KR102604827B1 - Purifying method of Lithium metal and Lithium metal made by the same - Google Patents

Purifying method of Lithium metal and Lithium metal made by the same Download PDF

Info

Publication number
KR102604827B1
KR102604827B1 KR1020180139224A KR20180139224A KR102604827B1 KR 102604827 B1 KR102604827 B1 KR 102604827B1 KR 1020180139224 A KR1020180139224 A KR 1020180139224A KR 20180139224 A KR20180139224 A KR 20180139224A KR 102604827 B1 KR102604827 B1 KR 102604827B1
Authority
KR
South Korea
Prior art keywords
lithium metal
lithium
inducing agent
impurity precipitation
precipitation inducing
Prior art date
Application number
KR1020180139224A
Other languages
Korean (ko)
Other versions
KR20200055505A (en
Inventor
백창근
Original Assignee
백창근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백창근 filed Critical 백창근
Priority to KR1020180139224A priority Critical patent/KR102604827B1/en
Publication of KR20200055505A publication Critical patent/KR20200055505A/en
Application granted granted Critical
Publication of KR102604827B1 publication Critical patent/KR102604827B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium

Abstract

본 발명은 금속 리튬 정제 방법 및 이에 의하여 제조된 정제된 금속 리튬에 관한 것으로서 더욱 상세하게는 금속 리튬을 용융시키고 침전 유도제와 반응시켜 이종 금속을 산화시켜 제거하는 것을 특징으로 하는 금속 리튬 정제 방법 및 이에 의하여 제조된 금속 리튬에 관한 것이다.
본 발명에 의한 리튬 메탈 정제 방법은 리튬을 용융시키고 용융된 리튬을 침전유도제와 반응시켜 리튬 메탈 내의 Ca, Fe 등을 제거하는 효과를 나타내며. 종래 분별증류와 달리 리튬 메탈을 증류해야 할 필요성이 없어 에너지 소비가 낮고, 정제과정에서 리튬 손실이 낮아 회수율이 높은 효과를 나타낸다.
The present invention relates to a method for purifying metallic lithium and purified metallic lithium produced thereby, and more specifically, to a method for purifying metallic lithium, characterized in that dissimilar metals are oxidized and removed by melting metallic lithium and reacting with a precipitation inducing agent. It relates to metallic lithium manufactured by.
The lithium metal purification method according to the present invention has the effect of removing Ca, Fe, etc. in lithium metal by melting lithium and reacting the melted lithium with a precipitation inducing agent. Unlike conventional fractional distillation, there is no need to distill lithium metal, so energy consumption is low and lithium loss is low during the purification process, resulting in a high recovery rate.

Description

금속 리튬 정제 방법 및 이에 의하여 제조된 금속 리튬{Purifying method of Lithium metal and Lithium metal made by the same}Metal lithium purification method and metal lithium produced thereby {Purifying method of Lithium metal and Lithium metal made by the same}

본 발명은 금속 리튬 정제 방법 및 이에 의하여 제조된 금속 리튬에 관한 것으로서 더욱 상세하게는 금속 리튬을 용융시키고 침전 유도제와 반응시켜 이종 금속을 산화시켜 제거하는 것을 특징으로 하는 금속 리튬 정제 방법 및 이에 의하여 제조된 금속 리튬에 관한 것이다.The present invention relates to a method for purifying metallic lithium and to metallic lithium produced thereby. More specifically, to a method for purifying metallic lithium and producing thereby, characterized in that dissimilar metals are oxidized and removed by melting metallic lithium and reacting with a precipitation inducing agent. It is about the metal lithium.

일반적으로, 금속 리튬은 리튬 전지, 유리, 세라믹, 합금, 윤활유, 제약 등 산업 전반에 다양하게 활용되고 있다. 리튬메탈은 은백색의 알칼리 금속으로서 매우 가볍고(0.534 g/mol), 낮은 전기화학적 충방전 전압(-3.04V vs. Hydrogen), 높은 용량특성 (3860 mAh/g)으로 인해 리튬전지의 음극재로서 높은 각광을 받고 있다. In general, metallic lithium is used in a variety of industries, including lithium batteries, glass, ceramics, alloys, lubricants, and pharmaceuticals. Lithium metal is a silver-white alkali metal that is very light (0.534 g/mol), has a low electrochemical charge/discharge voltage (-3.04V vs. Hydrogen), and has high capacity characteristics (3860 mAh/g), making it a highly desirable anode material for lithium batteries. It's in the spotlight.

금속리튬을 제조하는 방법으로는, 열환원 또는 전기분해에 의한 공정이 일반적이다. 이 중에서 열환원의 경우, 상업화하기에는 경제적, 기술적인 어려움이 많아 이용되지 못하고 있다. 반면, 전기분해 즉, 용융염 전해를 통한 금속리튬의 제조 공정의 경우, 염화리튬을 원료로 하여 현재 상업적인 규모로 널리 이용되고 있다.As a method of producing metallic lithium, a process using thermal reduction or electrolysis is common. Among these, heat reduction is not used due to many economic and technical difficulties in commercializing it. On the other hand, the manufacturing process of metallic lithium through electrolysis, that is, molten salt electrolysis, uses lithium chloride as a raw material and is currently widely used on a commercial scale.

일반적으로 금속리튬은 비중이 0.53 g/cc이고 융점이 180℃이며, 끓는 점이 1400℃인 금속으로, 융점(180℃)의 약간 위까지 가열하면 급격히 산화하여 연소되므로, 제조 과정에서 리튬원료가 주변 공기와의 접촉에 의해 다양한 성분이 혼입이 되어지는 문제점이 있다. 또한, 염화리튬 원료 자체에서 다양한 금속성 불순물을 포함하고 있으며, 제조 과정에서 전극 및 전해질로 사용되는 다른 염과의 혼합에 의해 다른 성분들이 혼입이 된다. 그러나, 리튬메탈 음극재는 대개 99.5%이상의 고순도 제품이 사용되므로, 제조 과정에서 혼입되는 이러한 리튬외의 불순물 성분은 리튬메탈 음극재의 성능을 떨어뜨리는 주요 원인으로 제거가 필요하다.In general, metallic lithium is a metal with a specific gravity of 0.53 g/cc, a melting point of 180°C, and a boiling point of 1400°C. When heated slightly above the melting point (180°C), it rapidly oxidizes and burns. Therefore, during the manufacturing process, lithium raw materials are removed from the surrounding area. There is a problem in that various components are mixed due to contact with air. In addition, the lithium chloride raw material itself contains various metallic impurities, and during the manufacturing process, other components are mixed by mixing with other salts used as electrodes and electrolytes. However, since lithium metal anode materials are usually high purity products of 99.5% or higher, impurities other than lithium mixed in during the manufacturing process are the main cause of deteriorating the performance of lithium metal anode materials and need to be removed.

리튬메탈 고순도화 정제는 일반적으로 고온의 분별증류를 통해 불순물과 리튬과의 휘발 온도차이를 이용하여 분리하는 방식을 사용하고 있다. 그러나, 이러한 분별 증류 방식은 Na, K 등 리튬보다 휘발온도가 낮은 불순물에 대해서는 제거가 용이하고, 공정이 단순하다는 장점이 있으나, 휘발 온도가 금속 리튬과 유사하거나 다소 더 높은 원소(Ca, Fe) 등은 분리가 까다롭고, 이러한 불순물과의 분리를 위해 리튬메탈을 전부 증류해서 회수해야 하는 에너지 소비가 높다는 단점을 지니고 있다. 또한, 불순물 제거과정에서 다량의 리튬이 함께 배출되어 리튬 정제 후 회수율이 떨어지는 문제가 있다.High-purity purification of lithium metal generally uses a method of separating impurities and lithium through high-temperature fractional distillation using the difference in volatilization temperature. However, this fractional distillation method has the advantage of being easy to remove impurities with a volatilization temperature lower than that of lithium, such as Na and K, and that the process is simple, but it can be used for elements (Ca, Fe) whose volatilization temperature is similar to or slightly higher than that of metallic lithium. It has the disadvantage of being difficult to separate and requiring high energy consumption as all lithium metal must be distilled and recovered to separate it from these impurities. In addition, there is a problem in that a large amount of lithium is discharged during the impurity removal process, resulting in a low recovery rate after lithium purification.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬 메탈 제조 과정에서 혼입되는 불순물을 제거할 수 있는 새로운 방법을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a new method for removing impurities introduced during the lithium metal manufacturing process in order to solve the problems of the prior art as described above.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention is intended to solve the above problems.

리튬 메탈을 불활성 분위기에서 용융시키는 제 1 단계; A first step of melting lithium metal in an inert atmosphere;

상기 용융된 리튬 메탈에 불순물 침전 유도제를 첨가하는 제 2 단계; A second step of adding an impurity precipitation inducing agent to the molten lithium metal;

상기 혼합물을 300 내지 1000℃에서 2시간 내지 10시간 동안 열처리하여 리튬 메탈 내의 금속성 불순물을 불순물 침전 유도제와 반응시켜 산화 침전시키는 제 3 단계; 및 A third step of heat treating the mixture at 300 to 1000° C. for 2 to 10 hours to oxidize and precipitate metallic impurities in lithium metal by reacting them with an impurity precipitation inducing agent; and

혼합물의 온도를 200 내지 400℃로 냉각하고 산화 침전된 침전물을 제거하는 제 4 단계; 를 포함하는 리튬 메탈로부터 불순물을 정제하는 방법을 제공한다.A fourth step of cooling the mixture to 200 to 400° C. and removing oxidized precipitates; A method for purifying impurities from lithium metal containing a is provided.

본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 제 1 단계에서는 He, 또는 Ar 분위기에서 용융시키는 것을 특징으로 한다. In the lithium metal purification method according to the present invention, the first step is characterized by melting in a He or Ar atmosphere.

본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 불순물 침전 유도제는 Li2O, K2O, Na2O, B2O3, MgO, Li2S, K2S, 및 Na2S로 이루어진 그룹에서 선택되는 어느 하나 이상인 것을 특징으로 한다. 본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 제 3 단계에서는 이종 금속 불순물이 불순물 침전유도제에 의해 산화환원 반응에 의해 산화물 또는 황화물로 생성되는 것을 특징으로 한다. In the lithium metal purification method according to the present invention, the impurity precipitation inducing agent is a group consisting of Li 2 O, K 2 O, Na 2 O, B 2 O 3 , MgO, Li 2 S, K 2 S, and Na 2 S It is characterized in that it is one or more selected from. In the lithium metal purification method according to the present invention, in the third step, heterogeneous metal impurities are generated as oxides or sulfides through a redox reaction using an impurity precipitation inducing agent.

본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 불순물 침전 유도제는 산화물인 MgO, 또는 B2O3인 것이 가능하다. 또한, 알칼리 산화물인 Li2O, K2O, Na2O 그룹에서 선택될 수 있다. 본 발명에서 침전 유도제는 이종 금속성 불순물인 Fe, Ca를 열역학적인 생성 에너지 차이에 의해 산화물 형태로 형성시켜 침전시키며 필터링을 통해 효율적으로 제거가 가능하다. In the lithium metal purification method according to the present invention, the impurity precipitation inducing agent may be MgO, which is an oxide, or B 2 O 3 . Additionally, it may be selected from the alkaline oxide group of Li 2 O, K 2 O, and Na 2 O. In the present invention, the precipitation inducing agent precipitates Fe and Ca, which are heterogeneous metallic impurities, in the form of oxides by thermodynamic generation energy differences, and can be efficiently removed through filtering.

또한, 본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 불순물 침전 유도제는 알칼리 황화물인 Li2S, K2S, 및 Na2S로 이루어진 그룹에서 선택되어질 수 있으며, 이러한 경우 이종 금속성 불순물은 CaS, FeS등 황화물 형태로 침전되어진다. In addition, in the lithium metal purification method according to the present invention, the impurity precipitation inducing agent may be selected from the group consisting of alkali sulfide Li 2 S, K 2 S, and Na 2 S, and in this case, the heterogeneous metallic impurities include CaS, It is precipitated in the form of sulfides such as FeS.

본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 불순물 침전 유도제는 상기 리튬 메탈 100 중량부당 0.01 내지 10 중량부의 비율로 혼합되는 것을 특징으로 한다. 상기 불순물 침전 유도제가 상기 범위 이하로 혼합될 경우 불순물이 제거되지 않고 잔류하게 되며, 상기 범위 이상으로 혼합될 경우 불순물 침전 유도제가 리튬 메탈 내에 잔류하게 되는 문제점이 생길 수 있다. In the lithium metal purification method according to the present invention, the impurity precipitation inducing agent is mixed in a ratio of 0.01 to 10 parts by weight per 100 parts by weight of the lithium metal. If the impurity precipitation inducing agent is mixed below the above range, the impurities are not removed and remain, and if the impurity precipitation inducing agent is mixed above the above range, a problem may occur in that the impurity precipitation inducing agent remains in the lithium metal.

본 발명에 의한 리튬 메탈 정제 방법은 상기 제 3 단계 수행 이후 제 4 단계 수행 이전, 진공 조건에서 상기 혼합물의 온도를 300 내지 600℃로 유지하여 미반응 불순물 침전 유도제를 제거하는 제 3-1 단계;를 더 포함하는 것이 가능하다. 본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 제 3-1 단계 에서는 반응 후의 침전 유도제 성분을 고온 진공상태에서 제거하는 것을 특징으로 한다. 본 발명에 의한 리튬 메탈 정제 방법에서는 과량으로 첨가된 불순물 침전 유도제를 온도 조건 및 감압 조건을 조절하여 완전히 제거하는 것을 특징으로 한다. The lithium metal purification method according to the present invention includes a 3-1 step of removing unreacted impurity precipitation inducing agent by maintaining the temperature of the mixture at 300 to 600 ° C. under vacuum conditions after performing the third step and before performing the fourth step; It is possible to include more. In the lithium metal purification method according to the present invention, step 3-1 is characterized in that the precipitation inducing agent component after the reaction is removed under high temperature and vacuum. The lithium metal purification method according to the present invention is characterized in that the impurity precipitation inducing agent added in excess is completely removed by controlling temperature conditions and reduced pressure conditions.

본 발명에 의한 리튬 메탈 정제 방법에 있어서, 상기 제 4 단계에서는 침전된 이종 금속산화물을 메시를 통해 분리하는 것을 특징으로 한다. 본 발명에 의한 리튬 메탈 정제 방법에 있어서, 메쉬의 크기는 635 mesh 이상 100 mesh 이하이다. In the lithium metal purification method according to the present invention, the fourth step is characterized in that the precipitated heterogeneous metal oxide is separated through a mesh. In the lithium metal purification method according to the present invention, the mesh size is 635 mesh or more and 100 mesh or less.

본 발명은 또한, 본 발명의 정제 방법에 의하여 정제된 리튬 메탈을 제공한다. The present invention also provides lithium metal purified by the purification method of the present invention.

본 발명에 의한 정제된 리튬 메탈 내의 Ca 함량은 100 ppm 이하인 것을 특징으로 한다. The Ca content in the lithium metal purified according to the present invention is characterized in that it is 100 ppm or less.

본 발명에 의한 정제된 리튬 메탈 내의 Fe 함량은 60 ppm 이하인 것을 특징으로 한다.The Fe content in the lithium metal purified according to the present invention is characterized in that it is 60 ppm or less.

본 발명에 의한 리튬 메탈 정제 방법은 리튬 메탈을 용융시키고 용융된 리튬 메탈을 불순물 침전유도제와 반응시켜 열역학적인 생성 에너지(formation energy) 차이에 의해 리튬 메탈 내의 불순물인 Ca, Fe를 산화물 형태로 제거되는 효과를 나타냄과 동시에 종래 분별증류와 달리 리튬 메탈을 모두 증류하지 않고 용융으로 정제가 가능하여 에너지 소비가 낮고, 정제과정에서 리튬 손실이 낮아 회수율이 높은 효과를 나타낸다.The lithium metal purification method according to the present invention melts lithium metal, reacts the melted lithium metal with an impurity precipitation inducing agent, and removes Ca and Fe, which are impurities in lithium metal, in the form of oxides due to differences in thermodynamic formation energy. In addition to being effective, unlike conventional fractional distillation, lithium metal can be purified by melting without distilling all of it, resulting in low energy consumption and low lithium loss during the purification process, resulting in a high recovery rate.

도 1은 본 발명에 의한 금속 리튬 정제 장치를 나타낸다.Figure 1 shows a device for purifying metallic lithium according to the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, the present invention is not limited to the following examples.

(실시예 1)(Example 1)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 B2O3 분말을 리튬메탈 100 중량부당 2 중량부의 비율로 첨가하였다. 500 g of lithium metal was placed in the reactor and maintained at 300°C, and B 2 O 3 powder was added as an impurity precipitation inducing agent at a ratio of 2 parts by weight per 100 parts by weight of lithium metal.

혼합물을 700℃ 온도에서 10시간 동안 교반하여 상기 불순물 침전 유도제 B2O3과 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다. The mixture was stirred at 700°C for 10 hours to cause precipitation by reacting the impurity precipitation inducing agent B 2 O 3 with metallic impurities in lithium metal.

온도를 400℃로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지시켜 미반응 불순물 침전 유도제를 증발시켰다.The temperature was lowered to 400°C, and the unreacted impurity precipitation inducing agent was evaporated by maintaining it in a 1 x 10 -5 pascal vacuum for about 5 hours.

이후, 온도를 300℃로 낮춘 다음 200 mesh 철망을 사용하여 리튬메탈 용융액을 걸러 회수하였다. Afterwards, the temperature was lowered to 300°C and the lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 2)(Example 2)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 MgO 분말을 5 wt% 첨가하였다. 500 g of lithium metal was placed in the reactor, maintained at 300°C, and 5 wt% of MgO powder was added as an impurity precipitation inducing agent.

첨가 후 700℃ 온도에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 MgO와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent MgO reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지시켜 미반응 불순물 침전 유도제를 증발시켰다. The temperature was lowered to 400°C, and the unreacted impurity precipitation inducing agent was evaporated by maintaining it in a 1 x 10 -5 pascal vacuum for about 5 hours.

이후 200 mesh 철망을 사용하여 리튬메탈 용융액을 걸러 회수하였다. Afterwards, the lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 3)(Example 3)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 B2O3 분말 5 wt%를 첨가하였다. 첨가 후 700℃ 에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 B2O3와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 300°C, and 5 wt% of B 2 O 3 powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent B 2 O 3 reacted with metallic impurities in lithium metal to cause precipitation.

온도를 300℃로 낮춘 다음 미반응 불순물 침전 유도제를 증발시켰다. 200 mesh 철망을 사용하여 리튬메탈 용융액을 걸러 회수하였다. The temperature was lowered to 300°C and the unreacted impurity precipitation inducing agent was evaporated. The lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 4)(Example 4)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 B2O3/MgO(50 wt%/50 wt%) 혼합 분말을 5 wt% 첨가하였다. 500 g of lithium metal was placed in the reactor, maintained at 300°C, and 5 wt% of B 2 O 3 /MgO (50 wt%/50 wt%) mixed powder was added as an impurity precipitation inducing agent.

첨가 후 700℃ 온도에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 B2O3/MgO(50 wt%/50 wt%)와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent B 2 O 3 /MgO (50 wt%/50 wt%) was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지하여 미반응 불순물 침전 유도제를 증발시켰다. The temperature was lowered to 400°C and maintained in a vacuum of 1 x 10 -5 pascal for about 5 hours to evaporate the unreacted impurity precipitation inducing agent.

200 mesh 철망을 사용하여 리튬메탈 용융액을 걸러 회수하였다. The lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 5)(Example 5)

리튬메탈 500 g을 반응기에 넣고 500℃로 유지하고, 불순물 침전 유도제로서 Li2O 분말 5 wt%를 첨가하였다. 첨가 후 700℃ 에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 Li2O 와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor and maintained at 500°C, and 5 wt% of Li 2 O powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent Li 2 O was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃ 로 낮춘 다음 200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다.The temperature was lowered to 400°C, and the lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 6)(Example 6)

리튬메탈 500 g을 반응기에 넣고 500℃로 유지하고 불순물 침전 유도제로서 Li2O 분말 10 wt%를 첨가하였다. 첨가 후 700℃ 에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 Li2O 와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 500°C, and 10 wt% of Li 2 O powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent Li 2 O was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃ 로 낮춘 다음 200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다. The temperature was lowered to 400°C, and the lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 7)(Example 7)

리튬메탈 500 g을 반응기에 넣고 500 ℃로 유지하고 불순물 침전 유도제로서 K2O 분말 5 wt%를 첨가하였다. 첨가 후 700℃에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 K2O와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 500°C, and 5 wt% of K 2 O powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent K 2 O was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지하여 미반응 불순물 침전 유도제를 증발시켰다. The temperature was lowered to 400°C and maintained in a vacuum of 1 x 10 -5 pascal for about 5 hours to evaporate the unreacted impurity precipitation inducing agent.

200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다. The lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 8)(Example 8)

리튬메탈 500 g을 반응기에 넣고 500℃로 유지하고 Na2O 분말 5 wt%를 첨가하였다. 첨가 후 700℃ 에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 Na2O 와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 500°C, and 5 wt% of Na 2 O powder was added. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent Na 2 O was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃ 로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지하여 미반응 불순물 침전 유도제를 증발시켰다. The temperature was lowered to 400°C and maintained in a vacuum of 1 x 10 -5 pascal for about 5 hours to evaporate the agent that induces precipitation of unreacted impurities.

200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다. The lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 9)(Example 9)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 Li2S 분말 5 wt%를 첨가하였다. 첨가 후 700℃ 에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 Li2S 와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 300°C, and 5 wt% of Li 2 S powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent Li 2 S was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃로 낮춘 다음 200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다. The temperature was lowered to 400°C, and then the lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 10)(Example 10)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 K2S 분말 5 wt%를 첨가하였다. 첨가 후 800℃ 온도에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 K2S 와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 300°C, and 5 wt% of K 2 S powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 800°C for 10 hours, and the impurity precipitation inducing agent K 2 S reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지하여 미반응 불순물 침전 유도제를 증발시켰다. The temperature was lowered to 400°C and maintained in a vacuum of 1 x 10 -5 pascal for about 5 hours to evaporate the unreacted impurity precipitation inducing agent.

200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다. The lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(실시예 11)(Example 11)

리튬메탈 500 g을 반응기에 넣고 300℃로 유지하고 불순물 침전 유도제로서 Na2S 분말 5 wt%를 첨가하였다. 첨가 후 700℃ 에서 10시간 동안 교반하고, 상기 불순물 침전 유도제 Na2S 와 리튬메탈 내의 금속성 불순물과 반응시켜 침전시켰다.500 g of lithium metal was placed in the reactor, maintained at 300°C, and 5 wt% of Na 2 S powder was added as an impurity precipitation inducing agent. After addition, the mixture was stirred at 700°C for 10 hours, and the impurity precipitation inducing agent Na 2 S was reacted with metallic impurities in lithium metal to cause precipitation.

온도를 400℃로 낮춘 다음 1 x 10-5 pascal 진공상태에서 5시간 가량을 유지하여 미반응 불순물 침전 유도제를 증발시켰다. The temperature was lowered to 400°C and maintained in a vacuum of 1 x 10 -5 pascal for about 5 hours to evaporate the unreacted impurity precipitation inducing agent.

200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다.The lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

(비교예 1)(Comparative Example 1)

리튬메탈 500 g을 반응기에 넣고 700℃ 온도에서 10시간 동안 교반하고, 온도를 400℃로 낮춘 다음 200 mesh 철망을 사용하여 리튬메탈 용융액을 필터링하여 회수하였다. 500 g of lithium metal was added to the reactor and stirred at 700°C for 10 hours, the temperature was lowered to 400°C, and the lithium metal melt was filtered and recovered using a 200 mesh wire mesh.

[실험예] 리튬 메탈 내 불순물 함량 측정[Experimental example] Measurement of impurity content in lithium metal

리튬 메탈 내의 불순물로 Ca, Fe 함량을 측정한 후, 상기 실시예 및 비교예의 실험 후의 불순물 함량을 측정하고 그 결과를 아래 표 1로 나타내었다. 상기 실시예에서 정제된 리튬 메탈 0.1 g을 증류수 50 ml에 넣어 완전히 녹인 다음 ICP(Inductively coupled plasma)를 이용하여 리튬 메탈 내의 Ca Fe 함량을 분석하였다.After measuring the Ca and Fe contents as impurities in lithium metal, the impurity contents after the experiments of the examples and comparative examples were measured, and the results are shown in Table 1 below. In the above example, 0.1 g of purified lithium metal was completely dissolved in 50 ml of distilled water, and then the Ca Fe content in the lithium metal was analyzed using ICP (Inductively coupled plasma).

실험Experiment 리튬메탈 내 불순물 함량, ppmImpurity content in lithium metal, ppm Ca, ppmCa, ppm Fe, ppmFe, ppm 실험 전Before experiment 366366 459459 실시예 1Example 1 9595 4949 실시예 2Example 2 6565 2828 실시예 3Example 3 9393 5151 실시예 4Example 4 8484 3636 실시예 5Example 5 132132 2727 실시예 6Example 6 9898 2525 실시예 7Example 7 185185 4848 실시예 8Example 8 115115 2020 실시예 9Example 9 7878 3131 실시예 10Example 10 6868 2222 실시예 11Example 11 6969 4141 비교예 1Comparative Example 1 359359 455455

상기 표 1에서 보는 바와 같이 비교예의 경우 실험 전후의 불순물의 함량이 거의 변화하지 않았으나, 본 발명의 실시예에 의하여 불순물 침전 유도제를 추가하여 반응시킨 경우 불순물의 함량이 70% 내지 90% 이상 감소하는 것을 확인할 수 있었다.As shown in Table 1, in the case of the comparative example, there was little change in the content of impurities before and after the experiment, but when the impurity precipitation inducing agent was added and reacted according to the example of the present invention, the content of impurities decreased by more than 70% to 90%. could be confirmed.

Claims (8)

리튬 메탈을 불활성 분위기에서 용융시키는 제 1 단계;
상기 용융된 리튬 메탈에 불순물 침전 유도제를 첨가하는 제 2 단계;
상기 용융된 리튬 메탈과 상기 불순물 침전 유도제의 혼합물을 300 내지 1000℃에서 2시간 내지 10시간 동안 열처리하여 리튬 메탈 내의 금속성 불순물과 상기 불순물 침전 유도제를 반응시켜 산화 침전시키는 제 3 단계;
진공 조건에서 상기 혼합물의 온도를 300 내지 600℃로 유지하여 미반응 불순물 침전 유도제를 제거하는 제 3-1 단계; 및
혼합물의 온도를 200 내지 400℃로 냉각하고 침전된 산화침전물을 제거하는 제 4 단계; 를 포함하고
상기 불순물 침전 유도제는 Li2O, K2O, Na2O, B2O3, MgO, Li2S, K2S, 및 Na2S 로 이루어진 그룹에서 선택되는 어느 하나 이상인
리튬 메탈 정제 방법.
A first step of melting lithium metal in an inert atmosphere;
A second step of adding an impurity precipitation inducing agent to the molten lithium metal;
A third step of heat treating the mixture of the molten lithium metal and the impurity precipitation inducing agent at 300 to 1000° C. for 2 to 10 hours to cause oxidation and precipitation by reacting the metallic impurities in the lithium metal with the impurity precipitation inducing agent;
Step 3-1 of removing unreacted impurity precipitation inducing agent by maintaining the temperature of the mixture at 300 to 600° C. under vacuum conditions; and
A fourth step of cooling the mixture to 200 to 400° C. and removing the precipitated oxide precipitate; includes
The impurity precipitation inducing agent is at least one selected from the group consisting of Li 2 O, K 2 O, Na 2 O, B 2 O 3 , MgO, Li 2 S, K 2 S, and Na 2 S.
Lithium metal purification method.
삭제delete 제 1 항에 있어서,
상기 불순물 침전 유도제는 상기 리튬 메탈 100 중량부당 0.01 내지 10 중량부의 비율로 혼합되는 것인,
리튬 메탈 정제 방법.
According to claim 1,
The impurity precipitation inducing agent is mixed in a ratio of 0.01 to 10 parts by weight per 100 parts by weight of the lithium metal,
Lithium metal purification method.
제 1 항에 있어서,
상기 제 4 단계에서는 침전된 산화침전물을 메시를 통해 분리하는 것인,
리튬 메탈 정제 방법.
According to claim 1,
In the fourth step, the precipitated oxide precipitate is separated through a mesh,
Lithium metal purification method.
삭제delete 제 1 항, 제 3 항 또는 제 4 항 중 어느 하나의 리튬 메탈 정제 방법에 의하여 정제된 리튬 메탈.
Lithium metal purified by the lithium metal purification method of any one of claims 1, 3, or 4.
제 6 항에 있어서,
상기 리튬 메탈 내의 Ca 함량은 100 ppm 이하인 것인,
정제된 리튬 메탈.
According to claim 6,
The Ca content in the lithium metal is 100 ppm or less,
Refined lithium metal.
제 6 항에 있어서,
상기 리튬 메탈 내의 Fe 함량은 60 ppm 이하인 것인,
정제된 리튬 메탈.
According to claim 6,
The Fe content in the lithium metal is 60 ppm or less,
Refined lithium metal.
KR1020180139224A 2018-11-13 2018-11-13 Purifying method of Lithium metal and Lithium metal made by the same KR102604827B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180139224A KR102604827B1 (en) 2018-11-13 2018-11-13 Purifying method of Lithium metal and Lithium metal made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180139224A KR102604827B1 (en) 2018-11-13 2018-11-13 Purifying method of Lithium metal and Lithium metal made by the same

Publications (2)

Publication Number Publication Date
KR20200055505A KR20200055505A (en) 2020-05-21
KR102604827B1 true KR102604827B1 (en) 2023-11-21

Family

ID=70910599

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180139224A KR102604827B1 (en) 2018-11-13 2018-11-13 Purifying method of Lithium metal and Lithium metal made by the same

Country Status (1)

Country Link
KR (1) KR102604827B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839114A (en) * 2020-06-24 2021-12-24 天津中能锂业有限公司 Lithium metal negative electrode recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659799B1 (en) * 2014-12-19 2016-09-27 재단법인 포항산업과학연구원 Method for manufacturing metallic lithium
WO2017159745A1 (en) * 2016-03-16 2017-09-21 Jx金属株式会社 Processing method for lithium ion battery scrap

Also Published As

Publication number Publication date
KR20200055505A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
KR101370007B1 (en) Thermal and electrochemical process for metal production
JP5160554B2 (en) High purity ytterbium, sputtering target comprising high purity ytterbium, thin film containing high purity ytterbium, and method for producing high purity ytterbium
JP5043027B2 (en) Recovery method of valuable metals from ITO scrap
SE460964B (en) PROCEDURES FOR PREPARING PURE SILICONE METAL
KR20210154840A (en) Method of manufacturing battery precursor
KR20100094579A (en) Method of recovering valuable metals from izo scrap
CN102449201A (en) Process for producing refined metal or metalloid
CN104195355A (en) Zirconium and method for preparing zirconium
KR101335208B1 (en) Method for manufacturing high-purity erbium, high-purity erbium, sputtering target composed of high-purity erbium, and metal gate film having high-purity erbium as main component
KR102604827B1 (en) Purifying method of Lithium metal and Lithium metal made by the same
KR20140037277A (en) Method for producing calcium of high purity
JP6524973B2 (en) High purity In and method for producing the same
EA009888B1 (en) Method of production of pure silicon
KR102292363B1 (en) Purification method for purified potassium hexafluoromanganate and potassium hexafluoromanganate
KR101547051B1 (en) High-purity erbium, sputtering target comprising high-purity erbium, metal gate film having high-purity erbium as main component thereof, and production method for high-purity erbium
US3257199A (en) Thermal reduction
US2904426A (en) Method of preparing cell feed for the fused salt electrolytic production of titanium
US2668750A (en) Purification of by-product halide salts
KR101740424B1 (en) Fabrication Method of metal titanium using Ilmenite ore
US5019158A (en) Process for the separation of calcium and nitrogen from lithium
JPS63496A (en) Method for purifying gallium electrolytic solution
JP5711073B2 (en) Method for purifying indium or indium alloy
US3018233A (en) Producing manganese by fused salt electrolysis, and apparatus therefor
JP2005179778A (en) High purity metal indium, and its production method and use
JP2547500B2 (en) How to reduce tantalum

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant