JPH0369976B2 - - Google Patents

Info

Publication number
JPH0369976B2
JPH0369976B2 JP5261587A JP5261587A JPH0369976B2 JP H0369976 B2 JPH0369976 B2 JP H0369976B2 JP 5261587 A JP5261587 A JP 5261587A JP 5261587 A JP5261587 A JP 5261587A JP H0369976 B2 JPH0369976 B2 JP H0369976B2
Authority
JP
Japan
Prior art keywords
mgo
tio2
logn
esr
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5261587A
Other languages
Japanese (ja)
Other versions
JPS63219539A (en
Inventor
Mikya Yamana
Hiroaki Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5261587A priority Critical patent/JPS63219539A/en
Publication of JPS63219539A publication Critical patent/JPS63219539A/en
Publication of JPH0369976B2 publication Critical patent/JPH0369976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Ti、Al、Mgを含むNi基合金のエ
レクトロスラグリメルテイング(以下ESRとい
う)法に関し、特に操業中を通してTi、Al、Mg
の歩留り変動の少ないESR操業法に関する。 (従来の技術と問題点) Ni基合金の製造は従来真空アーク再溶解法に
より殆ど行われていたが、最近は、真空アーク再
溶解では添加しにくい元素、Mg、Ca等を添加で
き熱間加工性を向上できること、鋳肌がきれいで
手入れが少なくて済み、また表面傷や傷取り跡か
らの割れ発生も当然少なく歩留りが良いことなど
からESR法が用いられることが多くなつてきた。
しかしESR法においてもMgやCaを含む合金では
これらの元素とスラグが反応し、特にMgは蒸気
圧が高いこともあつて、不活性雰囲気中であつて
も安定して歩留りよく再溶解することは非常に困
難であつた。即ちスラグ組成を最初に設定したま
ま最後まで大きな変動なく操業することがむつか
しく、スラグ組成の変動に伴つて製品鋳塊の下部
(溶解の初期)から上部にかけてTi、Al、Mgと
成分が変動していた。即ち従来スラグの組成はそ
れまでの経験をもとに試行錯誤的に決定していた
ので、往々にして大きな変動があり、鋳塊が一部
分あるいは大部分成分外れになる事態が発生して
いた。 (解決の手段と作用) 本発明は上記に鑑みなされたもので、要点は、
重量%でTi;1.8〜2.7%、Al;0.9〜1.8%、Mg;
0.003〜0.040%を含むNi基超合金のESRにおい
て、式(1)、(2)、(3)を満足する組成のCaO−MgO
−Al2O3−TiO2系フラツクス、またはこれに
CaF2を加えたフラツクスを用い、不活性ガス雰
囲気下で行うことを特徴とするESR法である。 4.5≦3.11log[%Ti]3/[%Al]4−logN3 TiO2/N2 Al2
O3
≦5.8……(1) 8.1≦2.01log[%Al]2/[%Mg]3−logNAl2O3/N3 MgO
≦11.4……(2) 7.6≦2.05log[%Ti]/[%Mg]2−logNTiO2/N2 MgO
9.2……(3) NCaO+NMgO/NAl2O3+NTiO2≦1.5 ……(4) 但し、 [%Ti]等:合金中の重量% NTiO2等:スラグ中モル分率 即ち、本発明者らは、従来のESRにおいても、
一本の溶解の終期には比較的安定した操業ができ
ることに着目し、この時の鋳塊の成分とスラグ成
分が不活性雰囲気中では相互に式(5)、(6)、(7)に示
す反応を生じて平衡関係にあると 4[Al]+3(TiO2)=3[Ti]+2(Al2O3)……(5) 2[Al]+3(MgO)=3[Mg]+(Al2O3) ……(6) 2[Mg]+(TiO2)=[Ti]+2(MgO)……(7) 見てスラグにプロツトしてみたところ、第1図〜
第3図に示すように、直線、即ち実験式(8)〜(10)を
得ることができた。本発明は、これを中心にして
斜線で示す範囲に限定したもので、これは式(1)、
(2)および(3)にまとめられ logN3 TiO2/N2 Al2O3=3.11log[%Ti]3/[%Al]4−5
.17……(8) logNAl2O3/N3 MgO=2.01log[%Al]2/[%Mg]3−9.9
0……(9) logNTiO2/N2 MgO=2.05log[%Ti]/[%Mg]2−8.41
……(10) る。即ちこの式(1)、(2)、(3)を満足するスラグ組成
をもつてESRすればESRの全期間を通じてTi、
Al、Mgが安定した歩留りを示すことを見出した
ものである。 本発明においては更に、Ni基合金にきわめて
有害な元素である酸素と硫黄について、CaO+
MgOおよびAl2O3+TiO2の濃度比に着目し、こ
れとの相関を調べたところ、第4図に斜線で示す
範囲、即ち式(4)を満足すれば酸素と硫黄の合計量
を10ppm以下になし得ることを見出し、これをも
本発明の必須条件に加えたものである。なお、本
発明における合金成分の限定理由は、ひとつに
は、本発明の根拠となつた第1図〜第4図のデー
タが、この範囲の合金をもとに得たもので、少な
くともこの成分範囲ならば、式(1)〜(4)が正しく適
用できることが確実だからである。この範囲はま
たJISにNCF80Aとして規格化されている合金の
成分範囲を含むものである。 (実施例) 第1表に本発明の実施例を3例示す。表のフラ
ツクス組成は、第1図〜第4図の斜線範囲に入る
成分を他の諸条件をも併せ考慮して決定したスタ
ート時の数値であるが、溶解期を通じて殆ど変動
なく終始した。従つて母材と鋳塊および鋳塊の初
期、中期、終期の成分変動も殆どなく、3例とも
安定して操業を行うことができた。 (効果) 本発明の採用により、従来経験の積み重ねによ
り決定していたフラツクス(スラグ)の組成を、
図または式から簡単に、しかも決して成分外れを
おこさないように決定できるようになり、しかも
従来よりはるかに広い範囲の選択を行なえるよう
になつたので、例えばフラツクスのコストや各種
操業条件等を考慮した最適成分を決定するのがき
わめて容易になつた。
The present invention relates to an electroslag melting (hereinafter referred to as ESR) method for Ni-based alloys containing Ti, Al, and Mg.
Regarding ESR operation method with less yield fluctuation. (Conventional technology and problems) Conventionally, most Ni-based alloys have been manufactured by vacuum arc remelting, but recently it has become possible to add elements that are difficult to add using vacuum arc remelting, such as Mg and Ca. The ESR method has been increasingly used because it improves workability, provides a clean casting surface, requires less maintenance, and naturally has fewer cracks from surface scratches or scratch removal marks, resulting in better yields.
However, even in the ESR method, alloys containing Mg and Ca react with these elements, and Mg in particular has a high vapor pressure, so it cannot be remelted stably and with good yield even in an inert atmosphere. was extremely difficult. In other words, it is difficult to operate with the slag composition initially set without major fluctuations, and as the slag composition changes, the components of the product ingot (Ti, Al, Mg) vary from the bottom (early stage of melting) to the top. was. That is, in the past, the composition of slag was determined by trial and error based on previous experience, which often resulted in large fluctuations, resulting in situations where some or most of the composition of the ingot was off. (Solution Means and Effects) The present invention has been made in view of the above, and the main points are:
In wt% Ti; 1.8-2.7%, Al; 0.9-1.8%, Mg;
In the ESR of Ni-based superalloys containing 0.003 to 0.040%, CaO−MgO with a composition that satisfies formulas (1), (2), and (3)
−Al 2 O 3 −TiO 2 flux or this
This is an ESR method that uses a flux containing CaF 2 and is carried out under an inert gas atmosphere. 4.5≦3.11log [%Ti] 3 / [%Al] 4 −logN 3 TiO2 /N 2 Al2
O3
≦5.8……(1) 8.1≦2.01log [%Al] 2 / [%Mg] 3 −logN Al2O3 /N 3 MgO
≦11.4……(2) 7.6≦2.05log [%Ti] / [%Mg] 2 −logN TiO2 /N 2 MgO
9.2...(3) N CaO +N MgO /N Al2O3 +N TiO2 ≦1.5...(4) However, [%Ti], etc.: Weight % in the alloy N TiO2 , etc.: Mole fraction in the slag That is, the present inventors Even in conventional ESR,
Focusing on the fact that relatively stable operation is possible at the end of one melting process, the components of the ingot and slag at this time are mutually expressed by equations (5), (6), and (7) in an inert atmosphere. If the reaction shown occurs and there is an equilibrium relationship, 4[Al] + 3 (TiO 2 ) = 3 [Ti] + 2 (Al 2 O 3 )... (5) 2 [Al] + 3 (MgO) = 3 [Mg] + (Al 2 O 3 ) ...(6) 2 [Mg] + (TiO 2 ) = [Ti] + 2 (MgO) ... (7) When I looked at it and plotted it on the slag, I found that Figure 1~
As shown in FIG. 3, we were able to obtain straight lines, that is, empirical formulas (8) to (10). The present invention is limited to the range indicated by diagonal lines around this, which is expressed by formula (1),
(2) and (3) are summarized as logN 3 TiO2 /N 2 Al2O3 = 3.11log [%Ti] 3 / [%Al] 4 −5
.17……(8) logN Al2O3 /N 3 MgO =2.01log[%Al] 2 /[%Mg] 3 −9.9
0……(9) logN TiO2 /N 2 MgO = 2.05log [%Ti] / [%Mg] 2 −8.41
...(10) Ru. In other words, if ESR is performed with a slag composition that satisfies Equations (1), (2), and (3), Ti,
It was discovered that Al and Mg exhibit stable yields. Furthermore, in the present invention, oxygen and sulfur, which are extremely harmful elements to Ni-based alloys, are
Focusing on the concentration ratio of MgO and Al 2 O 3 + TiO 2 , we investigated the correlation with this and found that if the shaded range in Figure 4, that is, formula (4) is satisfied, the total amount of oxygen and sulfur can be reduced to 10 ppm. We have found that the following can be done, and have added this to the essential conditions of the present invention. One reason for limiting the alloy components in the present invention is that the data shown in FIGS. 1 to 4, which are the basis of the present invention, were obtained based on alloys in this range, This is because if it is within the range, it is certain that equations (1) to (4) can be applied correctly. This range also includes the range of alloy components standardized by JIS as NCF80A. (Examples) Table 1 shows three examples of the present invention. The flux composition in the table is the value at the start determined by considering the components falling within the shaded range of FIGS. 1 to 4 together with other various conditions, and there was almost no change throughout the dissolution period. Therefore, there was almost no change in the composition of the base metal, ingot, or ingot at the initial, middle, or final stages, and stable operation was possible in all three cases. (Effects) By adopting the present invention, the composition of flux (slag), which was previously determined based on accumulated experience, has been changed.
It is now possible to easily make decisions based on diagrams or formulas without causing any deviations in composition, and it has also become possible to make selections from a much wider range than before, allowing for example flux costs and various operating conditions to be determined. It has become extremely easy to determine the optimal components to consider.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、Ni基合金のESRにおける
鋳塊中合金成分と、スラグ成分の関係を示す図で
ある。
FIGS. 1 to 4 are diagrams showing the relationship between alloy components in an ingot and slag components in ESR of a Ni-based alloy.

Claims (1)

【特許請求の範囲】 1 重量%でTi;1.8〜2.7%、Al;0.9〜1.8%、
Mg;0.003〜0.040%を含むNi基超合金のESRに
おいて、式(1)、(2)、(3)を満足する組成のCaO−
MgO−Al2O3−Tio2系フラツクス、またはこれ
にCaF2を加えたフラツクスを用いて不活性ガス
雰囲気下で行うことを特徴とするESR法。 4.5≦3.11log[%Ti]3/[%Al]4−logN3 TiO2/N2 Al2
O3
≦5.8……(1) 8.1≦2.01log[%Al]2/[%Mg]3−logNAl2O3/N3 MgO
≦11.4……(2) 7.6≦2.05log[%Ti]/[%Mg]2−logNTiO2/N2 MgO
9.2……(3) NCaO+NMgO/NAl2O3+NTiO2≦1.5 ……(4) 但し、 [%Ti]等:合金中の重量% NTiO2等:スラグ中モル分率、
[Claims] 1% by weight: Ti; 1.8 to 2.7%; Al; 0.9 to 1.8%;
In the ESR of Ni-based superalloys containing Mg; 0.003 to 0.040%, CaO− with a composition satisfying formulas (1), (2), and (3)
An ESR method characterized in that it is carried out in an inert gas atmosphere using a MgO-Al 2 O 3 -Tio 2 flux or a flux in which CaF 2 is added. 4.5≦3.11log [%Ti] 3 / [%Al] 4 −logN 3 TiO2 /N 2 Al2
O3
≦5.8……(1) 8.1≦2.01log [%Al] 2 / [%Mg] 3 −logN Al2O3 /N 3 MgO
≦11.4……(2) 7.6≦2.05log [%Ti] / [%Mg] 2 −logN TiO2 /N 2 MgO
9.2...(3) N CaO +N MgO /N Al2O3 +N TiO2 ≦1.5...(4) However, [%Ti], etc.: Weight % in the alloy N TiO2 , etc.: Mole fraction in the slag,
JP5261587A 1987-03-06 1987-03-06 Esr method for ni-base alloy containing ti, al, and mg Granted JPS63219539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5261587A JPS63219539A (en) 1987-03-06 1987-03-06 Esr method for ni-base alloy containing ti, al, and mg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261587A JPS63219539A (en) 1987-03-06 1987-03-06 Esr method for ni-base alloy containing ti, al, and mg

Publications (2)

Publication Number Publication Date
JPS63219539A JPS63219539A (en) 1988-09-13
JPH0369976B2 true JPH0369976B2 (en) 1991-11-06

Family

ID=12919704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261587A Granted JPS63219539A (en) 1987-03-06 1987-03-06 Esr method for ni-base alloy containing ti, al, and mg

Country Status (1)

Country Link
JP (1) JPS63219539A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008621B (en) * 2012-12-26 2015-04-01 中国科学院金属研究所 Process for industrially producing ultrapure Inconel 690 (I-690) alloy electroslag remelting ingot of 3 tons
CN105039733A (en) * 2015-08-24 2015-11-11 太原钢铁(集团)有限公司 Electroslag remelting method for Ti-contained nickel-base superalloy
CN110747419A (en) * 2019-12-05 2020-02-04 北京钢研高纳科技股份有限公司 High-quality GH4738 alloy, preparation method thereof, GH4738 alloy device and aircraft engine

Also Published As

Publication number Publication date
JPS63219539A (en) 1988-09-13

Similar Documents

Publication Publication Date Title
JP2010196172A (en) Method for producing high-purity hafnium
JPS63100150A (en) Master alloy for producing titanium alloy and its production
JPH0369976B2 (en)
US2267298A (en) Method of producing highly pure manganese titanium alloys
JP6982795B2 (en) Manufacturing method of boron-containing stainless steel
EP0079765A1 (en) Method of making a lead-calcium-aluminium alloy
US4726840A (en) Method for the electroslag refining of metals, especially those having alloy components with an affinity for oxygen
JP2539102B2 (en) Highly clean stainless steel manufacturing method
JP2002173718A (en) Aluminum treatment method
JP2565447B2 (en) Method for producing ingot of Ni-base super heat-resistant alloy
JPH05271815A (en) Production of ni-fe based superheat resistant alloy ingot
US3993474A (en) Fluid mold casting slag
GB2157712A (en) Process for production of titanium-containing hydrogen storage alloy
JPH07207366A (en) Production of al or al alloy
JP3359728B2 (en) Continuous casting powder for Ti-containing steel
JP2553967B2 (en) Ultra-high cleanliness stainless steel manufacturing method
JPH0617159A (en) Production of low oxygen high purity ti material
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
JPS61195934A (en) Flux for electro-slag remelting
JPH11293359A (en) Melting of metallic vanadium or/and metallic vanadium alloy, and its casting method
JP2861517B2 (en) Operation method of melt desulfurization furnace
JPH07207363A (en) Production of al or al alloy
JP2695097B2 (en) Method of deoxidizing molten steel
JPS6043890B2 (en) Method for producing titanium-containing steel by electroslag remelting method
JPH09104928A (en) Electroslag remelting method