JPH04245214A - Light beam scanning optical system - Google Patents

Light beam scanning optical system

Info

Publication number
JPH04245214A
JPH04245214A JP1040591A JP1040591A JPH04245214A JP H04245214 A JPH04245214 A JP H04245214A JP 1040591 A JP1040591 A JP 1040591A JP 1040591 A JP1040591 A JP 1040591A JP H04245214 A JPH04245214 A JP H04245214A
Authority
JP
Japan
Prior art keywords
mirror
scanning direction
light beam
scanning
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1040591A
Other languages
Japanese (ja)
Inventor
Isamu Odagiri
小田切 勇
Hiroshi Nakamura
弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1040591A priority Critical patent/JPH04245214A/en
Publication of JPH04245214A publication Critical patent/JPH04245214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To make correction of the scan speed difference (distort abberation) and a correction of the image surface curvature in aux. scanning direction using a simple optical configuration without provision of ftheta lens, and obtain a good distortion characteristic and good image surface flatness over a wide picture angle. CONSTITUTION:An optical system according to the invention is composed of a semiconductor laser 1, a collimator lens 6, a polygonal mirror 10, No.1 spherical surface mirror 20 which is convex, and No.2 spherical surface mirror 25 which is concave. A light flux emitted from the semiconductor laser 1 is scanned over the reflex surface 10a of the polygonal mirror 10 rotating in the direction of arrow (a), reflected by the convex surface of the No.1 spherical surface mirror 20 and tone convex surface of the No.2 spherical surface mirror 25, and condensed on a photo-sensitive element 30. Because of sphericalness of the surfaces of the two mirrors 20, the image surface curvatures in the main scanning direction and aux. scanning direction are canceled, and the scan speed difference (distort abberation) is also corrected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光ビーム走査光学系、
特にレーザビーム・プリンタやファクシミリ等に組み込
まれ、画像情報を乗せた光束を走査媒体上に集光させる
光ビーム走査光学系の構造に関する。
[Industrial Application Field] The present invention relates to a light beam scanning optical system,
In particular, the present invention relates to the structure of a light beam scanning optical system that is incorporated into a laser beam printer, facsimile, etc., and focuses a light beam carrying image information onto a scanning medium.

【0002】0002

【従来の技術】一般に、レーザビーム・プリンタやファ
クシミリで使用されている光ビーム走査光学系は、基本
的には、光源としての半導体レーザ、ポリゴンミラーや
ガルバノミラー等の偏向器、fθレンズにより構成され
ている。偏向器は半導体レーザから発せられた光束を等
角速度で走査するものであり、そのままでは集光面で主
走査方向中心部から両端部にわたって走査速度に差を生
じ、等質な画像が得られない。fθレンズは、このよう
な走査速度差(歪曲収差)を補正するために及び主走査
方向像面湾曲の補正、副走査方向像面湾曲の補正のため
に設置されている。しかし、fθレンズは種々の凹レン
ズ、凸レンズ等を組み合わせたものであり、レンズ設計
が極めて複雑で、研摩面数が多くて加工上の精度向上が
図り難く、高価でもある。しかも、透光性の良好な材質
を選択しなければならないという材質面からの制約もあ
る。
[Prior Art] Generally, a light beam scanning optical system used in a laser beam printer or facsimile machine basically consists of a semiconductor laser as a light source, a deflector such as a polygon mirror or a galvano mirror, and an fθ lens. has been done. A deflector scans the light beam emitted from a semiconductor laser at a constant angular velocity, and if left as it is, there will be a difference in scanning speed from the center in the main scanning direction to both ends on the condensing surface, making it impossible to obtain a uniform image. . The fθ lens is installed to correct such a scanning speed difference (distortion aberration), to correct the curvature of field in the main scanning direction, and to correct the curvature of field in the sub-scanning direction. However, the fθ lens is a combination of various concave lenses, convex lenses, etc., and the lens design is extremely complicated, the number of polished surfaces is large, making it difficult to improve the precision of processing, and it is also expensive. Moreover, there is also a constraint from the perspective of the material, such as the need to select a material with good translucency.

【0003】そのため、最近では、fθレンズに代えて
、楕円面ミラー、放物面ミラー、凹面反射鏡を使用する
ことが提案されている。しかしながら、この種のミラー
では加工自体及び加工精度を上げることが困難であると
いう問題点を有している。以上の問題点に鑑み、本出願
人は、高価で制約の多いfθレンズや従来提案された放
物面ミラー等に代えて、より加工が容易で加工精度を高
めることができる球面ミラーを採用した光学系を提案し
た(特開平1−200219号公報、特開平1−200
220号公報参照)。しかし、これらの光学系でも広画
角にわたって全ての収差の十分な補正が難しく、例えば
、主走査方向の像面性と走査速度差(歪曲収差)の補正
を十分に行おうとすると、副走査方向の像面湾曲は光束
の進行方向に対して凹の像面湾曲を生じるという問題点
を有している。
[0003] Therefore, recently, it has been proposed to use an ellipsoidal mirror, a parabolic mirror, or a concave reflecting mirror in place of the fθ lens. However, this type of mirror has a problem in that it is difficult to improve the processing itself and the processing accuracy. In view of the above problems, the applicant has adopted a spherical mirror that is easier to process and can improve processing accuracy, instead of the expensive and restrictive f-theta lens and the conventionally proposed parabolic mirror. proposed an optical system (JP-A-1-200219, JP-A-1-200)
(See Publication No. 220). However, even with these optical systems, it is difficult to sufficiently correct all aberrations over a wide angle of view. This curvature of field has the problem of producing a concave curvature of field with respect to the traveling direction of the light beam.

【0004】0004

【発明の目的、構成、作用】そこで、本発明の目的は、
fθレンズを使用することなく、広画角にわたって走査
速度差(歪曲収差)の補正、主走査方向像面湾曲及び副
走査方向像面湾曲の補正を簡単な光学的構成によって可
能とする光ビーム走査光学系を提供することにある。
[Object, structure, and operation of the invention] Therefore, the object of the present invention is to
Light beam scanning that enables correction of scanning speed difference (distortion aberration) over a wide angle of view, correction of field curvature in the main scanning direction, and correction of field curvature in the sub-scanning direction with a simple optical configuration without using an fθ lens. The objective is to provide an optical system.

【0005】以上の目的を達成するため、本発明に係る
光ビーム走査光学系は、画像情報に基づいて変調された
光束を発生する光源と、前記光源から放射された光束を
等角速度で走査する偏向器と、前記偏向器で走査された
光束を折り返して走査媒体上に集光させる凸の第1球面
ミラー及び凹の第2球面ミラーとを備えている。以上の
構成において、光源から放射された光束は偏向器によっ
て等角速度で走査され、この走査光束は第1及び第2球
面ミラーで反射され、走査媒体上に集光する。前記偏向
器による主走査及び走査媒体の移動による副走査で画像
が形成される。ここで形成される画像には主走査方向及
び副走査方向に凸の像面湾曲を生じるが、これらの像面
湾曲は二つの球面ミラーによって補正される。さらに、
二つの球面ミラーによる反射光束は主走査方向に対する
走査速度を走査域中心からその両端部にわたって均等と
なるように補正され、集光面においては広画角にわたっ
て良好な歪曲特性と、良好な像面平坦性が得られる。
In order to achieve the above object, a light beam scanning optical system according to the present invention includes a light source that generates a light beam modulated based on image information, and scans the light beam emitted from the light source at a constant angular velocity. It includes a deflector, and a first convex spherical mirror and a second concave spherical mirror that return the light beam scanned by the deflector and condense it onto a scanning medium. In the above configuration, the light beam emitted from the light source is scanned by the deflector at a constant angular velocity, and this scanning light beam is reflected by the first and second spherical mirrors and condensed onto the scanning medium. An image is formed by main scanning by the deflector and sub-scanning by moving the scanning medium. The image formed here has convex field curvature in the main scanning direction and the sub-scanning direction, but these field curvatures are corrected by the two spherical mirrors. moreover,
The beam reflected by the two spherical mirrors is corrected so that the scanning speed in the main scanning direction is equalized from the center of the scanning area to both ends, and the condensing surface has good distortion characteristics over a wide angle of view and a good image plane. Flatness can be obtained.

【0006】[0006]

【実施例】以下、本発明に係る光ビーム走査光学系の実
施例につき、添付図面を参照して説明する。 [第1実施例、図1〜図6参照] 図1において、1は半導体レーザ、6はコリメータレン
ズ、10はポリゴンミラー、20は負のパワーを持つ凸
の第1球面ミラー、25は正のパワーを持つ凹の第2球
面ミラー、30はドラム状の感光体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a light beam scanning optical system according to the present invention will be described with reference to the accompanying drawings. [First embodiment, see FIGS. 1 to 6] In FIG. 1, 1 is a semiconductor laser, 6 is a collimator lens, 10 is a polygon mirror, 20 is a convex first spherical mirror with negative power, and 25 is a positive power A concave second spherical mirror 30 having power is a drum-shaped photoreceptor.

【0007】半導体レーザ1は図示しない制御回路によ
って強度変調(オン,オフ)され画像情報を乗せた発散
光束を放射する。この発散光束はコリメータレンズ6を
通過することにより収束光束に補正される。ポリゴンミ
ラー10は図示しないモータによって支軸11を中心に
矢印a方向に一定速度で回転駆動される。従って、コリ
メータレンズ6から射出された収束光束は、ポリゴンミ
ラー10の反射面10aで連続的に反射され、等角速度
で走査される。この走査光束は第1球面ミラー20の凸
面及び第2球面ミラー25の凹面にて反射され、感光体
30上に集光される。このときの集光光束は感光体30
の軸方向に等速で走査され、これを主走査と称する。ま
た、感光体30は矢印b方向に一定速度で回転駆動され
、この回転による走査を副走査と称する。
The semiconductor laser 1 is intensity-modulated (turned on and off) by a control circuit (not shown) and emits a diverging beam carrying image information. This diverging light flux is corrected into a convergent light flux by passing through the collimator lens 6. The polygon mirror 10 is rotated at a constant speed in the direction of arrow a around a support shaft 11 by a motor (not shown). Therefore, the convergent light beam emitted from the collimator lens 6 is continuously reflected by the reflecting surface 10a of the polygon mirror 10 and scanned at a constant angular velocity. This scanning light beam is reflected by the convex surface of the first spherical mirror 20 and the concave surface of the second spherical mirror 25, and is focused onto the photoreceptor 30. At this time, the condensed light beam is
is scanned at a constant speed in the axial direction of the image plane, and this is called main scanning. Further, the photoreceptor 30 is driven to rotate at a constant speed in the direction of arrow b, and scanning by this rotation is called sub-scanning.

【0008】以上の光ビーム走査光学系においては、半
導体レーザ1の強度変調と前記主走査及び副走査によっ
て感光体30上に画像(静電潜像)が形成される。そし
て、第1及び第2球面ミラー20,25が従来のfθレ
ンズに代わって、主走査方向の走査速度を走査域中心か
らその両端部にわたって均等となるように補正し(歪曲
収差補正)、かつ、主走査方向及び副走査方向の像面湾
曲が補正される。
In the above light beam scanning optical system, an image (electrostatic latent image) is formed on the photoreceptor 30 by intensity modulation of the semiconductor laser 1 and the main scanning and sub-scanning. The first and second spherical mirrors 20 and 25, in place of the conventional fθ lens, correct the scanning speed in the main scanning direction so that it is uniform from the center of the scanning area to both ends thereof (distortion aberration correction), and , field curvature in the main scanning direction and the sub-scanning direction is corrected.

【0009】即ち、ポリゴンミラー10の反射面10a
が平面の場合、ポリゴンミラー10の後段に光学部品が
ないと、ポリゴンミラー10で偏向走査された光束は反
射点を中心として略円弧状となり、これを直線上に走査
させると、主走査方向及び副走査方向共に凸の像面湾曲
を生じることになる。また、主走査方向の両端域では中
心域に比べて光束の走査速度が速くなり、正の歪曲収差
を生じる。
That is, the reflective surface 10a of the polygon mirror 10
If is a flat surface, and there is no optical component after the polygon mirror 10, the light beam deflected and scanned by the polygon mirror 10 will have a substantially circular arc shape centered on the reflection point, and if this is scanned in a straight line, it will be in the main scanning direction and This results in convex curvature of field in both the sub-scanning direction. Furthermore, the scanning speed of the light beam is faster in both end regions in the main scanning direction than in the central region, resulting in positive distortion.

【0010】一方、ポリゴンミラー10の後段に凸の球
面ミラーを配置すると、凸の像面湾曲が生じると共に正
の歪曲収差を生じるが、この像面湾曲は副走査方向より
も主走査方向に大きい。一方、凹の球面ミラーを配置す
ると、凹の像面湾曲を生じると共に負の歪曲収差を生じ
る。入射光束を収束光とすることによっても凹の像面湾
曲、負の歪曲収差を発生させることができる。
On the other hand, if a convex spherical mirror is placed after the polygon mirror 10, a convex curvature of field and positive distortion will occur, but this curvature of field is larger in the main scanning direction than in the sub-scanning direction. . On the other hand, if a concave spherical mirror is disposed, a concave curvature of field and negative distortion will occur. Concave curvature of field and negative distortion can also be generated by making the incident light beam convergent.

【0011】換言すれば、凸の球面ミラーのパワーと、
凹の球面ミラーのパワーと、入射光束の収束具合の三つ
のパワーのバランスを調整することによって、良好な主
走査方向及び副走査方向の像面湾曲特性と良好な歪曲特
性を得ることができる。本実施例につき、詳述すると、
図2、図3に示すように、第2球面ミラー25から感光
体30までの距離D2と第2球面ミラー25の曲率半径
Rm2との関係、ポリゴンミラー10の偏向点(反射点
)10aから第2球面ミラー25までの距離D1(d1
+|d2|)と前記距離D2との関係、第1球面ミラー
20の曲率半径Rm1と第2球面ミラー25の曲率半径
Rm2との関係について、それぞれ以下の式を満足する
ことが好ましい。
In other words, the power of the convex spherical mirror,
By adjusting the balance of three powers: the power of the concave spherical mirror and the degree of convergence of the incident light beam, good curvature of field characteristics in the main scanning direction and sub-scanning direction and good distortion characteristics can be obtained. To explain this example in detail,
As shown in FIGS. 2 and 3, the relationship between the distance D2 from the second spherical mirror 25 to the photoreceptor 30 and the radius of curvature Rm2 of the second spherical mirror 25, and the distance from the deflection point (reflection point) 10a of the polygon mirror 10 to Distance D1 (d1
+|d2|) and the distance D2, and the relationship between the radius of curvature Rm1 of the first spherical mirror 20 and the radius of curvature Rm2 of the second spherical mirror 25, preferably satisfy the following equations.

【0012】     0.2<(D2/Rm2)<0.5     
                 ……■    0
.8<(D1/D2)<1.3           
             ……■    0.3<(
Rm2/Rm1)<0.5             
       ……■前記■式、■式、■式を満足する
と、広画角にわたって良好な歪曲特性と、良好な像面平
坦性が得られる。各式での下限及び上限は、感光体30
上での画像歪みの程度により経験上許容できる範囲とし
て設定した値である。
0.2<(D2/Rm2)<0.5
...■ 0
.. 8<(D1/D2)<1.3
……■ 0.3<(
Rm2/Rm1)<0.5
...■If the above formulas ■, ■, and ■ are satisfied, good distortion characteristics and good image plane flatness can be obtained over a wide angle of view. The lower limit and upper limit in each formula are photoreceptor 30
This value is set as an allowable range based on experience based on the degree of image distortion described above.

【0013】前記■式の下限を越えると(第2球面ミラ
ー25の曲率半径が大きくなると)、走査角の増大に従
って正の歪曲が増大すると共に、凸の像面湾曲が増大す
る。また、■式の上限を越えると(第2球面ミラー25
の曲率半径が小さくなると)、走査角の増大に従って負
の歪曲が増大すると共に、凹の像面湾曲が増大する。前
記■式の下限を越えると、走査角の増大に従って負の歪
曲が増大すると共に、凹の像面湾曲が増大する。また、
■式の上限を越えると、走査角の増大に従って正の歪曲
が増大すると共に、凸の像面湾曲が増大する。
When the lower limit of the equation (2) is exceeded (when the radius of curvature of the second spherical mirror 25 becomes large), as the scanning angle increases, positive distortion increases and convex curvature of field increases. Also, if the upper limit of formula (2) is exceeded (second spherical mirror 25
(as the radius of curvature becomes smaller), the negative distortion increases as the scan angle increases, and the concave curvature of field increases. When the lower limit of the above formula (2) is exceeded, as the scanning angle increases, negative distortion increases and concave curvature of field increases. Also,
When the upper limit of equation (2) is exceeded, positive distortion increases as the scanning angle increases, and convex curvature of field increases.

【0014】前記■式の上限を越えると(第1球面ミラ
ー20の曲率半径を大きくすると)、走査角の増大に従
って負の歪曲が増大すると共に、主走査方向の凸の像面
湾曲が増大し、副走査方向の凹の像面湾曲が増大する。 また、■式の下限を越えると(第1球面ミラー20の曲
率半径を小さくすると)、走査角の増大に従って正の歪
曲が増大すると共に、主走査方向の凹の像面湾曲が増大
し、副走査方向の凸の像面湾曲が増大する。
When the upper limit of the equation (2) is exceeded (when the radius of curvature of the first spherical mirror 20 is increased), the negative distortion increases as the scanning angle increases, and the convex curvature of field in the main scanning direction increases. , the concave curvature of field in the sub-scanning direction increases. Furthermore, when the lower limit of equation (2) is exceeded (when the radius of curvature of the first spherical mirror 20 is decreased), the positive distortion increases as the scanning angle increases, and the concave curvature of field in the main scanning direction increases, causing The convex curvature of field in the scanning direction increases.

【0015】ポリゴンミラー10への光束入射角に関し
ては、本第1実施例において、副走査方向と平行な面上
での入射角θyは0°であり(従って、図3ではこの入
射角は現れていない)、主走査方向と平行な面上での入
射角θz(図2参照)は90°とされている。次に、球
面ミラー20,25の傾きに関して説明する。
Regarding the angle of incidence of the light beam on the polygon mirror 10, in the first embodiment, the angle of incidence θy on the plane parallel to the sub-scanning direction is 0° (therefore, this angle of incidence does not appear in FIG. 3). The incident angle θz (see FIG. 2) on a plane parallel to the main scanning direction is 90°. Next, the inclination of the spherical mirrors 20 and 25 will be explained.

【0016】光束をポリゴンミラー10で走査した後、
2枚の球面ミラー20,25で折り返して感光体30へ
到達させるには、球面ミラー20,25を副走査方向と
平行な面内で傾ける必要がある。しかし、このように球
面ミラー20,25を傾けると、走査画角によって球面
ミラーの法線と入射光束とで形成される角度が変化する
ため、光束の反射角度が走査画角によって変化し、感光
体30上の走査線は円弧状のボウ(Bow)になってし
まう。走査線を直線状にするためには、2枚の球面ミラ
ー20,25でボウ(Bow)をそれぞれ逆向きに発生
させ、互いに打ち消すようにしてやればよい。図3にお
いては、第1球面ミラー20の偏心角度をθy1、第2
球面ミラー25の偏心角度をθy2で示す。
After scanning the light beam with the polygon mirror 10,
In order for the light to be returned by the two spherical mirrors 20 and 25 to reach the photoreceptor 30, it is necessary to tilt the spherical mirrors 20 and 25 in a plane parallel to the sub-scanning direction. However, when the spherical mirrors 20 and 25 are tilted in this way, the angle formed by the normal line of the spherical mirror and the incident light flux changes depending on the scanning angle of view, so the reflection angle of the light flux changes depending on the scanning angle of view, which increases the exposure to light. The scanning line on the body 30 becomes an arc-shaped bow. In order to make the scanning line linear, the two spherical mirrors 20 and 25 may generate bows in opposite directions so that they cancel each other out. In FIG. 3, the eccentric angle of the first spherical mirror 20 is θy1, the second
The eccentric angle of the spherical mirror 25 is indicated by θy2.

【0017】ここで、第1実施例における実験例1、2
、3での構成データを表1a、表1bに示し、特性デー
タを図4、図5、図6に示す。
Here, Experimental Examples 1 and 2 in the first embodiment
, 3 are shown in Tables 1a and 1b, and characteristic data are shown in FIGS. 4, 5, and 6.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【表2】[Table 2]

【0020】以上の各実験例1、2、3における感光体
集光面での収差をそれぞれ図4、図5、図6に示す。各
図中(a)は、横軸を走査角度、縦軸を歪曲度(歪曲収
差)としたグラフである。各図中(b)は、横軸を走査
角度、縦軸を湾曲度としたグラフで、点線は偏向面内の
光束による像面湾曲(主走査方向の像面湾曲)を示し、
実線は偏向面に対する垂直面内の光束による像面湾曲(
副走査方向の像面湾曲)を示す。各図中(c)は、横軸
を走査角度、縦軸を副走査方向の集光位置としたグラフ
で、走査線の偏向面に垂直な方向(副走査方向)への位
置ずれ、即ち、走査線の曲がりを示す。
The aberrations on the photoreceptor condensing surface in each of the above experimental examples 1, 2, and 3 are shown in FIGS. 4, 5, and 6, respectively. In each figure, (a) is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of distortion (distortion aberration). (b) in each figure is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of curvature.
The solid line represents the curvature of field (
curvature of field in the sub-scanning direction). (c) in each figure is a graph in which the horizontal axis is the scanning angle and the vertical axis is the focus position in the sub-scanning direction. Shows the bending of the scan line.

【0021】[第2実施例、図7〜図11参照]本第2
実施例はビーム射出位置、即ち半導体レーザ1とコリメ
ータレンズ6とを、ポリゴンミラー10と第1球面ミラ
ー20との間に設け、光学系をよりコンパクト化したも
ので、他の構成は前記第1実施例と同様である。第1実
施例と比較すると、ポリゴンミラー10での入射角と出
射角に角度を持たせるため、副走査方向と平行な面上で
の入射角θy(図9参照)は1.5°とされ、主走査方
向と平行な面上での入射角θzは0°である(従って、
図8ではこの入射角は現れていない)。
[Second embodiment, see FIGS. 7 to 11] This second embodiment
In the embodiment, the beam emission position, that is, the semiconductor laser 1 and the collimator lens 6 are provided between the polygon mirror 10 and the first spherical mirror 20 to make the optical system more compact. This is similar to the example. Compared to the first embodiment, the incident angle θy (see FIG. 9) on the plane parallel to the sub-scanning direction is set to 1.5° in order to set an angle between the incident angle and the outgoing angle at the polygon mirror 10. , the incident angle θz on the plane parallel to the main scanning direction is 0° (therefore,
This angle of incidence does not appear in FIG. 8).

【0022】本第2実施例においても、前記第1実施例
で示した■式、■式、■式を満足することが好ましい。 また、本第2実施例における実験例4、5での構成デー
タを表2a、表2bに示し、特性データを図10、図1
1に示す。なお、図10、図11は前記図4、図5、図
6に対応するものである。
In the second embodiment as well, it is preferable that formulas (1), (2), and (2) shown in the first embodiment are satisfied. In addition, the configuration data for Experimental Examples 4 and 5 in this second embodiment are shown in Tables 2a and 2b, and the characteristic data is shown in FIGS. 10 and 1.
Shown in 1. Note that FIGS. 10 and 11 correspond to FIGS. 4, 5, and 6 described above.

【0023】[0023]

【表3】[Table 3]

【0024】[0024]

【表4】[Table 4]

【0025】[他の実施例]なお、本発明に係る光ビー
ム走査光学系は以上の実施例に限定するものではなく、
その要旨の範囲内で種々に変形することができる。例え
ば、偏向器としては前記のポリゴンミラー10以外に、
光束を一平面に等角速度で走査可能なものであれば、種
々のものを用いることができる。また、光源としては半
導体レーザ以外に、他のレーザ発生手段や点光源を用い
てもよい。
[Other Embodiments] Note that the light beam scanning optical system according to the present invention is not limited to the above embodiments.
Various modifications can be made within the scope of the gist. For example, in addition to the polygon mirror 10 described above, as a deflector,
Various types can be used as long as they can scan the light beam in one plane at a constant angular velocity. Further, as the light source, other than a semiconductor laser, other laser generating means or a point light source may be used.

【0026】また、前記実施例ではコリメータレンズに
より半導体レーザから放射された発散光束を収束光束に
修正しているが、単に略平行光束を修正するだけでもよ
い。
Furthermore, in the embodiment described above, the divergent light beam emitted from the semiconductor laser is corrected into a convergent light beam by the collimator lens, but it is also possible to simply correct the substantially parallel light beam.

【0027】[0027]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、偏向器で偏向走査された光束を凸の第1球面ミ
ラー及び凹の第2球面ミラーを介して走査媒体上に集光
させるようにしたため、fθレンズを使用することなく
、主走査方向の走査速度を均等に補正(歪曲収差補正)
すると共に、主走査方向及び副走査方向の像面湾曲を補
正することができ、広画角にわたって良好な歪曲特性と
良好な像面平坦性が得られる。しかも、球面ミラーは従
来のfθレンズに比べて加工が容易で加工精度も高く、
透明である必要がないことから材質も広く選択でき、プ
ラスチックを用いても温度や湿度の変化に対する性能変
化の影響を受けることが少なく、材料面からの制約がな
くなる。さらに、球面ミラー自体によって光路が折り返
され、光学系全体がコンパクトになる。また、放物面ミ
ラーや楕円面ミラーに比べても加工上、精度上有利であ
り、従来の凹面反射鏡に比べて小型化することも可能で
ある。
As is clear from the above description, according to the present invention, the light beam deflected and scanned by the deflector is focused onto the scanning medium via the convex first spherical mirror and the concave second spherical mirror. Because the light is emitted, the scanning speed in the main scanning direction can be corrected evenly (distortion aberration correction) without using an fθ lens.
At the same time, field curvature in the main scanning direction and the sub-scanning direction can be corrected, and good distortion characteristics and good field flatness can be obtained over a wide angle of view. Moreover, spherical mirrors are easier to process and have higher processing accuracy than conventional fθ lenses.
Since it does not need to be transparent, a wide range of materials can be selected, and even if plastic is used, it is less affected by changes in performance due to changes in temperature and humidity, eliminating restrictions from the material aspect. Furthermore, the optical path is folded back by the spherical mirror itself, making the entire optical system compact. Furthermore, it is advantageous in terms of processing and accuracy compared to parabolic mirrors and ellipsoidal mirrors, and can be made smaller than conventional concave reflecting mirrors.

【図面の簡単な説明】[Brief explanation of the drawing]

図1ないし図6は本発明に係る光ビーム走査光学系の第
1実施例を示す。
1 to 6 show a first embodiment of a light beam scanning optical system according to the present invention.

【図1】光ビーム走査光学系の概略構成を示す斜視図。FIG. 1 is a perspective view showing a schematic configuration of a light beam scanning optical system.

【図2】主走査方向と平行な面上での光路図。FIG. 2 is an optical path diagram on a plane parallel to the main scanning direction.

【図3】副走査方向と平行な面上での光路図。FIG. 3 is an optical path diagram on a plane parallel to the sub-scanning direction.

【図4】実験例1における集光面での収差図。FIG. 4 is an aberration diagram at the condensing surface in Experimental Example 1.

【図5】実験例2における集光面での収差図。FIG. 5 is an aberration diagram at the condensing surface in Experimental Example 2.

【図6】実験例3における集光面での収差図。図7ない
し図11は本発明に係る光ビーム走査光学系の第2実施
例を示す。
FIG. 6 is an aberration diagram at the condensing surface in Experimental Example 3. 7 to 11 show a second embodiment of the light beam scanning optical system according to the present invention.

【図7】光ビーム走査光学系の概略構成を示す斜視図。FIG. 7 is a perspective view showing a schematic configuration of a light beam scanning optical system.

【図8】主走査方向と平行な面上での光路図。FIG. 8 is an optical path diagram on a plane parallel to the main scanning direction.

【図9】副走査方向と平行な面上での光路図。FIG. 9 is an optical path diagram on a plane parallel to the sub-scanning direction.

【図10】実験例4における集光面での収差図。FIG. 10 is an aberration diagram at the condensing surface in Experimental Example 4.

【図11】実験例5における集光面での収差図。FIG. 11 is an aberration diagram at the condensing surface in Experimental Example 5.

【符号の説明】[Explanation of symbols]

1…半導体レーザ 6…コリメータレンズ 10…ポリゴンミラー 10a…反射面 20…第1球面ミラー 25…第2球面ミラー 30…感光体 1...Semiconductor laser 6...Collimator lens 10...Polygon mirror 10a...Reflective surface 20...first spherical mirror 25...Second spherical mirror 30...Photoreceptor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  画像情報に基づいて変調された光束を
発生する光源と、前記光源から放射された光束を等角速
度で走査する偏向器と、前記偏向器で走査された光束を
折り返して走査媒体上に集光させる凸の第1球面ミラー
及び凹の第2球面ミラーと、を備えたことを特徴とする
光ビーム走査光学系。
1. A light source that generates a light beam modulated based on image information; a deflector that scans the light beam emitted from the light source at a constant angular velocity; A light beam scanning optical system comprising a first convex spherical mirror and a second concave spherical mirror that converge light upward.
JP1040591A 1991-01-31 1991-01-31 Light beam scanning optical system Pending JPH04245214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1040591A JPH04245214A (en) 1991-01-31 1991-01-31 Light beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1040591A JPH04245214A (en) 1991-01-31 1991-01-31 Light beam scanning optical system

Publications (1)

Publication Number Publication Date
JPH04245214A true JPH04245214A (en) 1992-09-01

Family

ID=11749233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1040591A Pending JPH04245214A (en) 1991-01-31 1991-01-31 Light beam scanning optical system

Country Status (1)

Country Link
JP (1) JPH04245214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751464A (en) * 1995-02-20 1998-05-12 Matsushita Electric Industrial Co., Ltd. Optical scanner, image forming apparatus and image reading apparatus
US5777774A (en) * 1995-11-08 1998-07-07 Asahi Kogaku Kogyo Kabushiki Kaisha Reflection scanning optical system
US6504639B1 (en) 1999-09-29 2003-01-07 Matsushita Electric Industrial Co., Ltd. Optical scanner
JP2007041513A (en) * 2005-08-02 2007-02-15 Toshiba Corp Optical scanner
US7697023B2 (en) 2005-09-16 2010-04-13 Brother Kogyo Kabushiki Kaisha Image forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751464A (en) * 1995-02-20 1998-05-12 Matsushita Electric Industrial Co., Ltd. Optical scanner, image forming apparatus and image reading apparatus
US5801869A (en) * 1995-02-20 1998-09-01 Matsushita Electric Industrial Co., Ltd. Optical scanner, image forming apparatus and image reading apparatus
US5777774A (en) * 1995-11-08 1998-07-07 Asahi Kogaku Kogyo Kabushiki Kaisha Reflection scanning optical system
US6504639B1 (en) 1999-09-29 2003-01-07 Matsushita Electric Industrial Co., Ltd. Optical scanner
JP2007041513A (en) * 2005-08-02 2007-02-15 Toshiba Corp Optical scanner
JP2012093772A (en) * 2005-08-02 2012-05-17 Toshiba Corp Optical scanner
US7697023B2 (en) 2005-09-16 2010-04-13 Brother Kogyo Kabushiki Kaisha Image forming apparatus

Similar Documents

Publication Publication Date Title
US6104522A (en) Optical scanning apparatus with controlled sag and ghost
JP2000098288A (en) Optical scanning optical system and image forming device using the same
JPH0364727A (en) Light beam scanning optical system
JPH04194814A (en) Light beam scanning optical system
JPH08248340A (en) Laser beam scanner
JP2623147B2 (en) Optical system for light beam scanning
JPH04245214A (en) Light beam scanning optical system
JP2000267030A (en) Optical scanning device
JP2001021822A (en) Optical scanning optical system and image forming device using the system
JP2643224B2 (en) Light beam scanning optical system
JP3003065B2 (en) Optical scanning device
JPH0862492A (en) Scanning lens system
JPH04141619A (en) Scanning optical system with surface tilt correcting function
JPH01200220A (en) Light beam scanning optical system
JPH0588100A (en) Scanner
JP2773593B2 (en) Light beam scanning optical system
JP3132047B2 (en) Light beam scanning optical system
JP2811949B2 (en) Optical scanning optical system
JPH04245213A (en) Light beam scanning optical system
JPH10260371A (en) Scanning optical device
JP3381333B2 (en) Optical scanning device
JPH04110818A (en) Light beam scanning optical system
JP2615850B2 (en) Light beam scanning optical system
JP3192537B2 (en) Scanning optical device
JPH01300218A (en) Light beam scanning optical system