JPH0370329B2 - - Google Patents
Info
- Publication number
- JPH0370329B2 JPH0370329B2 JP57102444A JP10244482A JPH0370329B2 JP H0370329 B2 JPH0370329 B2 JP H0370329B2 JP 57102444 A JP57102444 A JP 57102444A JP 10244482 A JP10244482 A JP 10244482A JP H0370329 B2 JPH0370329 B2 JP H0370329B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- transparent conductive
- film
- resistance
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 25
- 229910001887 tin oxide Inorganic materials 0.000 claims description 25
- 238000010304 firing Methods 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 9
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910003437 indium oxide Inorganic materials 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000000280 densification Methods 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910000410 antimony oxide Inorganic materials 0.000 description 7
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004031 devitrification Methods 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- -1 InSb compound Chemical class 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001462 antimony Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052738 indium Chemical class 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical class [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Manufacturing Of Electric Cables (AREA)
Description
本発明は透光性基板上の低抵抗透明導電膜およ
びその作製方法に関する。
本発明は透光性基板上に形成される透明導電膜
が35Ω/□以下の低いシート抵抗に(高い導電
率)を有し、6%以下の低い吸収係数(80%以上
の透過率)を有するとともに、高い耐酸性、耐プ
ラズマ反応処理性を有することを特徴とする。
本発明はかかる多くの矛盾した特性を有する透
明導電膜を酸化スズが添加された酸化インジユー
ム膜(以下単にITOという)と、該膜上に酸化ア
ンチモンが2.5〜7.5%添加された酸化スズ膜との
2層膜を同一真空蒸着装置により積層形成にして
成就したことを特徴とする。
従来ITOはそのシート抵抗が低く、すぐれた透
明導電膜として知られていた。しかしかかるITO
は耐酸性または耐プラズマ反応性を検討するとき
わめて弱い膜であり、例えば100%濃度の塩酸に
ガラス板上に500〜1000Åの膜厚のITOを蒸着し
て形成した膜を浸漬すると、1〜3秒で溶去して
しまい、全く使いものにならなかつた。
また酸化インジユームは酸素欠乏型の透明導電
膜であり、アクセプタ型の導電型を有するその中
にあつて、インジユームと酸素との結合が強いた
め、還元雰囲気でプラズマ気相反応を100〜400℃
の温度で行なうと、酸素が遊離して金属インジユ
ームが析出し失透してしまつた。このため、この
プロツキング層として酸化スズをその上面に200
±100Åの厚さに形成することが求められていた。
しかしこの酸化スズはそれのみではシート抵抗を
十分下げることができないため、本発明人はこの
中に酸化アンチモンを7.5%以下の量、好ましく
は2.5〜7.5%添加した。
その結果この酸化スズを同一反応炉にて形成す
る場合、ITOと酸化スズとの界面での再結合電流
を促すため、〜300Å以下の酸化スズの厚さにあ
つては実質的にそれのみの等価的なシート抵抗は
50Ω/□以下代表的には15〜30Ω/□を得ること
ができた。
さらに前記した塩酸浸漬試験においても60〜
100倍の1.5〜2分も耐えることができた。加えて
本発明の第1の透明導電膜のITOと第2の透明導
電膜の酸化スズの2層膜を形成する場合その中間
を真空処理を行なうことによりITOを酸化欠乏型
とすることができ、シート抵抗のバラツキもきわ
めて小さく、ITOを400〜650Åの厚さで、また酸
化スズは100〜300Åの厚さでその値は35Ω/□以
下、また被膜の吸収率も6%以下を得ることがで
きた。
さらに本発明においては、この酸化スズ膜を50
〜200℃で形成してしまつた後、同一真空蒸着装
置に真空雰囲気にて250〜450℃に昇温して保持す
ることによりITO、酸化スズ膜を高密度化
(densifyち密化)せしめること、さらにその後に
同様の250〜450℃の温度にて酸化スズ膜に対して
のみ酸素を供給することにより酸化を促した。す
るとこの被膜の耐酸性は、塩酸テストにて溶去ま
での時間が10〜40分もさらに5〜20倍、ITのみ
の膜に比べて100〜400倍にまで耐えることが可能
になつた。
またこの酸化を過剰に行なうとITO自体が酸素
を受け入れ、そのシート抵抗が大きくなつてしま
うため、酸化処理には
酸化温度×酸化時間≠一定
の条件があることが判明した。
本発明は以上の如くに同一真空装置で200〜400
℃にてITOを、またその後真空雰囲気に保持した
後、50〜200℃の基板温度に下げた後酸化スズを
形成したこと、さらにその後同一真空蒸着装置に
て真空雰囲気で250〜450℃に加熱処理をして被膜
の高密度化作業を行ない、さらに250〜450℃にて
酸化処理を行なうというきわめて多くの工程を同
一真空蒸着装置にて連続的にマイクロコンピユー
タの制御により自動的に行なわしめることを特徴
としている。
以下に図面に従つてその詳細を記す。
第1図において、Aは本発明に用いられた透光
性基板1上(下方向を示す)にITO2の第1の透
明導電膜をおよび酸化スズを主成分とする第2の
透明導電膜3が積層して2層構造を有して設けた
ものである。図面において、これらの透明導電膜
に密接して金属例えば銅、ニツケルまたはアルミ
ニユームの補助電極4その外部引出し電極4を
0.5〜3μの厚さに設けてある。
本発明はかかる基板を用い、第1図Bに示す光
電変換装置に応用することをその主たる目的とし
ている。
第1図Bを概説する。
第1図Bは透光性基板1に第1の透明導電膜
2、第2の透明導電膜3を電子ビーム蒸着法によ
り形成し、さらにその上面にプラズマ気相法によ
り100〜400℃好ましくは200〜300℃でグロー放電
法を利用して非単結晶半導体を形成させる。すな
わち透明導電膜上にまずSiXC1-X(0<x<1)で
示される水素またはハロゲン元素が再結合中心中
和用に添加されたP型の非単結晶半導体層5、Si
またはSi3N4-X(0<x<4)、SiXGe1-X(0<x<
1)、SiXSn1-X(0<x<1)に前記した再結合中
心中和剤が添加された真性または実質的に真性の
非単結晶半導体層、さらにその上面に同様の半導
体材料よりなるN型半導体層7が積層して形成さ
れたPIN型光電変換半導体装置が設けられてい
る。
図面ではこの上面に裏面電極8がアルミニユー
ムによりなり、入射光10に対する表面電極を本
発明の透明導電膜により形成されている。
この光電変換用半導体装置を作製せんとする
時、プラズマ気相法は水素またはシラン(SiH4)
メタン(CH4)、アンモニア(NH3)その他P型
用の価の不純物(B2H6、Ga(CH3)3)または
N型用のV価の不純物(PH、Sb(CH3)3)が0.1
〜50MHz代表的には13、56MHzの周波数を用いた
グロー放電法により分解・反応し、非単結晶の珪
素、SiXC1-X(0<x<1)が100〜400℃の基板温
度で形成される。しかしこれらのプラズマ反応は
還元性の反応であり、かつきわめて大きなプラズ
マエネルギが被形成面に加えられ、このためこの
被形成面を構成する透明導電膜は耐酸性、耐プラ
ズマ反応性を強く求められている。
本発明はかかる光電変換装置への応用を検討し
た時、高い光の透光性(低い吸収性)、低い電気
抵抗に加えて強い耐酸化性、耐プラズマ反応性が
重視される。このため本発明がこれらの矛盾した
特性のすべてを工業的に可能な範囲で満たし、従
来にない膜を得たことを特徴としている。
第2図はこの3つの特性の相対的関係を示した
ものである。図面でわかるように、電気抵抗を小
さくするには膜圧を厚くすればよい。しかし厚く
すると、この膜での吸収率(吸収損失)が大きく
なり、透明度が悪化する。また耐プラズマ性を大
きくするためには酸化スズ膜をうすくすればよい
が、その場合は第1図Bでの矢印方向に流れる電
流を防げ、その電気抵抗が大きくなつてしまう。
本発明は酸化インジユームを主成分とする第1
の透明導電膜を形成する工程と、前記第1の透明
導電膜を真空焼成する工程と、前記膜上に酸化ス
ズを主成分とする第2の透明導電膜を形成する工
程と、前記透明導電膜を真空焼成により被膜の高
密度化処理を行なう工程と、空気または酸化雰囲
気での焼成により酸化処理を行なう工程とを有す
るものとした。
第2の透明導電膜は400Å以下好ましくは100〜
300Åの厚さとしさらにこの導電膜はきわめてち
密でありかつ酸素過剰型の導電膜とした。
さらにその中にドナー型とするため7.5%以下
の量代表的には2.5〜7.5%特に5%のアンチモン
を添加してもよく、また第1の透明導電膜はち密
でかつ酸素欠乏型とし、アクセプタ型とするため
酸化スズを2.5〜7.5%添加してもよい。
さらにその界面ではそれぞれの少なくとも一方
をを10%以上にすると、InSbの化合物半導体が
できてしまい失透してしまうことを防ぐ量、すな
わち第1の導電膜の酸化スズの添加量、第2の導
電膜のアンチモンの添加量をともに7.5%以下に
することもよい。それにより、その膜の界面でド
ナー型とアクセプタ型とで再結合電流を過剰に流
し、その結果酸化スズ中のシート抵抗を単体で
100〜300Åでは2〜10KΩ/□となり、また厚い
膜例えば0.5〜1μでは20〜50Ω/□が得られるが、
その厚い膜で得られるものと同様の100〜300Åの
厚さで35Ω/□以下の値を複合簡所にて得た。
以下にその実施例を図面に従つて説明する。
実施例
第3図は本発明の透明導電膜の形成のためのプ
ログラムチヤートの概要を示す。
真空蒸着装置は電子ビーム方式であり、BMC
−700マイクロコンピユータ制御の全自動型(真
空器機工業型)を用いた。蒸着膜の膜厚、蒸着速
度の制御は水晶発振方式を用い、HP−85コンピ
ユータにより電子ビームの帰還(エミツシヨン電
流を制御)して行なつた。
第3図においてガラス基板挿着後領域11にて
第1の導電膜の蒸着、領域12にて第1の導電膜
のアニール(焼成)、領域13にて第2の導電膜
の蒸着、領域14,15,16にて第2の導電膜
のアニール(焼成)を行なつた。矢印が蒸着温
度、アニール温度範囲を示す。代表的な処理工程
は以下の表の如くである。
The present invention relates to a low-resistance transparent conductive film on a transparent substrate and a method for producing the same. The present invention provides a transparent conductive film formed on a light-transmitting substrate that has a low sheet resistance of 35Ω/□ or less (high conductivity) and a low absorption coefficient of 6% or less (transmittance of 80% or more). It is characterized by having high acid resistance and plasma reaction treatment resistance. The present invention proposes a transparent conductive film having many contradictory characteristics, including an indium oxide film to which tin oxide is added (hereinafter simply referred to as ITO), and a tin oxide film to which 2.5 to 7.5% of antimony oxide is added. The present invention is characterized in that the two-layer film is formed by stacking them using the same vacuum evaporation apparatus. Conventionally, ITO has been known as an excellent transparent conductive film due to its low sheet resistance. However, it takes ITO
When considering acid resistance or plasma reactivity resistance, it is an extremely weak film. For example, when a film formed by depositing ITO on a glass plate with a thickness of 500 to 1000 Å is immersed in 100% hydrochloric acid, It dissolved away in seconds and was completely useless. Furthermore, indium oxide is an oxygen-deficient transparent conductive film and has an acceptor conductivity type, and because the bond between indium oxide and oxygen is strong, the plasma gas phase reaction can be carried out at 100 to 400℃ in a reducing atmosphere.
If the process was carried out at a temperature of For this reason, tin oxide is applied to the top surface of this blocking layer at a temperature of 200%.
It was required to be formed to a thickness of ±100 Å.
However, since this tin oxide alone cannot sufficiently lower the sheet resistance, the inventor added antimony oxide in an amount of 7.5% or less, preferably 2.5 to 7.5%. As a result, when this tin oxide is formed in the same reactor, in order to promote recombination current at the interface between ITO and tin oxide, if the thickness of tin oxide is less than ~300 Å, it is practically the only The equivalent sheet resistance is
It was possible to obtain 50Ω/□ or less, typically 15 to 30Ω/□. Furthermore, in the hydrochloric acid immersion test mentioned above, 60~
I was able to withstand 1.5 to 2 minutes, which is 100 times longer. In addition, when forming a two-layer film of ITO as the first transparent conductive film of the present invention and tin oxide as the second transparent conductive film, ITO can be made into an oxidation-deficient type by performing a vacuum treatment between them. , the variation in sheet resistance is extremely small, and the value is less than 35Ω/□ when ITO is 400 to 650 Å thick and tin oxide is 100 to 300 Å thick, and the absorption rate of the film is less than 6%. was completed. Furthermore, in the present invention, this tin oxide film is
After forming at ~200°C, the ITO and tin oxide films are densified by increasing and holding the temperature at 250~450°C in a vacuum atmosphere in the same vacuum evaporation equipment; Furthermore, oxidation was promoted by supplying oxygen only to the tin oxide film at the same temperature of 250 to 450°C. As a result, the acid resistance of this film was 5 to 20 times longer than the time required for dissolution in a hydrochloric acid test of 10 to 40 minutes, and 100 to 400 times longer than the IT-only film. Additionally, if this oxidation is performed excessively, the ITO itself will accept oxygen and its sheet resistance will increase, so it was found that the oxidation treatment has a certain condition: oxidation temperature x oxidation time. As described above, the present invention is capable of producing 200 to 400
ITO was then kept in a vacuum atmosphere and then lowered to a substrate temperature of 50 to 200 degrees Celsius to form tin oxide, and then heated to 250 to 450 degrees Celsius in a vacuum atmosphere in the same vacuum evaporator. A large number of processes such as processing to densify the coating and further oxidation treatment at 250 to 450°C can be performed continuously and automatically under the control of a microcomputer in the same vacuum evaporation equipment. It is characterized by The details are described below according to the drawings. In FIG. 1, A indicates a first transparent conductive film of ITO2 and a second transparent conductive film 3 mainly composed of tin oxide on a transparent substrate 1 used in the present invention (the downward direction is shown). are laminated to have a two-layer structure. In the drawing, an auxiliary electrode 4 made of metal such as copper, nickel or aluminum is closely connected to these transparent conductive films, and an external lead electrode 4 is provided.
It is provided with a thickness of 0.5 to 3μ. The main purpose of the present invention is to use such a substrate and apply it to a photoelectric conversion device shown in FIG. 1B. Figure 1B is outlined. In FIG. 1B, a first transparent conductive film 2 and a second transparent conductive film 3 are formed on a light-transmitting substrate 1 by electron beam evaporation, and then on the top surface by plasma vapor deposition at a temperature of preferably 100 to 400°C. A non-single crystal semiconductor is formed using a glow discharge method at 200-300°C. That is, a P-type non-single-crystal semiconductor layer 5 in which hydrogen or a halogen element represented by Si X C 1-X (0<x<1) is added to neutralize recombination centers is formed on a transparent conductive film.
or Si 3 N 4-X (0<x<4), Si X Ge 1-X (0<x<4)
1) An intrinsic or substantially intrinsic non-single-crystal semiconductor layer in which the recombination center neutralizing agent described above is added to Si X Sn 1-X (0<x<1), and a similar semiconductor material on the upper surface thereof. A PIN-type photoelectric conversion semiconductor device is provided, which is formed by laminating N-type semiconductor layers 7 made of the following. In the drawing, a back electrode 8 is made of aluminum on the upper surface, and a front electrode for incident light 10 is formed of the transparent conductive film of the present invention. When trying to fabricate this photoelectric conversion semiconductor device, the plasma vapor phase method uses hydrogen or silane (SiH 4 ).
Methane (CH 4 ), ammonia (NH 3 ) and other valent impurities for P-type (B 2 H 6 , Ga(CH 3 ) 3 ) or V-valent impurities for N-type (PH, Sb(CH 3 ) 3 ) is 0.1
~50MHz Typically, non -single-crystal silicon, Si is formed. However, these plasma reactions are reducing reactions, and an extremely large amount of plasma energy is applied to the formation surface, so the transparent conductive film that constitutes the formation surface is strongly required to have acid resistance and plasma reactivity resistance. ing. When considering the application of the present invention to such photoelectric conversion devices, emphasis is placed on high light transmittance (low absorption), low electrical resistance, as well as strong oxidation resistance and plasma reactivity resistance. Therefore, the present invention is characterized in that it satisfies all of these contradictory characteristics to the extent possible industrially and provides an unprecedented membrane. FIG. 2 shows the relative relationship between these three characteristics. As can be seen from the drawing, the electrical resistance can be reduced by increasing the film thickness. However, if the thickness is increased, the absorption rate (absorption loss) in this film increases and the transparency deteriorates. Further, in order to increase the plasma resistance, the tin oxide film may be made thinner, but in that case, the current flowing in the direction of the arrow in FIG. 1B will be prevented, and the electrical resistance will increase. The present invention provides a first method containing indium oxide as a main component.
a step of vacuum baking the first transparent conductive film; a step of forming a second transparent conductive film containing tin oxide as a main component on the film; The method includes a step of densifying the film by baking it in a vacuum, and a step of oxidizing it by baking it in air or an oxidizing atmosphere. The second transparent conductive film has a thickness of 400 Å or less, preferably 100 Å or less
The thickness was 300 Å, and the conductive film was extremely dense and oxygen-rich. Further, in order to form a donor type, antimony may be added in an amount of 7.5% or less, typically 2.5 to 7.5%, particularly 5%, and the first transparent conductive film is dense and oxygen-deficient, Tin oxide may be added in an amount of 2.5 to 7.5% to form an acceptor type. Furthermore, at the interface, if at least one of each is made 10% or more, the amount to prevent the formation of an InSb compound semiconductor and devitrification, that is, the amount of tin oxide added in the first conductive film, and the amount of tin oxide added in the second conductive film are increased. It is also preferable that the amounts of antimony added to the conductive film are both 7.5% or less. As a result, an excessive recombination current flows between the donor type and acceptor type at the interface of the film, and as a result, the sheet resistance in tin oxide is reduced by itself.
For a film of 100 to 300 Å, the value is 2 to 10 KΩ/□, and for a thick film, for example, 0.5 to 1μ, a value of 20 to 50 Ω/□ can be obtained.
Values of less than 35 Ω/□ were obtained in the complex at a thickness of 100 to 300 Å, similar to that obtained with that thick film. Examples thereof will be described below with reference to the drawings. EXAMPLE FIG. 3 shows an outline of a program chart for forming a transparent conductive film of the present invention. The vacuum evaporation equipment is an electron beam type, and BMC
A fully automatic type (vacuum equipment industry type) controlled by a -700 microcomputer was used. The thickness of the deposited film and the deposition rate were controlled using a crystal oscillation system, and an HP-85 computer was used to feed back the electron beam (control the emission current). In FIG. 3, after the glass substrate is inserted, the first conductive film is deposited in the region 11, the first conductive film is annealed (baked) in the region 12, the second conductive film is deposited in the region 13, and the second conductive film is deposited in the region 14. , 15 and 16, the second conductive film was annealed (baked). Arrows indicate the deposition temperature and annealing temperature range. Typical processing steps are shown in the table below.
【表】
第4図は本発明により得られた透明導電膜の特
性を示す。図面A,Bにおいて第3図で12で示
される領域でのアニールが酸素(2.5×10-4torr)
雰囲気でのアニールで得られた特性を曲線19,
24で示し、窒素(1×10-4torr)雰囲気の場合
に得られた特性を曲線20,25、真空(5×
10-6torr)雰囲気の場合に得られた特性を曲線1
8,23で示している。図面より明らかな如く、
酸化スズ中の酸化アンチモンの量が増えるにつれ
てシート抵抗が下がり、また吸収率Kは増加し、
逆の特性が得られる。
第4図Aにおいて22は、シート抵抗が35Ω/
□以下となる領域を示し、第4図Bおいて26は
吸収率が6%以下となる、酸化アンチモンの量を
示す。
ところが第3図の領域12の処理を真空にする
と、そのシート抵抗もバラツキが小さく、かつす
べて35Ω/□以下好ましくは30Ω/□以下である
q
このことが本発明の大きな特徴である。
また吸収率は6%以下が得られる。この吸収率
は500nmの波長を基準として以下の式にて算定
した。
K=100−(T+αR)%
但し
K:2層膜の吸収率(%)
T:測定透過率
R:測定反射率
α:補正値(0.918)
なお、測定は日立350モノクロメータを用いた。
しかしこのアニールを酸素または空気とすると
その後に蒸着により形成される酸化アンチモンと
の界面に抵抗層ができ十分な界面での再結合電流
が流れないため、40Ω/□またはそれ以上になつ
てしまつた。また第2の透明導電膜の酸化アンチ
モンの量を7.5%以上特に10%以上に増やすと、
このアンチモンとインジユームとが反応により
InSbの化合物半導体をつくり、結果としてこの
膜での光の吸収損失が大きくなつてしまう。
さらにこの2つの特性を同時に満足させるため
に、第1の導電膜と第2の導電膜との境界(界
面)での再結合電流を積極的に利用して、界面で
の反応によりInSb化合物半導体を作ることなく、
またITOは真空アニールにより酸素欠乏型にして
かつ高密度化したことにより初めて成就できたも
のである。
ITOのみではすでに記したがプラズマ反応によ
り失透し、また塩酸テストにおいても1〜2秒で
すぐ500〜1000Åの膜厚であつても溶去してしま
い、きわめて弱いものであつた。
さらにこれに酸化スズ膜を形成すると、30〜
100倍の1.5〜2分まで塩酸テストで耐酸性をえる
ことができた。
本実施例はさらに2層の透明導電膜の耐プラズ
マ反応性または耐酸性を向上させるためのもので
ある。
以下の如く、真空焼成が酸化雰囲気での焼成を
行つた。
第5図Aは第3図のチヤートにおいて真空昇温
領域14をへて真空焼成を領域15で行なつた場
合と、この工程を全く行わずに空気中で焼成した
場合のシート抵抗の変化を焼成時間に対して示し
ている。
すなわち曲線27,27′は真空アニールによ
り透明導電膜を高密度化した場合である。曲線2
7は350℃、30分、曲線27′は450℃、10分で行
なつたものである。また曲線28はかかる真空焼
成を全く行なわなかつた場合である。つまりこれ
ら全体を350℃大気中で焼成した場合である。こ
の第5図Aより明らかな如く、この真空焼成がシ
ート抵抗の劣化をいかに少なくしているかがわか
る。すなわちこの真空焼成により第2の透明導電
膜が高密度化(ち密化)し、空気中の酸素を酸素
欠乏型のITOにまで達成することを防いでいる。
以上のことよりこの2層膜は真空焼成が重要で
あることがわかる。他方第5図Bは逆に大気中で
の焼成により耐塩酸性がどのようになつたかを示
すものである。つまり真空焼成を350℃、30分行
なつた後、第3図のチヤートの領域16にみられ
る如く、大気中にて250℃32、350℃30、450
℃31の温度にて横軸に示すM間の焼成を行なつ
たものである。このことより大気中の焼成をより
高温でより長時間行なえば耐酸性すなわち耐プラ
ズマ性が向上することが第5図Bよりわかる。し
かしかかる大気中の焼成を行なえば行なうで第1
の層への酸素の拡散がおこり、第5図Aに示す如
きシート抵抗の増加をもたらしてしまう。
このことによりこの大気中の焼成が第2の透明
導電膜を酸素過剰型にしつつも、また耐酸性、耐
プラズマ反応性を向上しつつも、その前にこの第
2の透明導電膜それ自体を真空中で焼成して高密
度化を行なわせることの重要さがわかつた。
本発明はかかる2層膜を真空焼成と、大気中ま
たは酸化雰囲気中での焼成とを組合わせることに
より、塩素テストの結果、1.5〜2分間での溶去
を、より10〜30分間耐えられる被膜とする製造方
法を開発したことを特徴としている。
またこのためシート抵抗を35Ω/□以下にする
ことを条件とすると、大気または酸化性の雰囲気
の焼成は250℃においては30分〜2時間、350℃に
おいては5〜30分、450℃においては1〜10分が
最適であつた。これは第2の透明導電膜のみに酸
素を供給して酸素過剰型とし、また第1の透明導
電膜までは酸素が送達しないようにするという条
件があるからである。
第6図は第1の透明導電膜を形成後、該膜に対
して真空焼成を行つた後、第2の透明導電膜を形
成した2層膜に対し第5図Aの曲線27に対応し
て大気中での焼成により透明膜としての透過率を
調べたものである。
図面により明らかなように、全体膜厚=750Å
(第1の膜=550Å、第2の膜=200Å)において
400〜800nmの波長領域において形成されたのみ
では曲線33が焼成時間10分34、30分35、60
分36、120分37加えられた。これは透過率の
向上に対しても大気中の焼成がきわめて重要であ
ることがわかる。しかしこの透過率の増加は最適
範囲があり、350℃の焼成においては10〜30分が
その透過率が85%を有しており、60分またはそれ
以上焼成するとむしろ悪いことが判明した。
曲線33′はITOの膜厚を3000Å、SnO2を200
Åとした時の特性である。この膜厚を単純に厚く
すると透過率が下がり、本発明の75%以上好まし
くは80%以上の透過率を保持することができなか
つた。
本発明の透明導電膜は第1の透明導電膜が酸化
スズを2.5〜7.5%混入した酸化インジユーム
(ITOともいう)とその上面に第2の透明導電膜
を7.5%以下の量の酸化アンモチンが添加された
酸化スズを主成分とする膜より形成させても、シ
ート抵抗が35Ω/□以下、吸収率が6%以下とい
う透明導電膜を得ることができる。
実施例により作られた本発明の透明導電膜を用
いて、第1図Bの構造のたて断面図を有する光電
変換装置を作つた。すると、その効率は10〜12
%/cm2、Voc=0.9〜0.93V、Isc=17〜26mA/
cm2を2cm□の面積にて作ることができた。
またP型の非単結晶半導体層5の形成に際して
も、ITOのみでは0.5〜1Wしかえられなかつた。
それ以上では失透がみられた。また2層膜におい
ては高周波電源(7.56MHz)の出力は5Wまで失
透がみられなかつた。さらに30Wにしてても失透
がみられなかつた。このため実施例で得られた本
発明の透明導電膜はプラズマCVD法においても
きわめて大きな自由を持ち、結果としてP型半導
体層も高出力膜形成ができるため、従来のエネル
ギバンド巾が1.5〜1.7evより2.2〜2.4evにまで高
めることができた。
以上の説明において明らかな如く、本発明はガ
ラス基板上に可能な範囲で薄くかつ低抵抗の耐酸
性、耐プラズマ反応性を有する透明導電膜を形成
することができる。[Table] FIG. 4 shows the characteristics of the transparent conductive film obtained according to the present invention. In drawings A and B, the annealing in the region indicated by 12 in Fig. 3 is performed using oxygen (2.5×10 -4 torr).
Curve 19 shows the characteristics obtained by annealing in an atmosphere.
24, and the characteristics obtained in the case of nitrogen (1×10 -4 torr) atmosphere are shown by curves 20 and 25, vacuum (5×
Curve 1 shows the characteristics obtained in the case of 10 -6 torr) atmosphere.
8,23. As is clear from the drawing,
As the amount of antimony oxide in tin oxide increases, the sheet resistance decreases and the absorption rate K increases,
The opposite characteristics are obtained. In Figure 4A, 22 has a sheet resistance of 35Ω/
26 in FIG. 4B indicates the amount of antimony oxide where the absorption rate is 6% or less. However, when the area 12 in FIG. 3 is processed in a vacuum, the sheet resistance also has small variations and is all 35 Ω/□ or less, preferably 30 Ω/□ or lessq. This is a major feature of the present invention. Moreover, an absorption rate of 6% or less can be obtained. This absorption rate was calculated using the following formula using a wavelength of 500 nm as a reference. K=100-(T+αR)% where K: Absorption rate of two-layer film (%) T: Measured transmittance R: Measured reflectance α: Correction value (0.918) Note that a Hitachi 350 monochromator was used for the measurement. However, if oxygen or air is used for this annealing, a resistance layer is formed at the interface with antimony oxide formed by vapor deposition, and sufficient recombination current does not flow at the interface, resulting in a resistance of 40Ω/□ or more. . Furthermore, when the amount of antimony oxide in the second transparent conductive film is increased to 7.5% or more, especially 10% or more,
Due to the reaction between this antimony and indium,
A compound semiconductor made of InSb was created, and as a result, the absorption loss of light in this film increased. Furthermore, in order to satisfy these two characteristics at the same time, the recombination current at the boundary (interface) between the first conductive film and the second conductive film is actively utilized, and the InSb compound semiconductor is without making
ITO was also achieved for the first time by making it oxygen-deficient and increasing its density through vacuum annealing. As mentioned above, ITO alone devitrified due to the plasma reaction, and in the hydrochloric acid test, even a film with a thickness of 500 to 1000 Å was dissolved away in 1 to 2 seconds, and was extremely weak. Furthermore, if a tin oxide film is formed on this, 30~
It was able to obtain acid resistance in a hydrochloric acid test for 1.5 to 2 minutes, which is 100 times longer. This example is intended to further improve the plasma reactivity resistance or acid resistance of the two-layer transparent conductive film. Vacuum firing was performed in an oxidizing atmosphere as follows. Figure 5A shows the change in sheet resistance in the chart of Figure 3 when vacuum firing is performed in area 15 after passing through vacuum heating area 14, and when firing is performed in air without performing this step at all. Shown against firing time. That is, curves 27 and 27' represent the case where the transparent conductive film is densified by vacuum annealing. curve 2
Curve 7 was conducted at 350°C for 30 minutes, and curve 27' was conducted at 450°C for 10 minutes. Curve 28 is the case where such vacuum firing was not performed at all. In other words, this is the case when all of these were fired in the atmosphere at 350°C. As is clear from FIG. 5A, it can be seen how this vacuum firing reduces the deterioration of sheet resistance. That is, this vacuum baking makes the second transparent conductive film highly dense (densified) and prevents the oxygen in the air from reaching the level of oxygen-deficient ITO. From the above, it can be seen that vacuum firing is important for this two-layer film. On the other hand, FIG. 5B shows how the hydrochloric acid resistance changed by firing in the atmosphere. In other words, after performing vacuum firing at 350℃ for 30 minutes, as shown in area 16 of the chart in Fig.
Firing was performed at a temperature of 31° C. between M shown on the horizontal axis. From this, it can be seen from FIG. 5B that acid resistance, that is, plasma resistance, is improved by performing baking in the atmosphere at a higher temperature for a longer time. However, if such firing in the atmosphere is performed, the first
Oxygen diffusion into the layer occurs, resulting in an increase in sheet resistance as shown in FIG. 5A. As a result, although this baking in the atmosphere makes the second transparent conductive film an oxygen-rich type and improves acid resistance and plasma reactivity resistance, the second transparent conductive film itself is We learned the importance of firing in a vacuum to achieve high density. The present invention combines such a two-layer film with vacuum firing and firing in air or an oxidizing atmosphere, and as a result of a chlorine test, it can withstand elution for 10 to 30 minutes instead of 1.5 to 2 minutes. It is characterized by the development of a manufacturing method that makes it into a film. For this reason, if the sheet resistance is to be 35Ω/□ or less, firing in air or an oxidizing atmosphere is 30 minutes to 2 hours at 250℃, 5 to 30 minutes at 350℃, and 5 to 30 minutes at 450℃. 1 to 10 minutes was optimal. This is because there is a condition that oxygen is supplied only to the second transparent conductive film to make it an oxygen-excess type, and that oxygen is not delivered to the first transparent conductive film. FIG. 6 corresponds to curve 27 in FIG. 5A for a two-layer film in which a second transparent conductive film was formed after forming the first transparent conductive film and then vacuum baking the film. The transmittance of the transparent film was investigated by firing it in the atmosphere. As shown in the drawing, total film thickness = 750Å
(first film = 550 Å, second film = 200 Å)
Curve 33 was formed only in the wavelength range of 400 to 800 nm when the firing time was 10 minutes 34, 30 minutes 35, and 60 minutes.
Minute 36, 120 minute 37 was added. This shows that firing in the atmosphere is extremely important for improving transmittance. However, it was found that this increase in transmittance has an optimum range; when fired at 350°C, the transmittance is 85% for 10 to 30 minutes, and that firing for 60 minutes or more is rather poor. Curve 33' has an ITO film thickness of 3000 Å and a SnO 2 film thickness of 200 Å.
This is the characteristic when Å. If this film thickness is simply increased, the transmittance decreases, making it impossible to maintain the transmittance of 75% or more, preferably 80% or more, as required in the present invention. In the transparent conductive film of the present invention, the first transparent conductive film is made of indium oxide (also referred to as ITO) mixed with 2.5 to 7.5% tin oxide, and the second transparent conductive film is formed on the upper surface of the indium oxide (ITO) containing 7.5% or less of ammothine oxide. Even if the film is formed from a film containing added tin oxide as a main component, a transparent conductive film having a sheet resistance of 35Ω/□ or less and an absorption rate of 6% or less can be obtained. A photoelectric conversion device having a vertical cross-sectional view of the structure shown in FIG. 1B was manufactured using the transparent conductive film of the present invention manufactured according to the example. Then, its efficiency is 10-12
%/ cm2 , Voc=0.9~0.93V, Isc=17~26mA/
cm 2 could be made with an area of 2 cm □. Further, when forming the P-type non-single crystal semiconductor layer 5, only 0.5 to 1 W could be obtained using ITO alone.
Beyond that, devitrification was observed. In addition, in the two-layer film, no devitrification was observed at the output of the high frequency power source (7.56MHz) up to 5W. Furthermore, no devitrification was observed even at 30W. Therefore, the transparent conductive film of the present invention obtained in the example has extremely large flexibility in the plasma CVD method, and as a result, the P-type semiconductor layer can also be formed as a high-output film, so that the energy band width of the conventional one is 1.5 to 1.7. We were able to increase the ev to 2.2~2.4ev. As is clear from the above description, the present invention makes it possible to form a transparent conductive film on a glass substrate that is as thin as possible, has low resistance, and has acid resistance and plasma reactivity resistance.
第1図は本発明の透明導電膜が形成された基板
をAに示し、またそれを応用した光電変換装置の
たて断面図をBに示す。第2図は本発明の透明導
電膜の有すべき特性の相対関係を示す。第3図は
本発明の透明導電膜を形成するためのプログラム
チヤートである。第4図は本発明の第1の透明導
電膜上に第2の透明導電膜をその中に添加する酸
化アンチモンの量をパラメータとしてシート抵抗
Aと吸収率Bを示している。第5図は本発明の透
明導電膜の焼成に対する特性の劣化を示す。第6
図は本発明の透明導電膜の焼成による透過率の変
化を示す。
In FIG. 1, A shows a substrate on which the transparent conductive film of the present invention is formed, and B shows a vertical sectional view of a photoelectric conversion device to which the same is applied. FIG. 2 shows the relative relationship of characteristics that the transparent conductive film of the present invention should have. FIG. 3 is a program chart for forming the transparent conductive film of the present invention. FIG. 4 shows sheet resistance A and absorption rate B using the amount of antimony oxide added to the second transparent conductive film on the first transparent conductive film of the present invention as a parameter. FIG. 5 shows the deterioration of the characteristics of the transparent conductive film of the present invention upon firing. 6th
The figure shows the change in transmittance due to firing of the transparent conductive film of the present invention.
Claims (1)
導電膜を形成する工程と、前記第1の透明導電膜
を真空焼成する工程と、前記膜上に酸化スズを主
成分とする第2の透明導電膜を形成する工程と、
前記第2の透明導電膜に対して真空焼成により被
膜の高密度化処理を行なう工程と、該工程の後、
空気または酸化雰囲気での焼成により前記第2の
透明導電膜に対して酸化処理を行なう工程とを有
することを特徴とする低抵抗透明導電膜の作製方
法。 2 特許請求の範囲第1項において、高密度化用
の真空焼成は5×10-5torr以下に真空引された雰
囲気で250〜450℃の基板温度にて行なうととも
に、250〜450℃の温度にて第2の透明導電膜の酸
化処理を大気または酸化雰囲気で行なうことを特
徴とする低抵抗透明導電膜の作製方法。 3 特許請求の範囲第2項において、酸化雰囲気
での焼成は250℃、30分〜2時間、350℃、5〜30
分、450℃、1〜10分以内の時間でなされること
を特徴とする低抵抗透明導電膜の作製方法。[Scope of Claims] 1. A step of forming a first transparent conductive film containing indium oxide as a main component, a step of vacuum baking the first transparent conductive film, and a step of forming a first transparent conductive film containing tin oxide as a main component on the film. forming a second transparent conductive film;
A step of performing film densification treatment on the second transparent conductive film by vacuum baking, and after the step,
A method for producing a low-resistance transparent conductive film, comprising the step of oxidizing the second transparent conductive film by firing in air or an oxidizing atmosphere. 2 In claim 1, the vacuum firing for high density is performed at a substrate temperature of 250 to 450°C in an atmosphere evacuated to 5 × 10 -5 torr or less, and at a temperature of 250 to 450°C. A method for producing a low-resistance transparent conductive film, characterized in that the second transparent conductive film is oxidized in the air or in an oxidizing atmosphere. 3 In claim 2, the firing in an oxidizing atmosphere is performed at 250°C for 30 minutes to 2 hours, and at 350°C for 5 to 30 minutes.
1. A method for producing a low-resistance transparent conductive film, characterized in that the process is performed at 450° C. for 1 to 10 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10244482A JPS58218705A (en) | 1982-06-14 | 1982-06-14 | Method of producing low resistance transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10244482A JPS58218705A (en) | 1982-06-14 | 1982-06-14 | Method of producing low resistance transparent conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58218705A JPS58218705A (en) | 1983-12-20 |
JPH0370329B2 true JPH0370329B2 (en) | 1991-11-07 |
Family
ID=14327633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10244482A Granted JPS58218705A (en) | 1982-06-14 | 1982-06-14 | Method of producing low resistance transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58218705A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50128198A (en) * | 1974-03-29 | 1975-10-08 | ||
JPS5265895A (en) * | 1975-11-27 | 1977-05-31 | Matsushita Electric Ind Co Ltd | Preparing multi-layer transparent conductive film |
JPS54134396A (en) * | 1978-04-08 | 1979-10-18 | Agency Of Ind Science & Technol | Transparent conductive film and its manufacturing process |
-
1982
- 1982-06-14 JP JP10244482A patent/JPS58218705A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50128198A (en) * | 1974-03-29 | 1975-10-08 | ||
JPS5265895A (en) * | 1975-11-27 | 1977-05-31 | Matsushita Electric Ind Co Ltd | Preparing multi-layer transparent conductive film |
JPS54134396A (en) * | 1978-04-08 | 1979-10-18 | Agency Of Ind Science & Technol | Transparent conductive film and its manufacturing process |
Also Published As
Publication number | Publication date |
---|---|
JPS58218705A (en) | 1983-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101389546B1 (en) | Method of manufacturing crystalline silicon solar cells with improved surface passivation | |
JP3926800B2 (en) | Manufacturing method of tandem type thin film photoelectric conversion device | |
TWI407496B (en) | A method for forming a semiconductor substrate and an electrode, and a method for manufacturing the solar cell | |
EP0841706B1 (en) | Transparent conductive film of thin-film solar cell and method for producing the transparent conductive film | |
US8916412B2 (en) | High efficiency cadmium telluride solar cell and method of fabrication | |
CN112234107A (en) | Solar single-crystal PERC (Positive electrode collector) battery and preparation method thereof | |
KR101582200B1 (en) | A method for preparing CZTS thin film for solar cell | |
JP2004265889A (en) | Photoelectric conversion element, photoelectric conversion device, and iron silicide film | |
WO2023216652A1 (en) | Bifacial solar cell and preparation method therefor | |
CN114335236A (en) | Passivated contact battery and preparation method thereof, and passivated contact structure and preparation device thereof | |
CN1519891A (en) | Method of mfg. iron silicide and photoelectric energy converter | |
JP2004214442A (en) | Photovoltaic device and its manufacturing method | |
JP2001135149A (en) | Zinc oxide-based transparent electrode | |
JPH0370329B2 (en) | ||
JP4215697B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JP3672471B2 (en) | Method for manufacturing photoelectric conversion element | |
JPH10226598A (en) | Transparent conductive titanium oxide film and its production | |
TWI481055B (en) | Method for manufacturing photoelectric conversion device | |
KR20200023301A (en) | High efficiency back electrode solar cell and its manufacturing method | |
JP2013222794A (en) | Solar cell manufacturing method | |
KR101833633B1 (en) | Solar cell and method of fabricating of the same | |
JPS58218704A (en) | Low resistance transparent conductive film and method of producing same | |
JP4215694B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JPS5971205A (en) | Light transmissive conductive film and method of producing same | |
JPH0345555B2 (en) |