JPH0371229B2 - - Google Patents

Info

Publication number
JPH0371229B2
JPH0371229B2 JP59182581A JP18258184A JPH0371229B2 JP H0371229 B2 JPH0371229 B2 JP H0371229B2 JP 59182581 A JP59182581 A JP 59182581A JP 18258184 A JP18258184 A JP 18258184A JP H0371229 B2 JPH0371229 B2 JP H0371229B2
Authority
JP
Japan
Prior art keywords
welding
arc
electrode
tack
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59182581A
Other languages
Japanese (ja)
Other versions
JPS6160270A (en
Inventor
Hiroichi Nomura
Yukihiko Sato
Yoshikazu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP18258184A priority Critical patent/JPS6160270A/en
Publication of JPS6160270A publication Critical patent/JPS6160270A/en
Publication of JPH0371229B2 publication Critical patent/JPH0371229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は本溶接に先立つて行なう仮付溶接を
高能率かつ高速度で連続的に行なう高速仮付溶接
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-speed tack welding method for continuously performing tack welding prior to main welding with high efficiency and high speed.

〔従来の技術〕[Conventional technology]

2電極ミグ溶接法により溶接速度8m/分以上
で行なう連続仮付溶接は第4図に示すように先行
電極1と後行電極2を用い、先行電極1のアーク
3により生じた溶融金属4が後行電極2の後方へ
流出することを後行電極2のアーク5で塞き止め
ながら溶接ビードを形成して行なつている。
Continuous tack welding performed at a welding speed of 8 m/min or higher using the two-electrode MIG welding method uses a leading electrode 1 and a trailing electrode 2, as shown in Fig. 4, so that the molten metal 4 generated by the arc 3 of the leading electrode 1 is This is done by forming a weld bead while blocking the flow to the rear of the trailing electrode 2 with the arc 5 of the trailing electrode 2.

従来の溶接方法においてはアーク電圧、溶接電
流、溶接速度等の溶接パラメータは電極が母材の
溶接部終端に来ても同一の条件で施工している。
In conventional welding methods, welding parameters such as arc voltage, welding current, and welding speed are maintained under the same conditions even when the electrode reaches the end of the weld on the base metal.

〔発明が解決しようとする問題点〕 しかし、高速で仮付溶接を行なう場合、必要溶
着量を得るために先行電極1の溶接電流は非常に
高電流を用いている。このため仮付溶接が母材の
終端に近ずくと、この溶接電流による磁気吹きが
強くなり、アークは後方に向かつて強く吸引され
るようになる。先行電極1のアーク3が磁気吹き
により後方に吸引されると、そのアークと共に溶
融金属4の後方への流れも早くなり、この流れの
早くなつた溶融金属4は後行電極2のアーク力で
押えることが出来なく、そのまま後方に流れ第5
図〜7図に示すように溶接ビード形状が凹凸の著
しい不整ビード(ハンピングビード)となる。こ
こで第5図は溶接部の平面図を示し、6は開先
面、7は溶接ビード、7A,7Bは溶接ビード7
の不整ビード形状である。第6図は第5図のA−
A断面を示し、第7図は第5図のB−B断面を示
し、8は母材である。
[Problems to be Solved by the Invention] However, when performing tack welding at high speed, a very high welding current is used for the preceding electrode 1 in order to obtain the required amount of welding. Therefore, when the tack welding approaches the end of the base metal, the magnetic blow caused by this welding current becomes stronger, and the arc is strongly attracted toward the rear. When the arc 3 of the leading electrode 1 is attracted backward by the magnetic blow, the flow of the molten metal 4 to the rear becomes faster along with the arc, and the molten metal 4 that flows faster is caused by the arc force of the trailing electrode 2. Unable to hold it down, it flows backwards and the fifth
As shown in FIGS. 7 to 7, the weld bead shape becomes an irregular bead (humping bead) with significant unevenness. Here, FIG. 5 shows a plan view of the welded part, where 6 is the groove surface, 7 is the weld bead, and 7A and 7B are the weld beads 7.
It has an irregular bead shape. Figure 6 is A- of Figure 5.
A cross section is shown, and FIG. 7 shows a B-B cross section in FIG. 5, and 8 is a base material.

図に示すように仮付溶接の溶接ビード7が凹凸
の著しい不整ビードとなると、本溶接においてス
ラグ巻込みや融合不良となり溶接欠陥が発生し易
くなるという問題点もある。
As shown in the figure, if the weld bead 7 of the tack weld becomes an irregular bead with significant irregularities, there is also the problem that slag entrainment and poor fusion occur during the main welding, making welding defects more likely to occur.

本発明は、上記問題点を解決し、母材の終端部
での磁気吹きの影響を防いで良好なビード形状が
得られる高能率かつ高速度の仮付溶接方法を提供
することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a highly efficient and high-speed tack welding method that prevents the influence of magnetic blowing at the end of the base material and obtains a good bead shape. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明の高速仮付溶接方法はタンデムに配置
された2消耗電極を用い、さらに垂下特性を持つ
溶接電源を使用してガスシールドアーク溶接によ
り母材の仮付溶接を高速度で行う際、溶接電極が
母材の終端部に近づいたときに、溶接速度及び先
行電極の溶接電流は一定のままで後行電極のアー
ク電圧を下げて該後行電極のアーク長を短くして
仮付溶接を行う方法である。
The high-speed tack welding method of this invention uses two consumable electrodes arranged in tandem and a welding power source with drooping characteristics to perform tack welding of base metals at high speed by gas-shielded arc welding. When the electrode approaches the end of the base metal, the arc voltage of the trailing electrode is lowered to shorten the arc length of the trailing electrode, and tack welding is performed while the welding speed and welding current of the leading electrode remain constant. This is the way to do it.

〔作用〕[Effect]

上記したように溶接電極が母材終端に近ずくと
磁気吹きによりアークが後方に吸引され、後行電
極のアーク電圧設定を一定にしておくと見掛け上
後行電極のアーク長が長くなり、先行電極で溶融
した湯を塞ぎ止めることが困難になり、湯が後方
に流れ湯だまりが消滅し、溶接ビード形状が凹凸
の著しい不整ビードとなる。
As mentioned above, when the welding electrode approaches the end of the base metal, the arc is attracted backward by magnetic blowing, and if the arc voltage setting of the trailing electrode is kept constant, the arc length of the trailing electrode will apparently become longer, and the arc of the trailing electrode will become longer. It becomes difficult to stop the molten metal with the electrode, the hot water flows backwards, the pool of molten metal disappears, and the weld bead becomes irregularly shaped with significant irregularities.

しかしながら垂下特性の溶接電源を用いて溶接
速度及び先行電極の溶接電流は一定のままで後行
電極のアーク電圧設定を溶接が母材終端に近ずい
たときに低くなるようにして、後行電極のアーク
長を短かくすると、磁気吹きにより後行電極のア
ークが後方に吸引される量が少なくなり、後行電
極の下を流れていた先行電極による溶融金属は後
行電極のアーク柱の両側に押しやられ、ビード正
常部で見られる湯だまりと同じ湯だまりが形成さ
れ、連続してこの湯だまりを維持することができ
る。
However, by using a welding power source with drooping characteristics, the welding speed and welding current of the leading electrode remain constant, and the arc voltage setting of the trailing electrode becomes lower when welding approaches the end of the base metal. By shortening the arc length of the trailing electrode, the amount of the trailing electrode's arc drawn backward by magnetic blowing will be reduced, and the molten metal from the leading electrode that was flowing under the trailing electrode will be transferred to both sides of the trailing electrode's arc column. The bead is pushed away by the bead, forming a hot water pool similar to the one seen in the normal part of the bead, and is able to maintain this hot water pool continuously.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による後行電極の
アーク電圧特性を従来のアーク電圧特性と比較し
て示した図である。従来の仮付溶接方法はビード
正常部における後行電極のアーク電圧V1と同じ
アーク電圧V1で母材端部の仮付溶接を行なつて
いるが、この発明においては溶接が母材端部Eか
ら距離Lの位置に近ずいたときに、その位置を例
えばリミツトスイツチ等で検出し、この位置検出
信号によりアーク電圧V1を次第に低下させ所定
のアーク電圧V2とし、このアーク電圧V2により
母材端部近くの仮付溶接を行なう。
FIG. 1 is a diagram showing arc voltage characteristics of a trailing electrode according to an embodiment of the present invention in comparison with conventional arc voltage characteristics. In the conventional tack welding method, the end of the base metal is tack welded at the same arc voltage V 1 as the arc voltage V 1 of the trailing electrode in the normal bead area, but in this invention, welding is performed at the end of the base metal. When approaching a position a distance L from part E, the position is detected by, for example, a limit switch, and the arc voltage V 1 is gradually lowered to a predetermined arc voltage V 2 based on this position detection signal, and this arc voltage V 2 Perform tack welding near the edge of the base metal.

図に示すように母材端部近くの仮付溶接をビー
ド正常部におけるアーク電圧V1より低いアーク
電圧V2で行なうためアーク長がシヨートアーク
になる程度に短かくなり、磁気吹きが生じてもア
ーク力により溶融金属の塞き止めを行なうことが
でき、連続してなめらかな溶接ビードを得ること
ができる。
As shown in the figure, tack welding near the edge of the base metal is performed at an arc voltage V 2 that is lower than the arc voltage V 1 in the normal bead area, so the arc length is shortened to a short arc and even if magnetic blowing occurs. The arc force can block the molten metal, making it possible to obtain a continuous and smooth weld bead.

上記実施例においてビード正常部における後行
電極のアーク電圧V1を22V、後行電極の溶接電
流を400Aとし、溶接速度8m/分以上の高速で
仮付溶接を行なつたときに、母材端部Eからの距
離Lが約50〜60cmの位置からアーク電圧V2を20
〜21Vに低下させて仮付溶接を行なうと第2図の
溶接部平面図及び第3図の側面断面図に示すよう
に溶接ビード7のビード巾を一定の状態で連続し
て溶接を行なうことができる。なおこの場合、先
行電極のアーク電圧は一定のままで仮付溶接を行
なつている。
In the above example, when the arc voltage V 1 of the trailing electrode in the normal bead area was 22V, the welding current of the trailing electrode was 400A, and tack welding was performed at a high welding speed of 8 m/min or more, the base metal Apply arc voltage V 2 to 20 from a position where distance L from end E is approximately 50 to 60 cm.
When tack welding is performed with the voltage lowered to ~21V, welding is performed continuously with the bead width of weld bead 7 constant as shown in the plan view of the welded part in Figure 2 and the side sectional view in Figure 3. I can do it. In this case, tack welding is performed while the arc voltage of the preceding electrode remains constant.

したがつて溶接速度8m/分以上の高速で仮付
溶接を行なう場合、母材端部から約50〜60cmの位
置でアーク電圧を低下し、アーク長を短かくする
ことにより、溶接ビード形成に対する磁気吹きの
影響を除くことができる。このように溶接速度を
高速にしても仮付溶接ができる理由は次のように
考えられる。
Therefore, when performing tack welding at a welding speed of 8 m/min or higher, reducing the arc voltage at a position approximately 50 to 60 cm from the edge of the base metal and shortening the arc length will prevent weld bead formation. The influence of magnetic blowing can be removed. The reason why tack welding is possible even at such high welding speeds is considered as follows.

(a) 湯だまりの塞き止め効果が大きいからであ
る。すなわち、この発明は母材終端部で後行電
極のアーク電圧を下げることによりアーク長が
シヨートアークになる程度に短くしているの
で、アーク力が強く、そのため磁気吹きの影響
が少なくなり、湯だまりの流出を防止できるか
らである。よつて、上記塞き止め効果を十分に
発揮できることになる。
(a) This is because it has a great effect of blocking the hot water pool. In other words, this invention reduces the arc voltage of the trailing electrode at the end of the base metal to shorten the arc length to the extent that it becomes a short arc, so the arc force is strong, which reduces the influence of magnetic blowing and prevents molten water from forming. This is because it can prevent the outflow of. Therefore, the above-mentioned blocking effect can be fully exhibited.

(b) 垂下特性の溶接電源を使用しているためであ
る。これによつて電圧変動の影響を受けずに溶
接電流を一定に確保できる。したがつて、後行
電極の電圧を下げても電流はほとんど変化しな
いので、後行電極のアークは太くかつ強い。こ
のような垂下特性電源はもちろん公知である。
(b) This is because a welding power source with drooping characteristics is used. This makes it possible to maintain a constant welding current without being affected by voltage fluctuations. Therefore, even if the voltage of the trailing electrode is lowered, the current hardly changes, so the arc of the trailing electrode is thick and strong. Such a droop characteristic power supply is of course known.

(c) 電極サイズが大きいからである。すなわち、
この発明は先行・後行電極共にできるだけ太径
のものを使用しており、例えば先行電極径3.2
mm,後行電極径2.4mmである。このため後行電
極のアーク柱が太くなり、上記塞き止め効果が
より有利に働く。なお、仮付溶接は主として先
行電極により行われ、湯だまりをある一定の大
きさに保つようにしている。
(c) This is because the electrode size is large. That is,
In this invention, both the leading and trailing electrodes use diameters as large as possible; for example, the diameter of the leading electrode is 3.2.
mm, trailing electrode diameter 2.4 mm. Therefore, the arc column of the trailing electrode becomes thicker, and the blocking effect described above works more advantageously. Note that tack welding is mainly performed using a leading electrode to maintain the pool at a certain size.

〔発明の効果〕 この発明は以上説明したように、溶接が母材の
終端部に近ずいたときに、溶接速度及び先行電極
の溶接電流は一定のままで後行電極のアーク電圧
を低下させてアーク長を短かくして仮付溶接を行
なうため大電流を用いた高速仮付溶接下でも磁気
吹きによるアーク力の低下を防止し、充分な溶融
金属の塞き止め効果を発揮することができ、連続
した溶接ビードを形成することができる。このた
め高能率かつ高速度の仮付溶接を実現でき、本溶
接における溶接欠陥の発生も防止することができ
る効果を有する。
[Effects of the Invention] As explained above, the present invention reduces the arc voltage of the trailing electrode when welding approaches the end of the base metal while the welding speed and welding current of the leading electrode remain constant. Since tack welding is performed by shortening the arc length, it is possible to prevent a decrease in arc force due to magnetic blowing even during high-speed tack welding using a large current, and to achieve a sufficient molten metal blocking effect. A continuous weld bead can be formed. Therefore, high efficiency and high speed tack welding can be achieved, and the welding defects can be prevented from occurring during main welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例による後行電極のア
ーク電圧特性図、第2図は上記実施例による溶接
ビードの平面図、第3図は上記実施例による溶接
ビードの側面断面図、第4図は2電極ミグ溶接法
におけるアーク形態図、第5図は従来の溶接ビー
ドの平面図、第6図及び第7図は従来の溶接ビー
ドの側面図を示し、第6図は第5図のA−A断面
図、第7図は第5図のB−B断面図である。 1…先行電極、2…後行電極、3,5…アー
ク、4…溶融金属、6…開先面、7…溶接ビー
ド、8…母材、E…母材端部、V1,V2…後行電
極のアーク電圧。
FIG. 1 is an arc voltage characteristic diagram of a trailing electrode according to an embodiment of the present invention, FIG. 2 is a plan view of a weld bead according to the above embodiment, FIG. 3 is a side sectional view of the weld bead according to the above embodiment, and FIG. The figure shows the arc configuration in the two-electrode MIG welding method, Figure 5 is a plan view of a conventional weld bead, Figures 6 and 7 are side views of a conventional weld bead, and Figure 6 is the same as that of Figure 5. 7 is a sectional view taken along line AA and FIG. 7 is a sectional view taken along line BB in FIG. 5. 1... Leading electrode, 2... Trailing electrode, 3, 5... Arc, 4... Molten metal, 6... Groove surface, 7... Weld bead, 8... Base metal, E... Base metal end, V 1 , V 2 ...Arc voltage of trailing electrode.

Claims (1)

【特許請求の範囲】 1 タンデムに配置された2消耗電極と垂下特性
の溶接電源を用い、母材の高速仮付溶接を行うガ
スシールドアーク溶接において、 溶接電極が母材の終端部に近づいたときに溶接
速度及び先行電極の溶接電流は一定のままで後行
電極のアーク電圧を低下させ、該後行電極のアー
ク長を短くして仮付溶接を行うことを特徴とする
高速仮付溶接方法。
[Claims] 1. In gas-shielded arc welding that performs high-speed tack welding of base metals using two consumable electrodes arranged in tandem and a welding power source with drooping characteristics, the welding electrode approaches the terminal end of the base metal. High-speed tack welding, which is characterized in that tack welding is performed by reducing the arc voltage of the trailing electrode while the welding speed and welding current of the leading electrode remain constant, and shortening the arc length of the trailing electrode. Method.
JP18258184A 1984-09-03 1984-09-03 High speed tack welding Granted JPS6160270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18258184A JPS6160270A (en) 1984-09-03 1984-09-03 High speed tack welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18258184A JPS6160270A (en) 1984-09-03 1984-09-03 High speed tack welding

Publications (2)

Publication Number Publication Date
JPS6160270A JPS6160270A (en) 1986-03-27
JPH0371229B2 true JPH0371229B2 (en) 1991-11-12

Family

ID=16120784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18258184A Granted JPS6160270A (en) 1984-09-03 1984-09-03 High speed tack welding

Country Status (1)

Country Link
JP (1) JPS6160270A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425477U (en) * 1987-08-07 1989-02-13

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548909A (en) * 1978-10-05 1980-04-08 Toshiba Corp Assembling of high current transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548909A (en) * 1978-10-05 1980-04-08 Toshiba Corp Assembling of high current transformer

Also Published As

Publication number Publication date
JPS6160270A (en) 1986-03-27

Similar Documents

Publication Publication Date Title
CN108453351B (en) Aluminum pipe welding method
CN111347133B (en) High-speed double-tungsten argon arc welding process for eliminating hump defect of stainless steel welding seam and application thereof
JP2002219571A (en) Control method for three electrode arc welding
JPH0371229B2 (en)
JP4864232B2 (en) Consumable two-electrode arc welding end method, welding end control method, and welding robot
JPH0994658A (en) One side butt welding method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
CN107775147B (en) The back cover welding method of steel pipe docking based on short circuiting transfer mode
CA1071715A (en) Method of high speed gas shielded arc welding
JPH0215313B2 (en)
JPS5940549B2 (en) DC TIG welding method
JPH0985446A (en) Gas shielded arc welding method
US3610868A (en) Submerged-welding method
JPH049096Y2 (en)
JPH0292464A (en) Gas shielded arc high speed welding method
JPH08174224A (en) Double upper/lower faces simultaneous butt welding
JPH048146B2 (en)
JP3186885B2 (en) Single-sided submerged arc welding method
JPS6335352B2 (en)
JPS6139152B2 (en)
JPH0215312B2 (en)
JPH09314335A (en) Tandem submerged arc welding method
KR810000351B1 (en) Submerged arc welding method
JPS60118386A (en) Submerged arc welding method
JPS63130275A (en) Butt multi-layer welding method for steel plates