JPH036958B2 - - Google Patents

Info

Publication number
JPH036958B2
JPH036958B2 JP57176457A JP17645782A JPH036958B2 JP H036958 B2 JPH036958 B2 JP H036958B2 JP 57176457 A JP57176457 A JP 57176457A JP 17645782 A JP17645782 A JP 17645782A JP H036958 B2 JPH036958 B2 JP H036958B2
Authority
JP
Japan
Prior art keywords
volume
ether
methyl
butyl
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57176457A
Other languages
Japanese (ja)
Other versions
JPS5874789A (en
Inventor
Buruderuretsuku Harutomuuto
Dainingeru Gyunteru
Gotsutoriipu Kurausu
Ueemaieru Furiideruuhainritsuhi
Haazeruhorusuto Manfuretsuto
Puroisu Augusutooiruherumu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel AG
Original Assignee
Veba Oel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel AG filed Critical Veba Oel AG
Publication of JPS5874789A publication Critical patent/JPS5874789A/en
Publication of JPH036958B2 publication Critical patent/JPH036958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Glass Compositions (AREA)
  • Fats And Perfumes (AREA)
  • Steroid Compounds (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

1. Diesel fuel composed of hydrocarbons and optionally containing alcohols, characterized in that it contains one or more ethers of the general formula R1 -O-C(CH3 )2 -R2 , wherein R1 and R2 are a methyl, ethyl, 1-propyl, 2-propyl, 1-butyl or 2-butyl group.

Description

【発明の詳細な説明】[Detailed description of the invention]

度々、ジーゼル動力エンジンから放出される排
気は、煙および煤を許容できない濃度で含有して
いる。煙および煤を形成する傾向は、エーテルお
よび有機酸の金属塩を混合した燃料を利用するこ
とによつて低下させることができる。塩は、周期
律表第族の金属、特にバリウムから製造され
る。エーテルはグリコールのモノーおよびジアル
キルエーテル、特にエチレングリコールのモノー
およびジメチルエーテルを含有している。しかし
ながらかゝる混合物は非常に高価でありそしてこ
のものが煤を減少させる効果は比較的僅かであ
る。塩類と混合した燃料の悪い性質には、環境に
受け入れられないということがある。 ジーゼル機関は、アルコール類およびエーテル
類と混合したジーゼル燃料にて首尾よく運転して
来た。アルコール類にはメタノール、エタノー
ル、n−プロパノールおよびn−ブタノールが含
まれる。最も大きい利益はジメチルエーテルおよ
びメタノールと混合した燃料から得られる。所望
の結果を達成するに充分な濃度で上記アルコール
類を含有する混合物は混合し難いので、混合成分
およびジーゼル燃料を別々に例えば吸い込む空気
中に通例の噴射ポンプによつて噴射することが必
要である。不利益なのは、各混合成分の発熱量が
ジーゼル燃料のそれの半分より少ないことおよび
かゝる混合物のセタン価が非常に減少するかまた
は市販のジーゼル機関を滑らかに運転するのに不
適当でさえあることである。 本発明は、上記添加物を含有する慣習的ジーゼ
ル燃料の難点および不利益を回避しそしてジーゼ
ル燃料の改善された燃焼特性を顕著にすることで
ある。結果として、機械的効果が改善されそして
排気中の有害物質の放出が非常に低下する。 本発明によれば、これらの長所並びにその他の
長所が一般式 R1−O−C(CH32−R2 〔式中、R1およびR2がメチル−,エチル−,n
−プロピル−,2−プロピル−,1−ブチル−ま
たは2−ブチル基である〕。 で表わされる1種以上のエーテル類をジーゼル燃
料に添加することによつて達成される。更に、事
情によつてはR2は水素であつてもよい。R1とR2
とは同じであつても異なつていてもよい。特にメ
チル−第3−ブチルエーテル(2−メトキシ−2
−メチル−プロパン)、メチル−第3−アミルエ
ーテル(2−メトキシ−2−メチルブタン)、イ
ソプロピル−第3−ブチルエーテル(2−(2′−
プロポキシ)−2−メチルプロパン)、第2−ブチ
ル−第3−ブチルエーテル(2−(2′−ブトキシ)
−2−メチルプロパン)、メチル−第3−2,3
−ジメチルプチルエーテル(2−メトキシ−2,
3−ジメチルブタン)およびメチル−第3−2−
メチルペンチルエーテル(2−メトキシ−2−メ
チルペンタン)が有用である。90容量%までの上
記エーテル類の1種類を含有しているエーテル混
合物が有利である。 更に、上記の一般式で表される複数のエーテル
より成る添加物がメチル−第三−ブチルエーテ
ル、イソプロピル−第三−ブチルエーテルおよび
第二−ブチル−第三−ブチルエーテルを約1:
1:1の容量比で含有する、炭化水素を基礎とす
るジーゼル燃料が特に有利である。特に、5〜50
容量%のメチル−第3−ブチルエーテル、5〜50
容量%のメチル−第3−アミルエーテル、5〜50
容量%のイソプロピル−第3−ブチルエーテル、
5〜50容量%の第2−ブチル−第3−ブチルエー
テル、5〜50容量%メチル−第3−2,3−ジメ
チルブチルエーテルおよび5〜50容量%のメチル
−第3−2−メチルペンチルエーテルを含む混合
物に興味がもたれる。 上述のエーテル、特にメチル−第三−ブチルエ
ーテルを気化燃料に添加することは確かに公知で
ある。しかしながらジーゼル燃料の為の添加物と
してエーテルが適することはこのことから推定で
きなかつた。例えば、ジーゼル機関の場合には燃
料のアンチノツク性は重要ではない。良好な溶解
特性のものでの一定の発火性および一定の蒸発速
度が必要とされる。 最も有利な効果が既に、ジーゼル燃料に5容量
%の比較的僅かな添加量でエーテル混合物を添加
した場合に生じる。ジーゼル燃料に本発明に従つ
て添加するエーテルは、原油精製および−加工の
際に生じる標準条件のもとでガス状または高揮発
性の炭化水素から簡単な方法で製造でき、大量に
入手できる。それ故に、25容量%までがエーテル
混合物である本発明の添加物を含むジーゼル燃料
を製造することも可能である。 慣用のジーゼル燃料は、燃焼する際に煤粒子を
形成する傾向のあるシクロパラフインおよび多核
芳香族化合物を含有している。提示された煙発生
値(煤価)を維持するには、燃料と空気との化学
量論比に比べて空気を過剰にすることが必要とさ
れ、これによつて消費されるジーゼル燃料あたり
の最大エネルギー出力が低下する。本発明のエー
テル添加量は煤発生値を著しく低下させ、それに
よつて過剰空気量を減らすことを可能とする。こ
のことは効率を向上させそしてそれによつて高い
平均圧のもとで機関の実用効率を向上させる。同
時に排ガス絶対量が減少しそして有害物質放出
量、特にNOxの放出量が減少する。更に、煤の
放出量の減少が、発がん性成分の多核芳香族化合
物が著しく減少するという特徴に結び付く。 添加物として用いるエーテルは実質的に硫黄を
含有していないので、ジーゼル燃料中の硫黄の絶
対含有量を減少させる。低い煙発生傾向および少
ないSO2−含有量が機関オイルの汚れを少なくし
且つ機関オイルの使用寿命を延ばす。 ジーゼル燃料に本発明に従つて加えられるエー
テル混合物は更に、アルコール類、特にメタノー
ルおよびエタノールの為の溶媒として役立つ。炭
素原子数1〜4のアルコール類、例えばメタノー
ル、エタノール、イソプロパノール、ブタノー
ル、第二ブタノールおよび第三ブタノールを単独
でまたは混合状態で−それどころか水を含んでい
てもよい−ジーゼル燃料に添加することを可能と
する。この場合、アルコール含有量は5〜25容量
%である。これによつて例えば、バイオマスから
得られたアルコールをジーゼル油添加物として多
量に利用できる。 炭素原子数1〜4のアルコールを、エーテルあ
るいはエーテル/アルコール混合物を含有する炭
化水素をベースとするジーゼル燃料に添加する場
合には、添加量に関して以下の角頂点が適用され
る: a) 0容量%のアルコール添加量の場合には5
〜25容量%のエーテル−あるいはエーテル混合
物添加量であり、 b) C1〜C4−アルコール全部の量が6.65容量%
の場合にエーテル+アルコール添加量が21.5容
量%であり、その際加えるアルコールのメタノ
ール含有量が5.55容量%でありそしてエーテル
量の下限値が下変的に5容量%である。 上記アルコールはジーゼル燃料中に低濃度で混
合でき、ジーゼル燃料へのエーテルの添加はジー
ゼル燃料成分として上記のアルコールを多量に利
用することを許容する。エーテル/アルコール/
ジーゼル燃料−混合物を製造する時には、エーテ
ル+アルコールの量が混合ジーゼル燃料の60容量
%より多くあるべきでない。有利な混合物は50%
以上のジーゼル燃料を含有している。 アルコールを含有するジーゼル燃料の製造の為
に、複雑な方法によつて製造されるソリユタイザ
ーは有利に使用されるとは云え、多量に容易に入
手できない。更に、用いたソリユタイザーはジー
ゼル燃料の燃焼特性に効果がない。本発明に従う
エーテルと同じ好ましい方法で行なう。 実施例 混合燃料の基礎として用いた市販のジーゼル燃
料の特性を第1表に示す。
Often, the exhaust emitted from diesel-powered engines contains smoke and soot in unacceptable concentrations. The tendency to form smoke and soot can be reduced by utilizing fuels mixed with ethers and metal salts of organic acids. The salt is produced from a metal from group of the periodic table, especially barium. Ethers include mono and dialkyl ethers of glycols, especially mono and dimethyl ethers of ethylene glycol. However, such mixtures are very expensive and have relatively little soot reduction effect. Among the negative properties of fuels mixed with salts is that they are not accepted by the environment. Diesel engines have been successfully operated on diesel fuel mixed with alcohols and ethers. Alcohols include methanol, ethanol, n-propanol and n-butanol. The greatest benefits are obtained from fuels mixed with dimethyl ether and methanol. Since mixtures containing the above alcohols in sufficient concentrations to achieve the desired result are difficult to mix, it is necessary to inject the mixture components and the diesel fuel separately, for example by means of a conventional injection pump, into the suction air. be. A disadvantage is that the calorific value of each mixture component is less than half that of the diesel fuel and the cetane number of such mixtures is greatly reduced or even unsuitable for smooth operation of commercial diesel engines. It is a certain thing. The present invention is to avoid the disadvantages and disadvantages of conventional diesel fuels containing the above additives and to highlight improved combustion properties of diesel fuels. As a result, the mechanical efficiency is improved and the emission of harmful substances in the exhaust gas is greatly reduced. According to the invention, these and other advantages can be achieved by combining the general formula R 1 -O-C(CH 3 ) 2 -R 2 [wherein R 1 and R 2 are methyl-, ethyl-, n
-propyl-, 2-propyl-, 1-butyl- or 2-butyl group]. This is achieved by adding one or more ethers represented by to diesel fuel. Furthermore, R 2 may be hydrogen under certain circumstances. R1 and R2
may be the same or different. In particular, methyl-tert-butyl ether (2-methoxy-2
-methyl-propane), methyl-tert-amyl ether (2-methoxy-2-methylbutane), isopropyl-tert-butyl ether (2-(2'-
propoxy)-2-methylpropane), 2-(2'-butoxy), 2-butyl-tert-butyl ether (2-(2'-butoxy)
-2-methylpropane), methyl-3-2,3
-dimethylbutyl ether (2-methoxy-2,
3-dimethylbutane) and methyl-3-2-
Methylpentyl ether (2-methoxy-2-methylpentane) is useful. Preference is given to ether mixtures containing up to 90% by volume of one of the abovementioned ethers. Furthermore, an additive consisting of a plurality of ethers represented by the above general formula may contain methyl-tert-butyl ether, isopropyl-tert-butyl ether, and sec-butyl-tert-butyl ether in about 1:
Hydrocarbon-based diesel fuels containing a 1:1 volume ratio are particularly advantageous. In particular, 5 to 50
% by volume methyl-tert-butyl ether, 5-50
Volume % methyl-tertiary-amyl ether, 5-50
% by volume of isopropyl-tert-butyl ether,
5-50% by volume of 2-butyl-tert-butyl ether, 5-50% by volume of methyl-3-2,3-dimethylbutyl ether and 5-50% by volume of methyl-3-2-methylpentyl ether. We are interested in the mixtures that contain them. It is indeed known to add the abovementioned ethers, in particular methyl tert-butyl ether, to vaporized fuels. However, the suitability of ether as an additive for diesel fuel could not be deduced from this. For example, in the case of diesel engines, the anti-knock nature of the fuel is not important. A certain ignition property and a certain evaporation rate with good dissolution properties are required. The most advantageous effects already occur when the ether mixture is added to the diesel fuel in a relatively small addition of 5% by volume. The ethers added according to the invention to diesel fuels can be produced in a simple manner from gaseous or highly volatile hydrocarbons under standard conditions occurring during crude oil refining and processing and are available in large quantities. It is therefore also possible to produce diesel fuels containing the additives of the invention in which up to 25% by volume are ether mixtures. Conventional diesel fuel contains cycloparaffins and polynuclear aromatic compounds that tend to form soot particles when burned. To maintain the smoke emission value (soot value) suggested, an excess of air is required compared to the stoichiometric ratio of fuel to air, which reduces the amount of air per unit of diesel fuel consumed. Maximum energy output is reduced. The ether addition according to the invention makes it possible to significantly reduce the soot production values and thereby reduce the amount of excess air. This increases efficiency and thereby increases the practical efficiency of the engine under high average pressures. At the same time, the absolute amount of exhaust gas is reduced and the emissions of harmful substances, especially NO x , are reduced. Furthermore, the reduction in soot emissions is coupled with the characteristic that the carcinogenic component polynuclear aromatic compounds is significantly reduced. The ether used as an additive is substantially sulfur-free and thus reduces the absolute sulfur content in the diesel fuel. The low tendency to smoke and the low SO 2 -content result in less fouling of the engine oil and a longer service life of the engine oil. The ether mixture added according to the invention to the diesel fuel also serves as a solvent for alcohols, in particular methanol and ethanol. Addition of alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, isopropanol, butanol, sec-butanol and tertiary-butanol, alone or in mixtures - and may even contain water, to diesel fuels. possible. In this case, the alcohol content is between 5 and 25% by volume. This makes it possible, for example, to utilize alcohol obtained from biomass in large quantities as a diesel oil additive. If alcohols containing 1 to 4 carbon atoms are added to diesel fuels based on hydrocarbons containing ethers or ether/alcohol mixtures, the following corner points regarding the amount added apply: a) 0 volume; % alcohol addition amount is 5
25% by volume of ether or ether mixture added; b) total amount of C 1 -C 4 -alcohols is 6.65% by volume;
In this case, the amount of ether plus alcohol added is 21.5% by volume, the methanol content of the alcohol added is 5.55% by volume, and the lower limit of the amount of ether is 5% by volume. The alcohols can be mixed in diesel fuels at low concentrations, and the addition of ethers to the diesel fuel allows for the use of large amounts of the alcohols as diesel fuel components. ether/alcohol/
When producing a diesel fuel-blend, the amount of ether+alcohol should not be more than 60% by volume of the blended diesel fuel. Advantageous mixture is 50%
It contains more than 100% of diesel fuel. For the production of alcohol-containing diesel fuels, solutizers produced by complex processes are advantageously used, but are not readily available in large quantities. Furthermore, the solutizer used has no effect on the combustion characteristics of diesel fuel. It is carried out in the same preferred manner as for the ether according to the invention. EXAMPLES Table 1 shows the properties of the commercially available diesel fuel used as the basis for the mixed fuel.

【表】【table】

【表】 色々な量でエーテル類および/またはアルコー
ル類を含有する8つのジーゼル燃料混合物を造
る。これらの試料の組成および分析を第2表に示
す。
Table: Eight diesel fuel mixtures containing varying amounts of ethers and/or alcohols are made. The composition and analysis of these samples are shown in Table 2.

【表】 本発明のジーゼル燃料と市販の燃料とを比較す
る試験を、市販のジーゼル機関〔ダイムラ−・ベ
ンツ(Daimler Benz〕タイプ240Dおよびvw(ホ
ルクスワーゲン)タイプのゴルフ(Golf)D〕
で実施する:全ての試験の為に、機関はダイムラ
ー・ベンツ240Dについては4400回転/分そして
vwゴルフ・Dについては4800回転/分の一定回
転速度で運転する。機関の運転は、各試験につい
ての性能が市販のジーゼル燃料を運転する機関の
それに等しいように調整する。 排気の黒さおよび比エネルギー消費量を、ダイ
ムラー・ベンツ機関タイプ240Dを用いて4400回
転/分および47.3KWで運転して測定する。黒さ
はボツシユ価(Bosch number)として示す。第
3表に、市販のジーゼル燃料(実施例O)および
混合物(実施例1〜8)を用いた試験でしたボツ
シユ価および比エネルギー必要量を示す。実施例
1〜8の消費量を第2表に示す。
[Table] A test comparing the diesel fuel of the present invention with a commercially available fuel was conducted using commercially available diesel engines [Daimler Benz type 240D and VW (Volkswagen) type Golf D].
For all tests, the engine is operated at: 4400 rpm for Daimler-Benz 240D and
The VW Golf D operates at a constant rotational speed of 4800 rpm. Engine operation is adjusted so that the performance for each test is equal to that of an engine running commercial diesel fuel. The exhaust blackness and specific energy consumption are measured using a Daimler-Benz engine type 240D operating at 4400 rpm and 47.3 KW. Blackness is indicated as Bosch number. Table 3 shows the potency values and specific energy requirements tested using commercially available diesel fuel (Example O) and mixtures (Examples 1-8). The consumption amounts of Examples 1 to 8 are shown in Table 2.

【表】 第3表は、本発明の混合燃料での煤形成が市販
のジーゼル燃料でのそれよりも少ないことを示し
ている。示されている様に、煤形成の減少は32%
〜62%範囲内である。要するに、90容量%のジー
ゼル燃料である実施例4によつて示されているよ
うに、少量のエーテル/アルコールが煤形成を著
しう減少させる。実施例4では煤形成が38%減少
する。 本発明によつて開示された混合物が低い発熱量
であるにかゝわりなく、比エネルギー消費量が基
礎のジーゼル燃料を用いた時と同じレベルかまた
は多くの場合、より低いことが判かる。 31.4KWおよび4800回転/分の速度にて運転す
る市販のVWタイプのゴルフD機関を、放出され
る排気中のNOX濃度におけるエーテル/アルコ
ール混合物の作用を評価するのに用いる。この試
験の結果を第4表に示す。
Table 3 shows that soot formation with the blended fuel of the present invention is less than that with commercial diesel fuel. As shown, the reduction in soot formation is 32%
~62% range. In summary, small amounts of ether/alcohol significantly reduce soot formation, as shown by Example 4, which is 90% by volume diesel fuel. Example 4 reduces soot formation by 38%. It can be seen that, despite the low heating value of the mixture disclosed by the present invention, the specific energy consumption is at the same level or in many cases lower than when using the basic diesel fuel. A commercially available VW type Golf D engine operating at a speed of 31.4 KW and 4800 revolutions/min is used to evaluate the effect of the ether/alcohol mixture on the NOx concentration in the emitted exhaust gas. The results of this test are shown in Table 4.

【表】 第4表に示されているように、本発明に従うジ
ーゼル混合燃料は、排気中のNOX濃度を市販の
ジーゼル燃料に比較して26%まで低下せしめる。
[Table] As shown in Table 4, the diesel blend fuel according to the present invention reduces the NOx concentration in the exhaust gas by up to 26% compared to commercially available diesel fuel.

Claims (1)

【特許請求の範囲】 1 一般式 R1−O−C(CH32−R2 〔式中、R1およびR2はそれぞれメチル−、エチ
ル−、1−プロピル−、2−プロピル−、1−ブ
チル−または2−ブチル基を意味し、R2は水素
であつてもよい。〕 で表される一種以上のエーテル類より成る添加物
を5〜25容量%含有することを特徴とする、炭化
水素ベースのジーゼル燃料。 2 0〜90容量%のメチル−第三−ブチルエーテ
ル、0〜90容量%のメチル−第三−アミルエーテ
ル、0〜90容量%のイソプロピル−第三−ブチル
エーテル、0〜90容量%の第二−ブチル−第三−
ブチルエーテル、0〜90容量%のメチル−第三−
2,3−ジメチルブチルエーテル、0〜90容量%
のメチル−第三−2−メチルペンチルエーテルよ
り成る添加物を5〜25容量%含有する請求項1に
記載のジーゼル燃料。 3 添加物の5〜50容量%までがメチル−第三−
ブチルエーテルより成る請求項1または2に記載
のジーゼル燃料。 4 添加物の5〜50容量%までがメチル−第三−
アミルエーテルより成る請求項1〜3の何れか一
つに記載の燃料。 5 添加物の5〜50容量%までがイソプロピル−
第三−ブチルエーテルより成る請求項1〜4の何
れか一つに記載の燃料。 6 添加物の5〜50容量%までが第二−ブチル−
第三−ブチルエーテルより成る請求項1〜5の何
れか一つに記載の燃料。 7 添加物の5〜50容量%までがメチル−第三−
2,3−ジメチルブチルエーテルより成る請求項
1〜6の何れか一つに記載の燃料。 8 添加物の5〜50容量%までがメチル−第三−
2−メチルペンチルエーテルより成る請求項1〜
7の何れか一つに記載の燃料。 9 添加物がメチル−第三−ブチルエーテル、イ
ソプロピル−第三−ブチルエーテルおよび第二ブ
チル−第三−ブチルエーテルを約1:1:1の容
量比で含有する請求項1〜8の何れか一つに記載
のジーゼル燃料。 10 追加的にC1〜C4−アルコールを含有し、
その際その添加量に関して以下の角頂点が適用さ
れる: a) 0容量%のアルコール添加量の場合には5
〜25容量%のエーテル−あるいはエーテル混合
物添加量であり、 b) C1〜C4−アルコール全部の量が6.65容量%
の場合にエーテル+アルコール添加量が21.5容
量%であり、その際加えるアルコールのメタノ
ール含有量が5.55容量%でありそしてエーテル
量の下限値が不変的に5容量%である 請求項1に記載のジーゼル燃料。
[Claims] 1 General formula R 1 -O-C(CH 3 ) 2 -R 2 [In the formula, R 1 and R 2 are respectively methyl-, ethyl-, 1-propyl-, 2-propyl-, It means a 1-butyl- or 2-butyl group, and R 2 may be hydrogen. ] A hydrocarbon-based diesel fuel characterized by containing 5 to 25% by volume of an additive consisting of one or more ethers represented by: 2 0-90% by volume methyl-tert-butyl ether, 0-90% by volume methyl-tert-amyl ether, 0-90% by volume isopropyl-tert-butyl ether, 0-90% by volume secondary- Butyl-tertiary-
Butyl ether, 0-90% by volume methyl-tertiary
2,3-dimethylbutyl ether, 0-90% by volume
Diesel fuel according to claim 1, containing from 5 to 25% by volume of an additive consisting of methyl-tert-2-methylpentyl ether. 3 Up to 5 to 50% by volume of the additive is methyl-tertiary.
The diesel fuel according to claim 1 or 2, comprising butyl ether. 4 Up to 5 to 50% by volume of the additive is methyl-tertiary.
The fuel according to any one of claims 1 to 3, comprising amyl ether. 5 Up to 5-50% by volume of the additive is isopropyl-
5. A fuel according to claim 1, comprising tert-butyl ether. 6 Up to 5-50% by volume of the additive is sec-butyl-
6. A fuel according to claim 1, comprising tert-butyl ether. 7 Up to 5-50% by volume of the additive is methyl-tertiary
7. A fuel according to claim 1, comprising 2,3-dimethylbutyl ether. 8 Up to 5% to 50% by volume of the additive is methyl-tertiary.
Claims 1 to 2 comprising 2-methylpentyl ether.
7. The fuel described in any one of 7. 9. According to any one of claims 1 to 8, the additive contains methyl-tert-butyl ether, isopropyl-tert-butyl ether and sec-butyl-tert-butyl ether in a volume ratio of about 1:1:1. Diesel fuel listed. 10 additionally contains a C1 - C4 -alcohol,
The following angles apply with respect to the amount added: a) 5 for an alcohol addition of 0% by volume;
25% by volume of ether or ether mixture added; b) total amount of C 1 -C 4 -alcohols is 6.65% by volume;
2. The process according to claim 1, wherein the amount of ether+alcohol added is 21.5% by volume, the methanol content of the alcohol added is 5.55% by volume, and the lower limit for the amount of ether remains unchanged at 5% by volume. diesel fuel.
JP57176457A 1981-10-10 1982-10-08 Diesel fuel Granted JPS5874789A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813140382 DE3140382A1 (en) 1981-10-10 1981-10-10 DIESEL FUEL
DE3140382.4 1981-10-10

Publications (2)

Publication Number Publication Date
JPS5874789A JPS5874789A (en) 1983-05-06
JPH036958B2 true JPH036958B2 (en) 1991-01-31

Family

ID=6143882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57176457A Granted JPS5874789A (en) 1981-10-10 1982-10-08 Diesel fuel

Country Status (15)

Country Link
EP (1) EP0077027B1 (en)
JP (1) JPS5874789A (en)
AT (1) ATE18919T1 (en)
BR (1) BR8205904A (en)
CA (1) CA1180895A (en)
DE (2) DE3140382A1 (en)
DK (1) DK153225C (en)
ES (1) ES8307886A1 (en)
FI (1) FI75592C (en)
GR (1) GR76994B (en)
IE (1) IE53445B1 (en)
MX (1) MX162435A (en)
NO (1) NO160145C (en)
PT (1) PT75662B (en)
TR (1) TR22309A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208389A (en) * 1982-05-31 1983-12-05 Komatsu Ltd Alcohol blended fuel for diesel engine
JPS6357691A (en) * 1986-01-21 1988-03-12 ポラ− モレクラ− コ−ポレ−シヨン Fuel conditioner
JPH01201393A (en) * 1988-02-05 1989-08-14 Takara Co Ltd Diesel engine fuel for toy
JPH0393894A (en) * 1989-09-06 1991-04-18 Cosmo Sogo Kenkyusho:Kk Lead-free high-performance gasoline
US5425790A (en) * 1992-12-23 1995-06-20 Arco Chemical Technology, L.P. Diesel fuel
US5314511A (en) * 1992-12-23 1994-05-24 Arco Chemical Technology, L.P. Diesel fuel
US5308365A (en) * 1993-08-31 1994-05-03 Arco Chemical Technology, L.P. Diesel fuel
WO2001018154A1 (en) * 1999-09-06 2001-03-15 Agrofuel Ab Motor fuel for diesel engines
DE502004010677D1 (en) 2003-06-24 2010-03-11 Biovalue Holding Bv Use of an oxygenate as an additive for reducing the particle emission in fuels, in particular in diesel fuels, gasoline fuels and rapeseed methyl ester
WO2018055065A1 (en) 2016-09-21 2018-03-29 Cepsa S.A.U. Solketal-ethers, production method and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157684A (en) * 1979-05-14 1980-12-08 Aeci Ltd Fuel
JPS56139588A (en) * 1980-03-07 1981-10-31 British Petroleum Co Production of component for being compounded in motor spirit
JPS5819389A (en) * 1981-07-27 1983-02-04 Reametaru:Kk Reforming of a fuel oil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR828020A (en) * 1936-11-05 1938-05-09 Standard Oil Dev Co Engine fuel
FR829581A (en) * 1936-12-18 1938-06-30 Standard Oil Dev Co Engine fuel
BE786624A (en) * 1971-07-31 1973-01-24 Snam Progetti PROCESS FOR REDUCING THE CARBON OXIDE CONTENT OF THE EXHAUST GASES OF INTERNAL COMBUSTION ENGINES
WO1981000721A1 (en) * 1979-09-10 1981-03-19 Wer R Universal fuel for engines
US4332594A (en) * 1980-01-22 1982-06-01 Chrysler Corporation Fuels for internal combustion engines
US4353710A (en) * 1980-03-26 1982-10-12 Texaco Inc. Novel method of extending a hydrocarbon fuel heavier than gasoline by adding a methoxy or ethoxy group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157684A (en) * 1979-05-14 1980-12-08 Aeci Ltd Fuel
JPS56139588A (en) * 1980-03-07 1981-10-31 British Petroleum Co Production of component for being compounded in motor spirit
JPS5819389A (en) * 1981-07-27 1983-02-04 Reametaru:Kk Reforming of a fuel oil

Also Published As

Publication number Publication date
NO160145B (en) 1988-12-05
NO160145C (en) 1989-03-15
EP0077027B1 (en) 1986-04-02
DK153225B (en) 1988-06-27
DK153225C (en) 1988-12-05
DE3270279D1 (en) 1986-05-07
DK446182A (en) 1983-04-11
BR8205904A (en) 1983-09-06
FI75592C (en) 1988-07-11
MX162435A (en) 1991-05-10
PT75662A (en) 1982-11-01
FI823426A0 (en) 1982-10-08
IE822442L (en) 1983-04-10
ES516382A0 (en) 1983-07-16
ES8307886A1 (en) 1983-07-16
NO823376L (en) 1983-04-11
FI75592B (en) 1988-03-31
JPS5874789A (en) 1983-05-06
ATE18919T1 (en) 1986-04-15
PT75662B (en) 1985-01-11
GR76994B (en) 1984-09-04
EP0077027A2 (en) 1983-04-20
DE3140382C2 (en) 1990-04-12
DE3140382A1 (en) 1983-04-21
IE53445B1 (en) 1988-11-09
FI823426L (en) 1983-04-11
CA1180895A (en) 1985-01-15
TR22309A (en) 1987-01-20
EP0077027A3 (en) 1984-04-25

Similar Documents

Publication Publication Date Title
US8038742B2 (en) Fuel for homogeneous charge compression ignition engine
EP1153110B1 (en) Fuel formulations to extend the lean limit
US20110023355A1 (en) Combustible Mixed Butanol Fuels
Qi et al. Properties, performance, and emissions of methanol-gasoline blends in a spark ignition engine
Gopinath et al. Experimental investigation on the effect of adding di methyl carbonate to gasoline in a SI engine performance
JPH036958B2 (en)
Chockalingam et al. Performance and emission analysis of a single cylinder constant speed diesel engine fuelled with diesel-methanol-isopropyl alcohol blends
JP4109045B2 (en) Fuel for premixed compression self-ignition engines
RU2129141C1 (en) Gasoline additive and fuel composition
JP2004091657A (en) Fuel for premixed compressed self-ignition type engine
JPS61207496A (en) Fuel for internal-combustion engine
JP4458405B2 (en) Fuel for premixed compression self-ignition engines
CN108003951B (en) Multifunctional auxiliary agent for alcohol gasoline and preparation method thereof
RU2337129C1 (en) Ash-free high-octane additive to automobile gasoline
RU2235117C1 (en) High-antiknock motor gasoline additive
JP4109053B2 (en) Fuel for premixed compression self-ignition engines
RU2813456C1 (en) Oxygen-containing composite diesel fuel
Noor Annajaf City Naphtha as a Commercial Alternative Fuel for SI Engines in Iraq
JP4109049B2 (en) Fuel for premixed compression self-ignition engines
US20150047251A1 (en) Fuels and fuel additives comprising ester derivatives of 5-methyl-2-furoic acid
JP4109047B2 (en) Fuel for premixed compression self-ignition engines
Shahad et al. Ethanol as an octane enhancer for the commercial gasoline fuels
JP4109051B2 (en) Fuel for premixed compression self-ignition engines
Alimin et al. A review on the performance of non-additive blended fuel (ethanol-gasoline) in spark ignition engines
JP4109054B2 (en) Fuel for premixed compression self-ignition engines