JPH037082B2 - - Google Patents

Info

Publication number
JPH037082B2
JPH037082B2 JP57045058A JP4505882A JPH037082B2 JP H037082 B2 JPH037082 B2 JP H037082B2 JP 57045058 A JP57045058 A JP 57045058A JP 4505882 A JP4505882 A JP 4505882A JP H037082 B2 JPH037082 B2 JP H037082B2
Authority
JP
Japan
Prior art keywords
light beam
scanned
lens
cylindrical lens
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57045058A
Other languages
Japanese (ja)
Other versions
JPS58179813A (en
Inventor
Toyoji Ito
Toshio Muramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP57045058A priority Critical patent/JPS58179813A/en
Priority to GB08306962A priority patent/GB2119952B/en
Priority to US06/476,811 priority patent/US4496209A/en
Priority to DE19833309848 priority patent/DE3309848A1/en
Publication of JPS58179813A publication Critical patent/JPS58179813A/en
Publication of JPH037082B2 publication Critical patent/JPH037082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/127Adaptive control of the scanning light beam, e.g. using the feedback from one or more detectors
    • G02B26/128Focus control

Description

【発明の詳細な説明】 本発明は、光源からの光ビームを、回転多面鏡
で反射し、集光レンズを介して被走査面に与え、
走査を行う光ビーム走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention reflects a light beam from a light source on a rotating polygon mirror and applies it to a scanned surface via a condensing lens.
The present invention relates to a light beam scanning device that performs scanning.

この種の光ビーム走査装置は、その概略を第1
図に示したように、本来は回転多面鏡1に入射し
たレーザ2等からの光ビームが、矢印方向に回転
する回転多面鏡1の鏡面で反射して、集光レンズ
(f・θレンズ)3を通つて被走査面SPの上の走
査線SP1に沿つて、走査方向(x方向)に一様
な速度で移動する光スポツトを結ぶように構成さ
れている。ところが、回転多面鏡1の回転軸に対
して各鏡面が平行でなく、その角度に不揃い(倒
れ角誤差)があると、走査方向に直角な方向(y
方向)に光スポツトが不均一にシフトし、例え
ば、第2図に示す如く、反射面1aの倒れ角誤差
がΔθあると、被走査面SPでΔd=2f・Δθ(ただ
し、fは集光レンズ3の焦点距離)のシフト量が
生じてしまう。この倒れ角誤差や回転軸のブレは
走査線のピツチむらを生じさせるため、何らかの
対策をとる必要がある。その一つとして、工作精
度を上げて倒れ角誤差を微小化することが考えら
れるが、実際には工作精度上の限界に近く、たと
え工作できるにしても、工数がかかり、量産は難
しく、極めて高価になるという問題がある。又、
従来から、第3図及び第4図に示す如く、円柱レ
ンズ4等を用いて、光ビームを回転多面鏡1に走
査方向に平行な線状のビームとして入射させ、回
転多面鏡1と被走査面SPとの間に配置した、円
柱レンズ(あるいはトロイダルレンズ)5及び集
光レンズ3により、前記線状のビームと走査位置
を走査方向と直角な方向に関し、光学的共役とし
て補正するもの(特開昭48−49315号)がある。
しかし、この形状の円柱レンズ5を用いると、全
走査幅にわたつて一様なスポツトサイズを得るこ
とができないし、円柱レンズ5の代わりにx方向
にも一定の曲率を有するトロイダルレンズを用い
ると、ほぼ一様なスポツトサイズは得られるが、
トロイダルレンズが高価なため、光ビーム走査装
置が高コストになるという新たな問題が生ずる。
更に、他の従来例として、第5図及び第6図に示
す如く、円柱レンズ6及び7によつて偏平(第7
図に回転多面鏡1の一面1a上でのビーム形状を
示す)で、且つ光軸方向に平行に近い光ビームを
回転多面鏡1に入射させると共に、集光レンズ3
と被走査面SPとの間に単に円柱レンズ8を設け
たものもある。この装置についても、全走査幅に
わたつて一様なスポツトサイズが得られないとい
う問題がある。
This type of light beam scanning device can be summarized as follows.
As shown in the figure, the light beam from the laser 2, etc. that was originally incident on the rotating polygon mirror 1 is reflected by the mirror surface of the rotating polygon mirror 1 rotating in the direction of the arrow, and the light beam is reflected by the condensing lens (f/θ lens). The light spot is configured to connect light spots moving at a uniform speed in the scanning direction (x direction) along the scanning line SP1 on the scanned surface SP through 3. However, if each mirror surface is not parallel to the rotation axis of the rotating polygon mirror 1 and there are irregular angles (inclination angle error),
For example, if the inclination angle error of the reflective surface 1a is Δθ as shown in FIG. 2, then Δd=2f・Δθ (where f is the focused This results in a shift amount (focal length of the lens 3). Since this inclination angle error and rotational shaft wobbling cause unevenness in the pitch of the scanning lines, it is necessary to take some countermeasures. One way to do this is to improve machining accuracy and minimize inclination angle errors, but in reality this is close to the limit in terms of machining accuracy, and even if machining could be done, it would take a lot of man-hours and would be difficult to mass produce. The problem is that it is expensive. or,
Conventionally, as shown in FIGS. 3 and 4, a light beam is incident on the rotating polygon mirror 1 as a linear beam parallel to the scanning direction using a cylindrical lens 4, etc. A cylindrical lens (or toroidal lens) 5 and a condensing lens 3 arranged between the surface SP and the linear beam and the scanning position are corrected as optical conjugates in a direction perpendicular to the scanning direction (special No. 49315 (1977).
However, if the cylindrical lens 5 of this shape is used, it is not possible to obtain a uniform spot size over the entire scanning width, and if a toroidal lens having a constant curvature also in the x direction is used instead of the cylindrical lens 5. , a nearly uniform spot size can be obtained, but
The high cost of toroidal lenses creates a new problem in that the optical beam scanning device is expensive.
Furthermore, as another conventional example, as shown in FIG. 5 and FIG.
The figure shows the beam shape on one surface 1a of the rotating polygon mirror 1), and a light beam that is nearly parallel to the optical axis direction is incident on the rotating polygon mirror 1, and the condenser lens 3
There is also one in which a cylindrical lens 8 is simply provided between the scanning surface SP and the surface to be scanned SP. This device also has the problem of not being able to obtain a uniform spot size over the entire scanning width.

本発明は、上述の問題に鑑みてなされたもの
で、光源からの光ビームを回転多面鏡で反射し、
集光レンズを介して被走査面に与え、走査を行う
光ビーム走査装置において、前記集光レンズと前
記被走査面との間、前記被走査面側に長手方向の
端部が近づくように湾曲した円柱レンズを配設す
ることにより、全走査幅にわたつて一様なスポツ
トサイズが得られ、走査線ピツチむらを生じない
光ビーム走査装置を簡単な構成で且つ安価に実現
したものである。尚、前記円柱レンズの配設位置
は、例えば、被走査面付近であり、又、前記回転
多面鏡に入射する光ビームとしては、走査方向に
幅が広く偏平な、しかもほぼ光軸方向に平行なも
のを用いることが好ましい。
The present invention was made in view of the above-mentioned problems, and reflects a light beam from a light source with a rotating polygon mirror.
In a light beam scanning device that performs scanning by applying a light beam to a surface to be scanned through a condensing lens, a light beam is curved between the condensing lens and the surface to be scanned so that a longitudinal end approaches the surface to be scanned. By disposing such cylindrical lenses, a uniform spot size can be obtained over the entire scanning width, and a light beam scanning device that does not cause scanning line pitch unevenness can be realized with a simple structure and at low cost. The position of the cylindrical lens is, for example, near the surface to be scanned, and the light beam incident on the rotating polygon mirror is wide and flat in the scanning direction, and approximately parallel to the optical axis direction. It is preferable to use

以下、図面を参照し本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第8図は、本発明に係る光ビーム走査装置にお
ける、回転多面鏡と被走査面の間の光ビーム及び
光学系の概略構成図で、bは上面断面図、aは走
査中央での側面断面図、cは走査端での側面断面
図を示している。図中、11は回転多面鏡で、こ
の実施例ではその反射面(鏡面)には、図示しな
いビーム整形手段から、走査方向に幅が広く偏平
なしかも光軸方向に平行に近い光ビームが入射し
ている。12は回転多面鏡11の反射ビームを受
ける集光レンズ(ここではf・θレンズが使用さ
れている)で、13は被走査面(通常、平面若し
くは走査線に関してはほぼ平面とみなせる面であ
る)SP付近に配置された凸円柱レンズで、被走
査面SP側に端部(第8図bには片方の端部13
aのみ示した)が近づくように湾曲された形状を
有するものである。この凸円柱レンズ13は、走
査方向(x方向)に対して直角な方向(y方向)
に屈折力を有する。
FIG. 8 is a schematic configuration diagram of the light beam and optical system between the rotating polygon mirror and the surface to be scanned in the light beam scanning device according to the present invention, b is a top sectional view, and a is a side sectional view at the center of scanning. Figure 1c shows a side sectional view at the scanning end. In the figure, 11 is a rotating polygon mirror, and in this embodiment, a light beam that is wide in the scanning direction, not flat, and nearly parallel to the optical axis direction is incident from a beam shaping means (not shown) onto its reflecting surface (mirror surface). are doing. 12 is a condenser lens (an f/θ lens is used here) that receives the reflected beam from the rotating polygon mirror 11, and 13 is a surface to be scanned (usually a plane or a surface that can be considered to be almost a plane with respect to the scanning line). ) A convex cylindrical lens placed near SP, with the end facing toward the scanned surface SP (one end 13 is shown in Figure 8b).
(only a is shown) has a curved shape so that it approaches. This convex cylindrical lens 13 is arranged in a direction (y direction) perpendicular to the scanning direction (x direction).
It has refractive power.

本発明装置では、回転多面鏡11の反射面と被
走査面SPはy方向に関して本実施例においては
幾何光学的にほぼ共役になつており、集光レンズ
12を通過した光ビームは、x方向に関しては、
集光レンズ12から被走査面SPに向かつて一様
に収束しながら進み、又、y方向に関しては、集
光レンズ12から収束し始め、円柱レンズ13を
通過後特に急速に収束しながら進む。本実施例で
は円柱レンズ13を被走査面SP付近に設けたが、
湾曲の曲率を変えることにより、集光レンズ12
側に近づけて配設することも可能である。
In the device of the present invention, the reflecting surface of the rotating polygon mirror 11 and the scanned surface SP are almost geometrically optically conjugate with respect to the y direction in this embodiment, and the light beam passing through the condenser lens 12 is directed in the x direction. about,
The light beam uniformly converges from the condensing lens 12 toward the scanned surface SP, and in the y direction, it begins to converge from the condensing lens 12 and, after passing through the cylindrical lens 13, converges particularly rapidly. In this embodiment, the cylindrical lens 13 is provided near the scanned surface SP, but
By changing the curvature of the condenser lens 12
It is also possible to arrange it closer to the side.

ところで、円柱レンズ13の実効的焦点距離
は、光ビームが斜めに入射することにより短くな
るため、仮に円柱レンズ13としてx方向に対し
真直なものを用いたとすれば、光ビームが走査中
央から離れるにつれて、円柱レンズ13通過後に
生ずる光ビームのビームウエストは、被走査面
SPの前方(円柱レンズ13側)に移動すること
になるが、本発明では、上述の如く、円柱レンズ
13として湾曲したものを用いているため、被走
査面SP付近(被走査面SP上を含む)にビームウ
エストを生じさせ得る。以下、この点を式を用い
ながら説明する。
By the way, the effective focal length of the cylindrical lens 13 becomes shorter when the light beam is incident obliquely, so if a cylindrical lens 13 that is straight with respect to the x direction is used, the light beam will move away from the scanning center. As a result, the beam waist of the light beam generated after passing through the cylindrical lens 13 becomes closer to the scanned surface.
However, in the present invention, as described above, since a curved cylindrical lens 13 is used, the lens moves near the scanned surface SP (on the scanned surface SP). ) may cause a beam waist. This point will be explained below using equations.

まず、本実施例で用いた平凸円柱レンズ13の
屈折面の凸側の曲率半径をR、焦点距離をf、屈
折率nとすれば、これらの間には、 f=R/(n−1) ……(1) なる関係が成り立つ。
First, if the radius of curvature of the convex side of the refractive surface of the plano-convex cylindrical lens 13 used in this example is R, the focal length is f, and the refractive index is n, then f=R/(n- 1) ...(1) The following relationship holds true.

又、光ビームが走査中央から離れ、円柱レンズ
13に斜めから入射した場合の入射角ψ、屈折角
をψ′とすれば、これらには、屈折の法則より sinψ=nsinψ′ ……(2) なる関係が成り立つ。
Also, if the incident angle ψ and refraction angle when the light beam leaves the scanning center and enters the cylindrical lens 13 obliquely are ψ', sinψ=nsinψ' according to the law of refraction. (2) A relationship holds true.

更に、円柱レンズ13に斜めに光ビームが入射
するときの実効的焦点距離をf′、光軸上の微小部
分での曲率半径をR′とすれば、 R′=R2/(R/cosψ′) =Rcosψ′ ……(3) f′=R′/(n−1) ……(4) が成り立つ。
Furthermore, if the effective focal length when the light beam is obliquely incident on the cylindrical lens 13 is f', and the radius of curvature at a minute portion on the optical axis is R', then R'=R 2 /(R/cosψ ′) = Rcosψ′ ...(3) f′=R′/(n-1) ...(4) holds.

従つて、f/f′は、(1)〜(4)式より、 f/f′=R/R′ =1/cosψ′ =1/√1−()2 ……(5) となる。 Therefore, f/f' becomes f/f'=R/R'=1/cosψ'=1/√1-() 2 (5) from equations (1) to (4).

ここで、√1−()2≦1であるから、
f≧f′となり、上述の如く、円柱レンズ13に光
ビームが斜めに入射するときの焦点距離は短くな
る。このため、本発明では、円柱レンズ13の曲
げを該円柱レンズ13によるy方向の光ビームの
収束によつて被走査面SP上のビームスポツトの
大きさ(形状も含め)が一様になるように設定し
ている。特に本実施例では、被走査面SP付近
(一致も含む)にビームウエストが生じるように
すると共に回転多面鏡1の反射面1aと被走査面
SPが共役となるように構成している。
Here, since √1−() 2 ≦1,
f≧f', and as described above, when the light beam obliquely enters the cylindrical lens 13, the focal length becomes short. Therefore, in the present invention, the cylindrical lens 13 is bent so that the size (including shape) of the beam spot on the scanned surface SP becomes uniform by convergence of the light beam in the y direction by the cylindrical lens 13. It is set to . In particular, in this embodiment, the beam waist is generated near (including coinciding with) the scanned surface SP, and the reflective surface 1a of the rotating polygon mirror 1 and the scanned surface
It is configured so that SP is conjugate.

従つて、回転多面鏡11、集光レンズ12、円
柱レンズ13、被走査面SPの相対位置、焦点距
離、この系へ入射する光ビームの径、波面曲率半
径等を適当に定めることにより、被走査面SP上
に、所望のスポツトが得られ、このスポツトの形
状(真円である必要はなく、楕円でもよい)を全
走査幅にわたつて一様にできる。
Therefore, by appropriately determining the relative positions of the rotating polygon mirror 11, the condensing lens 12, the cylindrical lens 13, and the scanned surface SP, the focal length, the diameter of the light beam incident on this system, the radius of wavefront curvature, etc. A desired spot can be obtained on the scanning plane SP, and the shape of this spot (not necessarily a perfect circle, but may be an ellipse) can be made uniform over the entire scanning width.

具体的に述べると、一例として円柱レンズ13
の焦点距離を50mm、集光(f・θ)レンズ12の
焦点距離を350mm、走査長を280mmにし、円柱レン
ズ13の湾曲を円弧状としてその半径を約2100mm
に選んだ光学系を主走査手段とし、等速で移動す
る台に写真用印画紙を取り付け、文字記録を行つ
たところ、走査の全幅にわたつてほぼ良好な記録
が行われた。これに対し、従来の例えば第5図の
如き光学系では、走査中央付近においては良好な
記録が得られるが、走査端では、線の太り、画像
の切れ等の劣化が生じた。
Specifically speaking, as an example, the cylindrical lens 13
The focal length of the condensing (f/θ) lens 12 is 350 mm, the scanning length is 280 mm, and the cylindrical lens 13 is curved in an arc shape with a radius of approximately 2100 mm.
Using the optical system selected as the main scanning means, photographic paper was attached to a table that moved at a constant speed, and characters were recorded, and almost good recording was achieved over the entire scanning width. On the other hand, in the conventional optical system as shown in FIG. 5, for example, good recording can be obtained near the center of the scan, but deterioration such as thickening of lines and image breakage occurs at the ends of the scan.

尚、スポツト径の均一性がさらに要求される場
合は、円弧状に曲げるのではなく、他の各種形状
例えば4次曲線等に曲げ上記要求に応えることが
できる。
If more uniformity of the spot diameter is required, instead of bending into an arc shape, it is possible to bend into various other shapes, such as a quartic curve, to meet the above requirement.

更に、第8図にはビーム整形手段を示さなかつ
たが、このビーム整形手段は、例えば、第9図及
び第10図に示す如く、レーザ14からのレーザ
ビームを受ける球面レンズによるビーム拡大手段
15と、ビーム拡大手段15通過後のレーザビー
ムが入射する長焦点円柱レンズ16及び短焦点円
柱レンズ17とから構成できる。又、第11図に
示す如く、レーザ14から出射されたレーザビー
ムを変調器18を介して受ける単一の円柱レンズ
19と、円柱レンズ19通過後のレーザビームが
入射する球面レンズでなるビーム拡大手段20と
からも構成できる。このような光束整形手段を用
いる理由は、回転多面鏡11へ入射する光ビーム
のy方向波面曲率半径が非常に大であり、光ビー
ム幅が小さいことから、回転多面鏡以前の光学系
の光路長が極端に長くなることを避けながら所望
のパラメーターを有する光束を得るためである。
Further, although the beam shaping means is not shown in FIG. 8, this beam shaping means may include, for example, a beam expanding means 15 using a spherical lens that receives the laser beam from the laser 14, as shown in FIGS. 9 and 10. , a long focus cylindrical lens 16 and a short focus cylindrical lens 17 into which the laser beam after passing through the beam expanding means 15 is incident. Furthermore, as shown in FIG. 11, a beam expansion device is formed by a single cylindrical lens 19 that receives the laser beam emitted from the laser 14 via the modulator 18, and a spherical lens into which the laser beam after passing through the cylindrical lens 19 is incident. It can also be constructed from the means 20. The reason for using such a beam shaping means is that the y-direction wavefront curvature radius of the light beam incident on the rotating polygon mirror 11 is very large and the light beam width is small. This is to obtain a luminous flux having desired parameters while avoiding an extremely long length.

以上詳細に説明したように、本発明では、回転
多面鏡の反射面と被走査面とが、集光レンズと円
柱レンズから成る光学系で、y方向に関して幾何
光学的にほぼ共役となるようになし、これによつ
て、回転多面鏡の倒れ角誤差による走査ピツチむ
らの発生を防止すると同時に、この円柱レンズと
して湾曲状のものを用いることによつて、被走査
面上でのスポツトの大きさを一様にしたものであ
る。このため、従来に比べて倒れ角補正の効果が
大きく被走査面上にほぼ完全な均一スポツトを得
ることができ、従つて、走査による読取りを行う
装置あるいは記録を行う装置として、優れた性能
のものを、トロイダルレンズ等を用いずに低コス
トで構成することができる。
As explained in detail above, in the present invention, the reflecting surface of the rotating polygon mirror and the scanning surface are an optical system consisting of a condensing lens and a cylindrical lens, so that they are almost geometrically conjugate in the y direction. None.This prevents the occurrence of scan pitch unevenness due to tilt angle error of the rotating polygon mirror, and at the same time, by using a curved cylindrical lens, the size of the spot on the scanned surface can be reduced. It is made uniform. For this reason, the effect of tilt angle correction is greater than in the past, and an almost perfectly uniform spot can be obtained on the scanning surface. Objects can be constructed at low cost without using toroidal lenses or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ビーム走査装置の主要部の基本的な
構成図、第2図は倒れ角誤差の説明図、第3図乃
至第7図は従来装置の説明図、第8図は本発明装
置の構成図、第9図乃至第11図はビーム整形手
段の説明図である。 1,11……回転多面鏡、3,12……集光レ
ンズ(f・θレンズ)、4〜8,13,16,1
7,19……円柱レンズ、2,14……レーザ、
15,20……ビーム拡大手段、18……変調
器、SP……被走査面。
Fig. 1 is a basic configuration diagram of the main parts of a light beam scanning device, Fig. 2 is an explanatory diagram of inclination angle error, Figs. 3 to 7 are explanatory diagrams of a conventional device, and Fig. 8 is an inventive device 9 to 11 are explanatory diagrams of the beam shaping means. 1, 11... Rotating polygon mirror, 3, 12... Condensing lens (f/θ lens), 4 to 8, 13, 16, 1
7, 19... Cylindrical lens, 2, 14... Laser,
15, 20...Beam expansion means, 18...Modulator, SP...Scanned surface.

Claims (1)

【特許請求の範囲】 1 光源からの光ビームを回転多面鏡で反射し、
集光レンズを介して被走査面に与え、走査を行う
光ビーム走査装置において、前記集光レンズと前
記被走査面との間に、前記被走査面側に長手方向
の端部が近づくように湾曲した円柱レンズを配設
したことを特徴とする光ビーム走査装置。 2 前記円柱レンズの配設位置が前記集光レンズ
と前記被走査面との間の前記被走査面付近である
ことを特徴とする特許請求の範囲第1項記載の光
ビーム走査装置。 3 前記回転多面鏡に入射する光ビームとして、
走査方向に幅が広く偏平な、しかもほぼ光軸方向
に平行な光ビームを用いることを特徴とする特許
請求の範囲第1項又は第2項記載の光ビーム走査
装置。 4 前記回転多面鏡の反射面と前記被走査面とが
ほぼ走査方向に関し直交する方向に幾何光学的共
役関係にあるように構成したことを特徴とする特
許請求の範囲第1項乃至第3項の何れかに記載の
光ビーム走査装置。 5 前記被走査面付近でビームウエストが生じる
ように構成したことを特徴とする特許請求の範囲
第1項乃至第4項の何れかに記載の光ビーム走査
装置。 6 前記光ビームがレーザ光線であることを特徴
とする特許請求の範囲第1項乃至第5項の何れか
に記載の光ビーム走査装置。 7 前記ビーム整形手段として、球面レンズによ
るビーム拡大手段と、該ビーム拡大手段通過後の
光ビームが入射する長焦点円柱レンズ及び短焦点
円柱レンズとから成るものを用いたことを特徴と
する特許請求の範囲第1項乃至第6項の何れかに
記載の光ビーム走査装置。 8 前記ビーム整形手段として、単一の円柱レン
ズと、該円柱レンズ通過後の光ビームが入射する
球面レンズでなる拡大手段とから成るものを用い
たことを特徴とする特許請求の範囲第1項乃至第
6項の何れかに記載の光ビーム走査装置。
[Claims] 1. Reflecting a light beam from a light source with a rotating polygon mirror,
In a light beam scanning device that performs scanning by applying a light beam to a surface to be scanned through a condensing lens, a light beam is provided between the condensing lens and the surface to be scanned such that a longitudinal end thereof approaches the surface to be scanned. A light beam scanning device characterized by having a curved cylindrical lens. 2. The light beam scanning device according to claim 1, wherein the cylindrical lens is arranged near the surface to be scanned between the condenser lens and the surface to be scanned. 3 As a light beam incident on the rotating polygon mirror,
The light beam scanning device according to claim 1 or 2, characterized in that a light beam that is wide and flat in the scanning direction and substantially parallel to the optical axis direction is used. 4. Claims 1 to 3, characterized in that the reflective surface of the rotating polygon mirror and the scanned surface are configured to have a geometrically optical conjugate relationship in a direction substantially perpendicular to the scanning direction. The light beam scanning device according to any one of the above. 5. The light beam scanning device according to any one of claims 1 to 4, characterized in that the beam waist is formed in the vicinity of the scanned surface. 6. The light beam scanning device according to any one of claims 1 to 5, wherein the light beam is a laser beam. 7. A patent claim characterized in that the beam shaping means includes a beam expanding means using a spherical lens, and a long focal length cylindrical lens and a short focal length cylindrical lens into which the light beam after passing through the beam expanding means is incident. A light beam scanning device according to any one of the ranges 1 to 6. 8. Claim 1, characterized in that the beam shaping means comprises a single cylindrical lens and an enlarging means made of a spherical lens into which the light beam after passing through the cylindrical lens enters. 7. The light beam scanning device according to any one of items 6 to 6.
JP57045058A 1982-03-21 1982-03-21 Optical beam scanner Granted JPS58179813A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57045058A JPS58179813A (en) 1982-03-21 1982-03-21 Optical beam scanner
GB08306962A GB2119952B (en) 1982-03-21 1983-03-14 Optical beam scanning apparatus
US06/476,811 US4496209A (en) 1982-03-21 1983-03-18 Optical beam scanning apparatus including a cylindrical lens having its opposite ends closer to the scanned plane than its medial portion
DE19833309848 DE3309848A1 (en) 1982-03-21 1983-03-18 OPTICAL BEAM SCREENING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045058A JPS58179813A (en) 1982-03-21 1982-03-21 Optical beam scanner

Publications (2)

Publication Number Publication Date
JPS58179813A JPS58179813A (en) 1983-10-21
JPH037082B2 true JPH037082B2 (en) 1991-01-31

Family

ID=12708751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045058A Granted JPS58179813A (en) 1982-03-21 1982-03-21 Optical beam scanner

Country Status (1)

Country Link
JP (1) JPS58179813A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612383B2 (en) * 1984-09-27 1994-02-16 富士ゼロックス株式会社 Optical beam recorder
JPS61120112A (en) * 1984-11-16 1986-06-07 Konishiroku Photo Ind Co Ltd Scanning optical system
JPH0734065B2 (en) * 1986-04-30 1995-04-12 京セラ株式会社 Focusing lens used in optical scanning device
JP2567929B2 (en) * 1987-12-02 1996-12-25 株式会社リコー Optical scanning lens and optical scanning device
US5652611A (en) * 1993-03-11 1997-07-29 Matsushita Electric Industrial Co., Ltd. Optical scanning system and image forming apparatus employing same for electrophoto graphically forming images
JP2013116488A (en) * 2011-12-04 2013-06-13 Kiyoyuki Kondo Beam machining apparatus and method for machining substrate using the same

Also Published As

Publication number Publication date
JPS58179813A (en) 1983-10-21

Similar Documents

Publication Publication Date Title
JP3164232B2 (en) Flat field, telecentric optical system for scanning a light beam
US5392149A (en) Polygonal mirror optical scanning system
US4496209A (en) Optical beam scanning apparatus including a cylindrical lens having its opposite ends closer to the scanned plane than its medial portion
US4123135A (en) Optical system for rotating mirror line scanning apparatus
JPH037083B2 (en)
US4796962A (en) Optical scanner
JPS6010284B2 (en) scanning optical system
JPH049286B2 (en)
US4984858A (en) Light beam scanning optical system
JPH037082B2 (en)
US4861144A (en) Field correction apparatus
JPH0511290B2 (en)
JPH0221565B2 (en)
JP2583716B2 (en) Optical system laser beam scanner
JPH04245214A (en) Light beam scanning optical system
JP3483834B2 (en) Optical scanning device
JP2679990B2 (en) Semiconductor laser optical device
JPH01200221A (en) Light beam scanning optical system
JP3333651B2 (en) Optical scanning device
JPH01200220A (en) Light beam scanning optical system
JPH01300218A (en) Light beam scanning optical system
JPH0543090B2 (en)
JP2750597B2 (en) High density scanning device
JPH01234815A (en) Light beam scanning optical system
JPS5872120A (en) Scanning optical system