JPH036998B2 - - Google Patents

Info

Publication number
JPH036998B2
JPH036998B2 JP57200277A JP20027782A JPH036998B2 JP H036998 B2 JPH036998 B2 JP H036998B2 JP 57200277 A JP57200277 A JP 57200277A JP 20027782 A JP20027782 A JP 20027782A JP H036998 B2 JPH036998 B2 JP H036998B2
Authority
JP
Japan
Prior art keywords
electrode
oxide
platinum metal
reactant
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57200277A
Other languages
Japanese (ja)
Other versions
JPS59116388A (en
Inventor
Yoichi Kamegaya
Yukio Arai
Tomomi Asaki
Nobuyuki Koyanagi
Yasufumi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP57200277A priority Critical patent/JPS59116388A/en
Publication of JPS59116388A publication Critical patent/JPS59116388A/en
Publication of JPH036998B2 publication Critical patent/JPH036998B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

開示技術は硫酸酸性溶液中や低塩素イオン濃度
溶液中での電解等の酸素発生環境下に耐え、所望
の電極反応に対して過電圧の低い電解用電極の技
術分野に属する。 而して、この発明は耐蝕性の電導性基体の表面
の1部、又は、全表面に電極反応体を被覆一体化
し、該電極反応体付設基体に接合された多孔質被
担持物と該被担持物に3次元的に結合された担持
物より成る電解用電極に関する発明であり、特
に、チタン等の基体表面上に電気めつき法等によ
り多孔質の白金金属の被担持物を一体的に形成さ
せ、その後熱分解法等により酸化イリジウム30〜
99モル%と該酸化イリジウムに対し酸化ルテニウ
ム及び酸化パラジウムのうち1種又は2種が1〜
70モル%配分された成分からなる担持物を該被担
持物に3次元的に一体形成した電解用電極に係る
発明である。 一般に広く用いられている電解用電極としては
耐蝕性電導性基体表面上に電極反応体を被覆接合
した電解用電極があるが、これに要求される基礎
特性を上げると、基本的に2つの条件があり、ま
ず第1に電極反応体の対基体接合条件として機械
的接合強度が大きく、その上化学的耐蝕性も強
く、更には、電導性を有していることが必要であ
り、第2に電極反応体自体の内的条件として該電
極反応体を構成する成分相互の機械的結合強度が
大きく、又、化学的耐蝕性が強く、勿論、所定の
電導性を具備し、加えて電極反応時の過電圧が低
いことが望まれることである。 ところで、通常の電解用電極としては耐蝕性電
導性基体表面上に白金族成分を含んだ成分組成か
らなる電極反応体を被覆接合した電解用電極がこ
れまで多く知られている。 而して、それらの電解用電極の中で電極反応体
については白金族成分だけからなる白金族金属の
ものと、白金族酸化物のものとがあるが、前者の
白金族金属を被覆した電極は極めて古くから用い
られ、とりわけ、白金金属を被覆した電極は多く
の改良案出がなされて電極反応体自体の結合、及
び、対基体接合強度が大きく、耐蝕性に優れ、且
つ、耐久性を有する電極が開発されるようになつ
てきている。 さりながら、該種白金金属被覆電極は優れた多
くの特性を有するにもかかわらず、その用途に限
界が加えられている不都合さがある。 蓋し、その大きな要因は、他の種々の実用面に
供されている電極と比較して、白金金属を電極反
応体とした電極においては塩素、及び、酸素に対
する過電圧特性が電解初期では他の電極と同様に
低い値であるものの、電解時間の経過と共に上昇
し、高い値になり、結果的に電解電力消費の増大
を招きコスト高になる不利点があるからであり、
又、該過電圧の上昇によつて設定目的以外の電解
反応が生じ、これが当該設定目的電解を阻害する
場合がある不具合を有しているからである。 そこで、これに対処するに該白金金属を電極反
応体とした電極においては時間の経過とともに過
電圧が上昇する点を解消するため、幾つかの試
み、例えば、白金金属に種々の金属をさまざまな
手段で添加し、合金化して過電圧上昇抑制する技
術や、過電圧の上昇した白金金属電極を陰極電解
により再活性化する技術等が開発されてきた。 しかしながら、該種開発技術により電極を製造
するには工程が複雑等の理由で実用的に製造が困
難である難点があつたり、耐蝕性が劣る電極にな
つたり、活性効果の持続が短かかつたりする欠点
があつたりして実用に供し得るには至つていな
い。 他方、前記後者の電極反応体成分が酸化ルテニ
ウム、酸化ロジウム、酸化パラジウム、又は酸化
イリジウムなどからなる白金族酸化物を被覆する
電極は、過電圧が低く、その持続性に優れ、安定
な触媒機能を有するようにすることが出来、その
上、白金族酸化物被覆電極の代表的な製法が熱分
解によつて白金族酸化物を形成する化合物を含む
溶液を基体表面上に塗布し熱分解によつて得る熱
分解法であるため、白金族酸化物が多成分の組み
合せであつても簡単に得られる等、多くの利点を
有してはいる。 さりながら、電極反応体が白金族酸化物だけの
成分では電極反応体の基体に対する接合強度、及
び、電極反応体自体の結合強度が著しく小さく、
電解反応時に電極反応体の脱落を生じる欠点があ
り、その上、電極寿命が非常に短い難点もあり、
実用性に乏しいきらいがあつた。 そのため、これまで該白金族酸化物被覆電極の
寿命を増加させるためには白金族酸化物成分に酸
化チタニウム等の耐蝕性酸化物や白金族金属等の
第2成分を加え、これらとの混合物化や、合金
化、或は、混晶物化等の手段をとることによつ
て、電極反応体の結合強度の増大を図るようにさ
れてきている。 そこで、発明者らはこれらをふまえて先に、電
極反応体成分が耐蝕性電導性基体表面上に一体的
に接合した多孔質被担持物成分と該被担持物の
中、及び、表面に3次元的に担持された担持物成
分とから成る電極、すなわち、電極反応体成分を
基体と接合した被担持物成分と、被担持物に3次
元的に結合した担持物成分の2つの異なる独立し
た成分組成に分けて電極反応体を構成した電極用
電極を開発し、基本的に対基体機械的接合強度に
優れ、電極反応体の脱落をも防止し、化学的耐蝕
性にも優れた電解用電極を案出出願した。 さらに、発明者は上述電解用電極において、被
担持物成分が多孔質白金金属であり、他方、担持
物成分が酸化イリジウムの組み合せであるように
することによつて、硫酸酸性溶液中や低塩素イオ
ン濃度溶液中での電解で、所望の電極反応に対し
て過電圧が低く、耐久性に優れた電解用電極を開
発し、これを出願した。 この発明の目的は前述従来技術に基づく電解用
電極の問題点を解決すると共に上述改良発明電解
用電極を更に改善することを技術的課題とし、発
明者らが、新たに、前記担持物成分の酸化イリジ
ウムに対して限定された範囲内で酸化ルテニウ
ム、及び、酸化パラジウムのうち少なくとも1種
を加えて、より過電圧の低い、而して、耐用性に
富む電解用電極を現出し、化学産業における電極
利用分野に益する優れた電解用電極を提供せんと
するものである。 上述目的に沿い前述特許請求の範囲を要旨とす
るこの発明の構成は前述問題点を解決するめにチ
タン等の耐蝕性電導性基体表面上に電極反応体を
被覆するようにし、而して該電極反応体は該基体
に一体的に接合した多孔質の被担持物に担持物を
3次元的に担持させて成し、対基体機械的接合強
度を大にし電極反応体の脱落を防止し、耐蝕性を
向上させ、該電極反応体において上記担持物を30
〜99モル%の酸化イリジウムに対して酸化ルテニ
ウムと酸化パラジウムのうち1種以上を1〜70モ
ル%として配分して真の電極面積が該酸化イリジ
ウムのみの担持物の場合より大きくし過電圧を経
時稼動中低くし、又、耐蝕性低下を防止、電極反
応体消耗速度を抑制することが出来るようにした
技術的手段を講じたものである。 而して、この発明において担持物成分として酸
化イリジウムに対して酸化ルテニウム及び酸化パ
ラジウムのうち1種以上を所定量の比で加えたこ
とによるこの発明の電極では、真の電極面積が酸
化イリジウムのみの担持物成分の電極より大きく
なつているため、より過電圧を低く維持すること
が出来、加えて、低塩素イオン濃度溶液中での電
解では、酸化ルテニウム及び酸化パラジウムの塩
素発生に対する電極触媒機能によつてさらに一層
過電圧を低く維持できるためと考えられる。 ところで、この発明において、担持物成分のう
ち酸化イリジウムの量を30〜99モル%としたのは
30モル%より下がると酸素発生環境下で耐蝕性の
弱い酸化ルテニウム、酸化パラジウムの量が多く
なるため耐蝕性が低下するようになり、その結
果、電極反応体の消耗速度が早まり、電極寿命が
短くなるからであり、又、99モル%を越えると真
の電極面積を増大させる効果が低くなり、高電流
密度領域での過電圧が高くなる不具合があるから
である。 これに対して、酸化ルテニウム及び酸化パラジ
ウムのうち少なくとも1種の量を1〜70モル%と
したのは1モル%より下がると、真の電極面積を
増加させる作用と塩素発生に対する電極触媒機能
面への作用が弱くなり、過電圧をより低くする効
果がなくなるからである。 又、70モル%を越えると耐蝕性が低下するから
である。 又、担持物成分として酸化イリジウムの比率は
30〜99モル%を最適とする結果、酸化ルテニウ
ム、及び、酸化パラジウムのうち少なくとも1種
の比率は1〜70モル%を最適としたものでもあ
る。 次にこの発明の電極の製造方法について述べる
がこの製造方法は先に発明者によつて開示されて
いる製造方法に基づくものである。 すなわち、電極反応体が多孔質の白金金属成分
の被担持物と、酸化イリジウム30〜99モル%とこ
れに対する酸化ルテニウム及び酸化パラジウムの
うち少なくとも1種が1〜70モル%の担持物から
成る電極において、チタン等の耐蝕性電導性基体
表面上、及び形成された電極反応体表面上に電気
めつき法により、多孔質の白金金属を接合形成し
た後、熱分解によつて、酸化イリジウム、酸化ル
テニウム、及び、酸化パラジウムになる化合物の
うちイリジウム化合物とルテニウム化合物、及
び、パラジウム化合物のうち少なくとも1種の化
合物を含有する溶液を該接合形成白金金属の全体
に充分に浸透させて酸化性雰囲気中で熱分解によ
り該白金金属に該白金金族酸化物を3次元で形成
することによつて電解用電極を得る。 而して、前記多孔質の白金金属を形成するには
直接基体表面上に多孔質の白金金属を形成する方
法として電気めつき法、溶射法、熱分解法等があ
り、これらの中でも特性的、及び、経済的に優れ
ているものは電気めつき法であり、該電気めつき
法の中でも電着白金金属の状態が多孔質で球形状
の集合体で形成される状態が現出される態様のも
のが望ましい。 又、白金金属の被覆層を形成後、多孔質処理を
行う方法も考えられるが、当該方法では白金金属
の表面を荒しても、完全に化合物の溶液を浸透さ
せ、非白金族酸化物を3次元で担持させる状態を
得るまでにはいたらない場合がある。 尚、より多孔質性の高い白金金属を得たい場合
には直接多孔質の白金金属を所定に形成した後、
更に、化学的、もしくは、電気化学的方法によつ
て多孔質状態を高める処理の付与が有効的な方法
である。 尚、製造工程において担持物である上記白金金
属に要求される特性は白金族の化合物を含む溶液
が浸透できる程度の多孔質状態を有し、更に、熱
分解の加熱工程下では基体と白金金属との接合部
が酸化性のガス、及び、化合物中の揮発成分との
反応によつて劣化を生じない接合状態であること
が必要である。 而して、多孔質の白金金属が化合物を含む溶液
の充分な浸透性を得るには白金金属のみかけの密
度が19g/cm3以下であることが好ましいが、あま
り多孔質状態を高め、みかけ密度が8g/cm3以下
になつていると、機械的強度の低下を招き、電極
の寿命を短くするおそれがある。 他方、多孔質の白金金属に非白金族酸化物を3
次元形成するに当つて熱分解する化合物とその溶
媒は白金金属へ浸透を円滑に進めるため、溶液の
粘度が小さく、化合物の濃度も高くならないこと
が望ましい。 又、化合物の浸透を良くするため超音波を基体
に加えて行う方法も有効的である。 次に、この発明の実施例を説明すれば以下の通
りである。 実施例 1 チタニウム金属板をトリクレン脱脂液にて脱脂
を行い、フツ酸水溶液と濃塩酸で表面処理して基
体とした後ジニトロジアミノ白金を硫酸水溶液に
溶解した白金めつき浴を用いて電気めつき法によ
り、チタニウム金属板基体表面上にみかけの密度
が約16g/cm3で電着量が1.7mg/cm2の被担持物で
ある多孔質の白金金属を形成した試料を作製し
た。 次いで、塩化イリジウム酸1.95g、塩化ルテニ
ウム0.22g、ブタノール20mlの溶液、塩化イリジ
ウム酸1.95g、塩化パラジウム、0.015g、塩酸
0.2mlブタノール20mlの溶液、及び、塩化イリジ
ウム酸1.65g、塩化ルテニウム0.13g、塩化パラ
ジウム0.23g、塩酸0.2ml、ブタノール20mlの溶
液をそれぞれ調合し、各塗布液を白金族酸化物の
全量が金属での重量換算で0.14mg/cm2にそれぞれ
なるようにマイクロピペツトで取り、該白金金属
におのおの塗布し、次いで、室温で真空乾燥法に
より1時間乾燥させた後、500℃の大気中で20分
間加熱を行い実施例の電極−1、−2、−3を作製
した。 比較のため、塩化イリジウム酸2.14gをブタノ
ール20mlに溶解して浸透液を調合した後、上記実
施例電極と同様な工程でチタニウム金属板基体上
に白金金属1.7mg/cm2を形成し、担持物である酸
化イリジウムの量が金属での重量換算で0.14mg/
cm2になるように上記浸透液をマイクロピペツトで
取り該白金金属に浸透させ、前記実施例電極作製
過程と同様に乾燥及び加熱を行い、比較電極−
1′を作製した。 次に、これらの電極を液温30℃30g/の塩化
ナトリウム水溶液中で10A/dm2における電極電
位の測定を行い、その結果を表−1に示す。 さらに、それらの電極を液温60℃の1M/の
硫酸水溶液中で10A/dm2における電極電位の測
定を行い、その結果を同じく表−1示す。 表−1より、被担持物が白金金属で担持物が酸
化イリジウムに所定の酸化ルテニウムおよび酸化
パラジウムのうち1種以上を加えた組み合せから
なる実施例電極−1、−2、−3は、担持物が酸化
イリジウムのみの比較電極−1′と異り、塩素及び
酸素発生に対し低い電極電位すなわち、低い過電
圧を示すことが認められた。 実施例 2 上述実施例1と同様に基体チタニウム金属板上
にみかけ密度が約16g/cm3で電着量が1.7mg/cm2
の被担持物である白金金属を形成し、次いで、塩
化イリジウム1.07g、塩化パラジウム0.67g、塩
酸0.6ml、ブタノール20mlの溶液を用いて、該実
施例1と同様に白金族酸化物の全量が金属での重
量換算で0.14mg/cm2の白金族酸化物を上述形成白
金金属に3次元で担持させた実施例電極−4を作
製した。 比較のため、当該実施例電極と同様な工程でチ
タニウム金属板上に白金金属を形成した後、塩化
イリジウム0.71g、塩化パラジウム0.86g、塩酸
0.6ml、プタノール20mlの溶液を用いて、該実施
例電極と同様に白金族酸化物の全量が金属での重
量換算で0.14mg/cm2の白金族酸化物を上述で形成
した白金金属に3次元で担持させた比較電極−
2′を作製した。 次に、これらの電極、実施例電極−2及び比較
電極−1′を液温55℃の1M/の硫酸溶液で
400A/dm2の電流密度で電解を行い、一定時間
ごとに電流密度1A/dm2における電極電位の測
定を行つた。 その時の電位が対塩化銀電極電位で1.7Vに達
するまでの電極寿命を表−2に示す。 該表−2より、担持物として酸化イリジウムの
比率が30モル%より下がると酸素発生環境下にお
いて電極反応体消耗速度が早まり、電極寿命が短
くなることが認められた。 以上、この発明によれば、耐蝕性電導性基体表
面上に電極反応体を被覆した電解用電極におい
て、該電極反応体成分の構成の骨格を成している
多孔質に被担持物に対して担持物を3次元的に担
持させたことにより、基本的に対基体機械的接合
強度に優れるのみならず、電極反応体の脱落を防
止し、化学的耐蝕性にも優れ、加えて、電極反応
時の過電圧を低くする優れた効果が奏される。 特に、酸化イリジウム、酸化ルテニウム、及
び、酸化パラジウムになる化合物のうちイリジウ
ム化合物に対しルテニウム化合物及びパラジウム
化合物のうち少なくとも1種の化合物を含有する
溶液を白金金属に浸透させ、熱分解により3次元
的に担持させた電極は、担持物成分が酸化イリジ
ウムのみの電極より真の電極面積が大きくなつて
いることにより、過電圧をより低く維持すること
ができ、加えて、海水のような低塩素イオン濃度
溶液中での電解では該白金族酸化物の相互作用に
よつて一層過電圧を低くすることが出来、電解電
力消費を少なくし省エネルギー上のメリツトがあ
る効果が奏される。 又、電極反応体成分相互の機械的結合強度も強
く、化学的耐蝕性も良く、しかも、それらが常に
均一状態になつているため製品品質を良くする優
れた効果が奏される。 更に、該被担持物が白金金属であるにもかかわ
らず、担持物成分が白金族酸化物であるため、白
金金属の電極で生じる経時電解下における過電圧
の上昇は該電極反応体成分がほとんど消耗するま
で完全に抑制することが出来、更にケースによつ
ては白金金属の電極での過電圧上昇値までに達す
る時間をはるかに遅延させることが可能となる優
れた効果が奏される。 そして、電極反応体成分が消耗して電極寿命に
達する状態で被担持物成分だけを増量させて電極
劣化を防止することが可能となるように出来る優
れた効果もあり、電極反応体成分総量を増加させ
る必要がない省資源上の利点がある。 又、電極反応体が残存して高い過電圧で寿命に
達する場合でも、担持物のみを増加させて寿命の
延長を図ることが出来る効果があり、同じく電極
反応体の全体増量を図らなくて済む効果もある。 而して、担持物の消耗量は当該担持物成分であ
る白金族酸化物だけを電極反応体とした電極の消
耗と比較し数分の1以下と少く、且つ、被担持物
の消耗も減少することが出来る効果もある。 したがつて、この発明による被担持物に担持物
を3次元的に担持形成させた電極は公知の白金族
金属成分、又は、白金族酸化物成分を電極反応体
とした電極に比較し数倍以上の電極寿命を延ばす
画企的な電極を提供し得る。
The disclosed technology belongs to the technical field of electrodes for electrolysis that can withstand oxygen-generating environments such as electrolysis in sulfuric acid acidic solutions or low chlorine ion concentration solutions and have low overvoltage for desired electrode reactions. Accordingly, the present invention includes integrally coating a part or all of the surface of a corrosion-resistant conductive substrate with an electrode reactant, and a porous supported material bonded to the electrode reactant-attached substrate and the coated material. This invention relates to an electrode for electrolysis consisting of a support three-dimensionally bonded to a support, and in particular, a porous platinum metal support is integrally formed on the surface of a substrate such as titanium by electroplating or the like. Iridium oxide is formed by pyrolysis method etc.
99 mol% and one or two of ruthenium oxide and palladium oxide relative to the iridium oxide
This invention relates to an electrode for electrolysis in which a supported material composed of components distributed in an amount of 70 mol% is three-dimensionally integrated with the supported material. A commonly used electrolytic electrode is one in which an electrode reactant is coated and bonded on the surface of a corrosion-resistant conductive substrate, but when raising the basic characteristics required for this, there are basically two conditions. Firstly, the electrode reactant must have high mechanical bonding strength, strong chemical corrosion resistance, and electrical conductivity as the bonding conditions for the electrode reactant to the substrate. The internal conditions of the electrode reactant itself include high mechanical bonding strength between the components constituting the electrode reactant, strong chemical corrosion resistance, and, of course, a specified electrical conductivity. It is desirable that the overvoltage at the time is low. Incidentally, many conventional electrodes for electrolysis have been known, in which an electrode reactant having a composition containing a platinum group component is coated and bonded on the surface of a corrosion-resistant conductive substrate. Among these electrodes for electrolysis, there are two types of electrode reactants: platinum group metals consisting only of platinum group components and platinum group oxides. has been used for a very long time, and in particular, many improvements have been made to electrodes coated with platinum metal, which have a high bonding strength between the electrode reactants themselves and a strong bond to the substrate, excellent corrosion resistance, and durability. More and more electrodes are being developed. However, although the seeded platinum metal coated electrode has many excellent properties, it suffers from the disadvantage that its applications are limited. However, the main reason for this is that, compared to other electrodes used for various practical purposes, electrodes using platinum metal as an electrode reactant have overvoltage characteristics against chlorine and oxygen that are higher than other electrodes in the early stages of electrolysis. This is because although it has a low value like the electrode, it increases as the electrolysis time passes and becomes a high value, which has the disadvantage of increasing electrolysis power consumption and increasing costs.
Another problem is that the increase in overvoltage causes an electrolytic reaction other than the intended purpose, which may impede the intended electrolysis. Therefore, in order to solve this problem, in order to solve the problem that overvoltage increases over time in electrodes using platinum metal as an electrode reactant, several attempts have been made, for example, using various methods to add various metals to platinum metal. Techniques have been developed to suppress the rise in overvoltage by adding and alloying platinum metal, and to reactivate platinum metal electrodes with increased overvoltage by cathodic electrolysis. However, manufacturing electrodes using this type of development technology has the disadvantage that it is difficult to manufacture in practice due to complicated processes, etc., resulting in electrodes with poor corrosion resistance, and short-lasting active effects. It has several drawbacks, so it has not been put to practical use. On the other hand, the latter electrode, in which the reactant component is coated with a platinum group oxide such as ruthenium oxide, rhodium oxide, palladium oxide, or iridium oxide, has a low overvoltage, excellent durability, and stable catalytic function. In addition, a typical manufacturing method for platinum group oxide-coated electrodes involves applying a solution containing a compound that forms platinum group oxides by thermal decomposition onto the substrate surface. Since it is a thermal decomposition method in which a platinum group oxide can be easily obtained even if it is a combination of multiple components, it has many advantages. However, if the electrode reactant is composed only of platinum group oxides, the bonding strength of the electrode reactant to the substrate and the bonding strength of the electrode reactant itself are extremely low.
It has the disadvantage that the electrode reactant falls off during the electrolytic reaction, and in addition, the electrode has a very short lifespan.
I felt bad about its lack of practicality. Therefore, in order to increase the life of the platinum group oxide-coated electrode, it has been necessary to add a second component such as a corrosion-resistant oxide such as titanium oxide or a platinum group metal to the platinum group oxide component and form a mixture with these. Attempts have been made to increase the bond strength of electrode reactants by taking measures such as alloying, mixed crystal formation, etc. Based on these considerations, the inventors first developed a porous supported material component in which an electrode reactant component was integrally bonded on the surface of a corrosion-resistant conductive substrate, and a porous material component in which an electrode reactant component was integrally bonded on the surface of a corrosion-resistant conductive substrate. An electrode consisting of a dimensionally supported support component, i.e. a support component in which the electrode reactant component is bonded to the substrate, and a support component three-dimensionally bonded to the support component. We have developed an electrode for electrolysis that has electrode reactants divided into component compositions, and basically has excellent mechanical bonding strength to the substrate, prevents the electrode reactants from falling off, and has excellent chemical corrosion resistance. An application was filed for an electrode. Furthermore, in the above electrode for electrolysis, the supported material component is porous platinum metal, and the supported material component is a combination of iridium oxide. We have developed an electrode for electrolysis with low overvoltage and excellent durability for the desired electrode reaction in electrolysis in ion-concentrated solutions, and have filed an application for this. The purpose of this invention is to solve the problems of the electrolytic electrode based on the prior art described above, and to further improve the improved electrolytic electrode described above, and the inventors have newly solved the problems of the electrolytic electrode based on the prior art. By adding at least one of ruthenium oxide and palladium oxide to iridium oxide within a limited range, an electrode for electrolysis with lower overvoltage and greater durability has been developed, which is useful in the chemical industry. The present invention aims to provide an excellent electrode for electrolysis that is useful in the field of electrode use. In order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims in accordance with the above-mentioned object, is to coat the surface of a corrosion-resistant conductive substrate such as titanium with an electrode reactant, The reactant is three-dimensionally supported on a porous supported material that is integrally bonded to the substrate, which increases the mechanical bonding strength to the substrate, prevents the electrode reactant from falling off, and provides corrosion resistance. 30% of the support material in the electrode reactant.
One or more of ruthenium oxide and palladium oxide is distributed as 1 to 70 mol % to ~99 mol % of iridium oxide, and the true electrode area is made larger than that in the case where only iridium oxide is supported, and the overvoltage is increased over time. Technical measures have been taken to reduce the corrosion resistance during operation, prevent deterioration of corrosion resistance, and suppress the rate of electrode reactant consumption. Therefore, in the electrode of the present invention in which one or more of ruthenium oxide and palladium oxide is added to iridium oxide in a predetermined ratio as a support component, the true electrode area is only iridium oxide. Because it is larger than the electrode of the supported component, it is possible to maintain a lower overvoltage.In addition, in electrolysis in a solution with a low chlorine ion concentration, the electrode catalytic function of ruthenium oxide and palladium oxide against chlorine generation is This is thought to be due to the fact that the overvoltage can be maintained even lower. By the way, in this invention, the amount of iridium oxide in the supported components is set to 30 to 99 mol%.
If it falls below 30 mol%, the amount of ruthenium oxide and palladium oxide, which have weak corrosion resistance in an oxygen generating environment, will increase, resulting in a decrease in corrosion resistance.As a result, the rate of consumption of the electrode reactant will accelerate and the life of the electrode will be shortened. Moreover, if it exceeds 99 mol %, the effect of increasing the true electrode area becomes low, and there is a problem that overvoltage becomes high in a high current density region. On the other hand, the reason why the amount of at least one of ruthenium oxide and palladium oxide is set to 1 to 70 mol% is that when the amount is lower than 1 mol%, the effect of increasing the true electrode area and the function of the electrode catalyst against chlorine generation are reduced. This is because the effect on the overvoltage becomes weaker and the effect of lowering the overvoltage is lost. Moreover, if it exceeds 70 mol%, corrosion resistance will decrease. Also, the ratio of iridium oxide as a support component is
As a result of the optimum ratio of 30 to 99 mol %, the optimum ratio of at least one of ruthenium oxide and palladium oxide is 1 to 70 mol %. Next, a method for manufacturing the electrode of the present invention will be described, which is based on a method previously disclosed by the inventor. That is, an electrode in which the electrode reactant is composed of a porous platinum metal component supported, 30 to 99 mol% of iridium oxide, and 1 to 70 mol% of at least one of ruthenium oxide and palladium oxide to the iridium oxide. After forming porous platinum metal by electroplating on the surface of a corrosion-resistant conductive substrate such as titanium and on the surface of the formed electrode reactant, iridium oxide and iridium oxide are bonded by thermal decomposition. A solution containing ruthenium and at least one compound selected from the group consisting of an iridium compound, a ruthenium compound, and a palladium compound among the compounds that become palladium oxide is sufficiently permeated throughout the bond-forming platinum metal in an oxidizing atmosphere. An electrode for electrolysis is obtained by forming the platinum metal group oxide in three dimensions on the platinum metal by thermal decomposition. In order to form the above-mentioned porous platinum metal, there are methods for directly forming porous platinum metal on the surface of the substrate, such as electroplating method, thermal spraying method, and pyrolysis method. , and economically superior is the electroplating method, in which the state of the electrodeposited platinum metal is porous and formed as a spherical aggregate. It is desirable to have a specific aspect. Another possible method is to perform porous treatment after forming a coating layer of platinum metal, but in this method, even if the surface of platinum metal is roughened, the solution of the compound completely penetrates and the non-platinum group oxides are completely absorbed. In some cases, it may not be possible to obtain the state that is carried in the dimension. In addition, if you want to obtain platinum metal with higher porousness, after directly forming porous platinum metal in a predetermined manner,
Furthermore, it is an effective method to apply a treatment to increase the porous state by a chemical or electrochemical method. In addition, in the manufacturing process, the platinum metal as a support is required to have a porous state to the extent that a solution containing a platinum group compound can penetrate therein, and furthermore, under the heating process of pyrolysis, the platinum metal and the substrate must be porous. It is necessary that the bonded portion with the compound be in a bonded state that does not cause deterioration due to reaction with oxidizing gas and volatile components in the compound. Therefore, in order for the porous platinum metal to have sufficient permeability to solutions containing compounds, it is preferable that the apparent density of the platinum metal be 19 g/cm 3 or less. If the density is less than 8 g/cm 3 , the mechanical strength may decrease and the life of the electrode may be shortened. On the other hand, 3 non-platinum group oxides are added to porous platinum metal.
In order for the compound that thermally decomposes during dimension formation and its solvent to penetrate smoothly into the platinum metal, it is desirable that the viscosity of the solution is low and the concentration of the compound is not high. Furthermore, a method in which ultrasonic waves are applied to the substrate to improve the penetration of the compound is also effective. Next, embodiments of the present invention will be described as follows. Example 1 A titanium metal plate was degreased with a trichlene degreasing solution, and the surface was treated with a hydrofluoric acid aqueous solution and concentrated hydrochloric acid to prepare a substrate, and then electroplated using a platinum plating bath in which dinitrodiaminoplatinum was dissolved in a sulfuric acid aqueous solution. Using this method, a sample was prepared in which porous platinum metal was formed on the surface of a titanium metal plate substrate with an apparent density of about 16 g/cm 3 and an electrodeposited amount of 1.7 mg/cm 2 . Next, a solution of 1.95 g of chloroiridic acid, 0.22 g of ruthenium chloride, 20 ml of butanol, 1.95 g of chloroiridic acid, 0.015 g of palladium chloride, and hydrochloric acid.
A solution of 20 ml of 0.2 ml butanol and a solution of 1.65 g of chloroiridic acid, 0.13 g of ruthenium chloride, 0.23 g of palladium chloride, 0.2 ml of hydrochloric acid, and 20 ml of butanol were prepared. They were each applied to the platinum metal using a micropipette to give a concentration of 0.14 mg/cm 2 in terms of weight, and then dried for 1 hour using a vacuum drying method at room temperature. Heating was performed for 20 minutes to produce electrodes-1, -2, and -3 of Examples. For comparison, a penetrating solution was prepared by dissolving 2.14 g of chloroiridic acid in 20 ml of butanol, and then 1.7 mg/cm 2 of platinum metal was formed and supported on a titanium metal plate substrate in the same process as the electrode of the above example. The amount of iridium oxide, which is a metal, is 0.14 mg /
The infiltrating liquid was taken with a micropipette and permeated into the platinum metal in an amount of 2 cm2, dried and heated in the same manner as in the example electrode manufacturing process, and the comparison electrode
1′ was prepared. Next, the electrode potential of these electrodes was measured at 10 A/dm 2 in a 30 g sodium chloride aqueous solution at a liquid temperature of 30° C., and the results are shown in Table 1. Furthermore, the electrode potentials of these electrodes were measured at 10 A/dm 2 in a 1M sulfuric acid aqueous solution at a liquid temperature of 60 DEG C., and the results are also shown in Table 1. From Table 1, it can be seen that Example electrodes -1, -2, and -3, in which the supported material is platinum metal and the supported material is a combination of iridium oxide and one or more of predetermined ruthenium oxide and palladium oxide, are It was observed that, unlike the comparative electrode 1', which only contained iridium oxide, the electrode exhibited a low electrode potential for chlorine and oxygen generation, that is, a low overvoltage. Example 2 Similar to Example 1 above, the apparent density was about 16 g/cm 3 and the amount of electrodeposition was 1.7 mg/cm 2 on the titanium metal plate as a base.
Then, using a solution of 1.07 g of iridium chloride, 0.67 g of palladium chloride, 0.6 ml of hydrochloric acid, and 20 ml of butanol, the total amount of platinum group oxides was prepared in the same manner as in Example 1. Example electrode-4 was prepared in which 0.14 mg/cm 2 of platinum group oxide in terms of metal weight was supported three-dimensionally on the platinum metal formed above. For comparison, after forming platinum metal on a titanium metal plate in the same process as the electrode of the example, 0.71 g of iridium chloride, 0.86 g of palladium chloride, and hydrochloric acid were added.
Using a solution of 0.6 ml and 20 ml of putanol, the platinum group oxide with a total amount of platinum group oxide of 0.14 mg/cm 2 in terms of the weight of the metal was added to the platinum metal formed above in the same way as in the electrode of this example. Comparative electrode supported by dimensional
2' was made. Next, these electrodes, Example electrode-2 and Comparative electrode-1' were soaked in a 1M sulfuric acid solution at a temperature of 55°C.
Electrolysis was carried out at a current density of 400 A/dm 2 , and the electrode potential at a current density of 1 A/dm 2 was measured at regular intervals. Table 2 shows the electrode life until the potential at that time reached 1.7V versus silver chloride electrode potential. From Table 2, it was found that when the ratio of iridium oxide as a support was lower than 30 mol %, the electrode reactant consumption rate was accelerated in an oxygen generating environment, and the electrode life was shortened. As described above, according to the present invention, in an electrolytic electrode in which an electrode reactant is coated on the surface of a corrosion-resistant conductive substrate, a supported material is By supporting the support three-dimensionally, it not only basically has excellent mechanical bonding strength to the substrate, but also prevents the electrode reactant from falling off and has excellent chemical corrosion resistance. This has an excellent effect of lowering the overvoltage during operation. In particular, platinum metal is infiltrated with a solution containing at least one of a ruthenium compound and a palladium compound for an iridium compound among compounds that become iridium oxide, ruthenium oxide, and palladium oxide, and a three-dimensional structure is formed by thermal decomposition. Electrodes supported on iridium oxide have a larger true electrode area than electrodes containing only iridium oxide as a support component, so they can maintain a lower overvoltage. In electrolysis in a solution, the overvoltage can be further lowered due to the interaction of the platinum group oxides, and the electrolytic power consumption is reduced, resulting in the advantage of energy saving. In addition, the mechanical bonding strength between the electrode reactant components is strong, the chemical corrosion resistance is good, and since they are always in a uniform state, the product quality is improved. Furthermore, although the material to be supported is platinum metal, the support component is a platinum group oxide, so the increase in overvoltage during electrolysis over time that occurs at a platinum metal electrode will cause the electrode reactant component to be almost exhausted. This is an excellent effect in that it can be completely suppressed until the overvoltage rises, and in some cases, it is possible to significantly delay the time it takes for the overvoltage at the platinum metal electrode to reach the increased value. It also has the excellent effect of increasing the amount of the supported material component only when the electrode reactant component is exhausted and reaching the end of the electrode life, thereby preventing electrode deterioration, and reducing the total amount of the electrode reactant component. It has the advantage of saving resources as it does not need to be increased. In addition, even if the electrode reactant remains and reaches the end of its life at a high overvoltage, it has the effect of increasing only the supported material to extend the life, and also eliminates the need to increase the total amount of electrode reactants. There is also. Therefore, the amount of consumption of the supported material is reduced to less than a fraction of that of an electrode using only platinum group oxide, which is a component of the supported material, as an electrode reactant, and the consumption of the supported material is also reduced. There are some effects that can be done. Therefore, the electrode according to the present invention in which a supported material is three-dimensionally supported and formed on a supported material is several times as effective as an electrode in which a known platinum group metal component or a platinum group oxide component is used as an electrode reactant. It is possible to provide a well-designed electrode that extends the life of the electrode.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 電極反応体が耐蝕性電導性基体表面上に一体
的に接合した多孔質の被担持物と該被担持物に3
次元的に担持させた担持物とから成る電解用電極
において、上記被担持物成分が多孔質白金金属で
あり、他方上記担持物成分が酸化イリジウム30〜
99モル%に対し酸化ルテニウム及び酸化パラジウ
ムのうち少なくとも1種が1〜70モル%配分され
て成ることを特徴とする電解用電極。
1. A porous supported object in which an electrode reactant is integrally bonded on the surface of a corrosion-resistant conductive substrate, and 3.
In an electrolytic electrode comprising a dimensionally supported material, the supported material component is porous platinum metal, and the supported material component is iridium oxide 30-30.
An electrode for electrolysis, characterized in that at least one of ruthenium oxide and palladium oxide is distributed in an amount of 1 to 70 mol% relative to 99 mol%.
JP57200277A 1982-11-17 1982-11-17 Electrode for electrolysis Granted JPS59116388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200277A JPS59116388A (en) 1982-11-17 1982-11-17 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200277A JPS59116388A (en) 1982-11-17 1982-11-17 Electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPS59116388A JPS59116388A (en) 1984-07-05
JPH036998B2 true JPH036998B2 (en) 1991-01-31

Family

ID=16421639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200277A Granted JPS59116388A (en) 1982-11-17 1982-11-17 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JPS59116388A (en)

Also Published As

Publication number Publication date
JPS59116388A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
EP0090425B1 (en) Electrolysis electrode and production method thereof
Watanabe et al. Electrocatalysis by ad-atoms: Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells
US3711385A (en) Electrode having platinum metal oxide coating thereon,and method of use thereof
US4052271A (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
JP4346070B2 (en) Electrode for hydrogen generation
FI69124C (en) ANOD WITH A FRAMEWORK FOR FRAME STATION
Cattarin et al. Electrodeposition of PbO2+ CoOx composites by simultaneous oxidation of Pb2+ and Co2+ and their use as anodes for O2 evolution
US4310391A (en) Electrolytic gold plating
KR900001552B1 (en) Lead oxide-coated electrode for use in electrolysis and process for producing the same
JPH0575840B2 (en)
Pohan et al. Study of lifetime of platinum modified metal oxides electrodes
US5665218A (en) Method of producing an oxygen generating electrode
US4437948A (en) Copper plating procedure
JPH0355555B2 (en)
JPH036998B2 (en)
JPH0257159B2 (en)
JP2596821B2 (en) Anode for oxygen generation
KR860700273A (en) Complex Catalytic Substance for Electrolytic Electrode and Method of Manufacturing the Same
GB2096641A (en) Cathode coating with hydrogen-evolution catalyst and semi-conducting polymer
CN108018583A (en) A kind of electrolytic anode plate and preparation method and application
JPH0233792B2 (en)
GB2083837A (en) Manufacture of electrode with manganese dioxide coating, valve metal base, intermediate semiconducting layer
JP3661924B2 (en) Oxygen generating anode
US4405434A (en) Raney alloy coated cathode for chlor-alkali cells
JPH025832B2 (en)