
ほど大きなものとなり、みかけ上のサブマウント
の線膨張係数を大きくする効果がある。この結
果、サブマウント上にこれより大きい線膨張係数
を有する半導体レーザ素子を接合する場合、従来
の接合位置である端部より中央部に位置すること
により半導体レーザ素子との線膨張係数差が小さ
くなり半導体レーザ素子に発生するひずみは減少
する。
When a submount made of silicon, for example, is bonded to a stem made of copper via a solder filler metal, the difference in linear expansion coefficient between the stem and the submount when cooled from high temperature to room temperature causes the difference in the coefficient of linear expansion between the stem and the submount, as shown in Figure 3. Such distortion occurs. In FIG. 3, the horizontal axis represents the distance from the center of the submount to the end, and the vertical axis represents the amount of strain. This strain value becomes larger toward the center of the submount, and has the effect of increasing the apparent coefficient of linear expansion of the submount. As a result, when a semiconductor laser element with a larger linear expansion coefficient is bonded to the submount, the difference in linear expansion coefficient between the semiconductor laser element and the semiconductor laser element is reduced by locating it in the center rather than at the edges, which is the conventional bonding position. Therefore, the strain generated in the semiconductor laser device is reduced.

第4図は本発明の一実施例を示すもので、図に
おいて、6は鉄より成るステム、7はシリコンよ
り成るサブマウントで、ステム6上にろう材8を
介して接合されている。
FIG. 4 shows an embodiment of the present invention. In the figure, 6 is a stem made of iron, and 7 is a submount made of silicon, which are joined onto the stem 6 via a brazing material 8.

9はサブマウント7上に中央部付近にろう材1
0介して接合される半導体レーザ素子で、前記サ
ブマウント7の一側端面は底面に対して少なくと
も30°の角度を付けた角度A°で切断された傾斜面
7aとなつており、半導体レーザ素子9のレーザ
出力部を含む端面即ち反射面9aと接する位置で
接合されている。さらに、このサブマウント7の
傾斜面7aの下端とステム6の端部とが合わせて
接合されている。このため、半導体レーザ素子9
がサブマウント7中央部付近に接合されていても
半導体レーザ素子9がレーザ光を出力したとき、
光進行方向に沿つてサブマウントが切断されてい
るため、光の乱反射を起すことなく、安定した光
を得ることができる。
9 is the brazing material 1 near the center on the submount 7.
One end face of the submount 7 is an inclined surface 7a cut at an angle A° of at least 30° with respect to the bottom surface, and the semiconductor laser element It is joined at a position where it touches the end face including the laser output section of No. 9, that is, the reflective surface 9a. Furthermore, the lower end of the inclined surface 7a of this submount 7 and the end of the stem 6 are joined together. Therefore, the semiconductor laser element 9
When the semiconductor laser element 9 outputs laser light even if it is bonded near the center of the submount 7,
Since the submount is cut along the light traveling direction, stable light can be obtained without causing diffuse reflection of light.

また、サブマウント7の中央部付近に半導体レ
ーザ素子9を接合することにより、サブマウント
7のみかけ上の線膨張係数を大きくすることがで
きるため、半導体レーザ素子9との線膨張係数差
を少なくすることができ、サブマウント7との接
合によるひずみ発生を少なくすることができる。
Furthermore, by bonding the semiconductor laser element 9 near the center of the submount 7, the apparent coefficient of linear expansion of the submount 7 can be increased, thereby reducing the difference in the coefficient of linear expansion with the semiconductor laser element 9. This makes it possible to reduce strain caused by bonding with the submount 7.

さらにサブマウントの端面に角度を付えること
により半導体レーザ素子9とサブマウント7をろ
う材で接合する時反射面9aをろう材8で汚染す
ることからも防止する効果がある。
Furthermore, by giving an angle to the end face of the submount, there is an effect of preventing contamination of the reflective surface 9a with the brazing material 8 when the semiconductor laser element 9 and the submount 7 are bonded with the brazing material.

本発明によれば、半導体レーザ素子に加わる歪
を極力少なくすることができ、動作寿命の長い半
導体レーザ装置を提供することができる。
According to the present invention, strain applied to a semiconductor laser element can be minimized, and a semiconductor laser device with a long operating life can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザ装置の斜視図、第
2図は半導体レーザ素子の光放出パターンを示す
図、第3図はサブマウント上に発生するひずみ量
変化を示した図、第4図は本発明の半導体レーザ
装置の一実施例の斜視図である。 6……ステム、7……サブマウント、9……半
導体レーザ素子。
Figure 1 is a perspective view of a conventional semiconductor laser device, Figure 2 is a diagram showing the light emission pattern of the semiconductor laser element, Figure 3 is a diagram showing changes in the amount of strain generated on the submount, and Figure 4 is 1 is a perspective view of an embodiment of a semiconductor laser device of the present invention. 6...Stem, 7...Submount, 9...Semiconductor laser element.

Claims (1)

【特許請求の範囲】[Claims] 1 ステム上にマウントしたサブマウントと、こ
のサブマウント上にマウントした半導体レーザ素
子とからなる半導体レーザ装置において、ステム
は鉄材、サブマウントはシリコンで形成し、前記
半導体レーザ素子をサブマウントの中央部付近に
半田材でマウントし、この半導体レーザ素子から
レーザ光を出力したとき、前記サブマウント端面
にレーザ光が照射しないようにサブマウントの一
端面を底面に対して少なくとも30°の角度をつけ
た傾斜面としたことを特徴とする半導体レーザ装
置。
1. In a semiconductor laser device consisting of a submount mounted on a stem and a semiconductor laser element mounted on the submount, the stem is made of iron, the submount is made of silicon, and the semiconductor laser element is mounted in the center of the submount. One end face of the submount is angled at least 30° with respect to the bottom face so that the end face of the submount is not irradiated with laser light when the semiconductor laser element is mounted nearby with solder material and outputs laser light from this semiconductor laser element. A semiconductor laser device characterized by having an inclined surface.
JP57089625A 1982-05-28 1982-05-28 Semiconductor laser apparatus Granted JPS58207689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089625A JPS58207689A (en) 1982-05-28 1982-05-28 Semiconductor laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089625A JPS58207689A (en) 1982-05-28 1982-05-28 Semiconductor laser apparatus

Publications (2)

Publication Number Publication Date
JPS58207689A JPS58207689A (en) 1983-12-03
JPH037152B2 true JPH037152B2 (en) 1991-01-31

Family

ID=13975927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089625A Granted JPS58207689A (en) 1982-05-28 1982-05-28 Semiconductor laser apparatus

Country Status (1)

Country Link
JP (1) JPS58207689A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600646B2 (en) * 1985-07-29 1997-04-16 三菱電機株式会社 Optical head device
DE3677658D1 (en) * 1985-07-29 1991-04-04 Mitsubishi Electric Corp OPTICAL HEAD DEVICE.
JPS63229890A (en) * 1987-03-19 1988-09-26 Sharp Corp External cavity type semiconductor laser device
US5576752A (en) * 1993-11-22 1996-11-19 Xerox Corporation Offset mounting of nonmonolithic multiwavelength lasers
DE19536463C2 (en) * 1995-09-29 2002-02-07 Infineon Technologies Ag Method of manufacturing a plurality of laser diode devices
JP7091640B2 (en) * 2017-12-06 2022-06-28 セイコーエプソン株式会社 Light emitting device and manufacturing method of light emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161690A (en) * 1980-05-16 1981-12-12 Fujitsu Ltd Manufacture of semiconductor laser device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474070U (en) * 1977-11-02 1979-05-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161690A (en) * 1980-05-16 1981-12-12 Fujitsu Ltd Manufacture of semiconductor laser device

Also Published As

Publication number Publication date
JPS58207689A (en) 1983-12-03

Similar Documents

Publication Publication Date Title
US20220216668A1 (en) Light emitting device
US4603419A (en) Semiconductor laser structure including dual mounts having ridge and groove engagement
US6106161A (en) Optical sub-assembly package mount
JPH11340581A (en) Laser diode packaging
JP2019134017A (en) Light-emitting device
JP4646166B2 (en) Light source consisting of a laser diode module
JPS6063981A (en) Semiconductor light emitting device
JPH037152B2 (en)
US20210336411A1 (en) Method of manufacturing laser light source
JP3377553B2 (en) Semiconductor laser device
JP7050045B2 (en) Package, light emitting device, and laser device
JP2021090044A (en) Laser device
JPH02306681A (en) Semiconductor laser device
US6341139B1 (en) Semiconductor-laser-pumped solid state laser
JPH04278593A (en) Photoelectric device and manufacture thereof
JPH04352377A (en) Submount for semiconductor laser element
JPH10190131A (en) Semiconductor laser
JPH0499082A (en) Stem for semiconductor laser
JPH0538927U (en) Light emitting device
JPH0438941Y2 (en)
JPH01253983A (en) Semiconductor laser device
JPH03217067A (en) Semiconductor laser device
JPS62143492A (en) Submount and photoelectron device provided with this submount
JP2006186166A (en) Semiconductor laser element, and optical disk system using same
JPS59200481A (en) Electronic device