JPH0368939B2 - - Google Patents

Info

Publication number
JPH0368939B2
JPH0368939B2 JP59069824A JP6982484A JPH0368939B2 JP H0368939 B2 JPH0368939 B2 JP H0368939B2 JP 59069824 A JP59069824 A JP 59069824A JP 6982484 A JP6982484 A JP 6982484A JP H0368939 B2 JPH0368939 B2 JP H0368939B2
Authority
JP
Japan
Prior art keywords
amount
printing
properties
less
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59069824A
Other languages
Japanese (ja)
Other versions
JPS60215728A (en
Inventor
Mamoru Matsuo
Yutaka Okuda
Kazunari Takizawa
Hirokazu Sakaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP59069824A priority Critical patent/JPS60215728A/en
Priority to EP85104145A priority patent/EP0158941B2/en
Priority to DE8585104145T priority patent/DE3582263D1/en
Publication of JPS60215728A publication Critical patent/JPS60215728A/en
Priority to US07/089,111 priority patent/US4861396A/en
Publication of JPH0368939B2 publication Critical patent/JPH0368939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はオフセツト印刷用支持体または平版
印刷用支持体に用いるアルミニウム合金素板(以
下印刷用アルミニウム合金素板という)に関する
ものである。 従来一般に印刷用アルミニウム合金素板として
は、板厚0.1〜0.5mm程度のJIS規格のA1050P、
A1100P、あるいはA3003P等の圧延板が使用され
ていた。これらの印刷用素板は、通常は半連続鋳
造により得られた鋳塊の表面を面削により除去し
て、必要に応じて均質化処理を施した後、所定の
温度に加熱して熱間圧延し、その後20〜95%の加
工率で冷間圧延して中間板厚とするか、あるいは
板厚12mm以下のコイルを連続鋳造によつて直接鋳
造し、熱間圧延工程を経ることなくそのまま冷間
圧延して中間板厚とし、次いでその中間板厚の板
に対して中間焼鈍を施した後、必要な機械的性質
を得るために20〜95%の加工率で最終冷間圧延を
施すことにより製造されている。 このような印刷用アルミニウム合金素板を実際
に印刷に使用するにあたつては、先ず素板表面を
機械的方法、化学的方法、電気化学的方法のいず
れかひとつ、あるいは2つ以上組み合わされた工
程により粗面化した後、好ましくは陽極酸化処理
を施してから感光剤を塗布して露光し、現像等の
製版処理を行ない、次いで感光皮膜の強度を向上
させて耐刷性を向上させるために250〜300℃で短
時間加熱処理(これををバーニング処理と称す)
を施し、印刷機の円筒形版胴に巻き付け、湿し水
の存在下でインクを画像部に付着させ、ゴムブラ
ンケツトに転写後紙面に印刷する。 上述の如く使用される印刷用アルミニウム合金
素板には、以下の(A)、(B)、(C)に記すような特性が
要求される。 (A) 粗面化処理によつて均一に凹凸を形成するこ
とができ、粗面化後にムラが生ぜず、かつ適当
な色調を呈すること。このように均一かつ適切
に粗面化し得る性能を以下「表面処理性」と称
す。 (B) バーニング処理による強度の低下が少ないこ
と。以下このような性能を「バーニング性」と
称す。 (C) 印刷中に非画像部にインク汚れが生じないこ
と。これを以下「インク汚れ性」と称する。 これらの特性のうち、(A)の表面処理性が劣る場
合には、粗面化後の色調が白つぽくなつたり逆に
黒つぽくなり過ぎ、また場合によつては色むらを
生じ、商品価値が低下する。また粗面化後の凹凸
は耐刷力や画像の鮮明さにも大きな影響を及ぼす
から、表面処理性が良好で粗面化後の凹凸が均一
であることは印刷板において基本的に重要な条件
である。ここで、粗面化処理を電解エツチングに
より行なう場合、電解条件、エツチング液の種類
により粗面の状態が種々に変化するのは当然であ
るが、現象がアルミニウム表面と電解液との電気
化学的反応である以上、素材自体と特性(表面処
理性)の寄与も無視できないことは勿論である。
しかしながら従来の印刷用アルミニウム合金素板
においては、粗面化のための表面処理性について
深く検討されておらず、必ずしも充分な表面処理
性を持つとはいえないのが実情であつた。 一方(B)のバーニング性に関して、アルミニウム
合金板を支持体とするPS版を通常の方法で露光、
現像処理した後、高温で加熱処理(いわゆるバー
ニング処理)することにより画像部を強化する方
法が有効であることは、特公昭44−27243号公報、
特公昭44−27244号公報に詳細に記載されており、
このようなバーニング処理の加熱温度および時間
は画像を形成している樹脂の種類にもよるが、
200〜280℃の範囲内で3〜7分間の範囲が通例と
されている。しかるに近年、耐刷性の向上とバー
ニング処理時間の短縮のために、バーニング処理
をより高温で行なうことが望まれるようになつて
いる。しかしながら従来から使用されてきたアル
ミニウム合金板は280℃以上の高温で加熱した場
合、再結晶現象が生じて強度が極度に低下し、版
の腰がなくなるために版の取扱いが極めて困難と
なり、印刷機への版のセツトが不可能となつた
り、多色刷りにおける版の色の見当合わせができ
ないなどの欠点が生じる。そこで高温でのバーニ
ング処理に耐え得る、耐熱性の富むアルミニウム
合金板すなわちバーニング性に優れた印刷用アル
ミニウム合金素板の開発が強く望まれている。 さらに(C)のインク汚れ性に関しては、印刷中
に、非画像部にインクが付着して印刷物が汚れる
ことは、印刷板として基本的に避けなければなら
ないことである。この印刷中のインク汚れは、本
発明者等の研究によれば、印刷板が湿し水と反応
して生じる局部的な腐食が主な原因であることが
判明した。 この発明は以上の事情を背景としてなされたも
のであり、上述の3特性、すなわち表面処理性、
バーニング性、およびインク汚れ性のすべての点
に優れた印刷用アルミニウム合金素板を提供する
ことを目的とするものである。 本発明者等は上述の目的を達成するべく、上述
の特性に影響を及ぼすアルミニウム合金素板の化
学成分および素板の製造工程中の中間焼鈍条件に
ついて鋭意実験・検討を重ねた結果、表面処理性
に対しては素材中のSi層とCu量およびMg量が、
バーニング性に対しては素材中のSi量と中間焼鈍
温度が、インク汚れ性に対してはSi量が、それぞ
れ強く影響を及ぼすことを見出し、この発明をな
すに至つた。 すなわち、先ず表面処理性については、素材中
のSi量が多い程、均一な粗面が得られ、またこの
均一な粗面が得られるSi量範囲は、素材中のCu
量とMg量との差すなわち(Cu−Mg)量により
影響され、(Cu−Mg)量が多ければより低いSi
量まで良好な粗面が得られる範囲が拡大すること
を見出した。一方バーニング性については、逆に
素材中のSi量が少ない程、また中間焼鈍温度が高
い程、バーニング処理後の強度低下が少ないこと
が判明した。さらにインク汚れ性については、素
材中のSi量が少ない程、良好なインク汚れ性を有
することを見出した。そしてこれらの知見から、
(Cu−Mg)≧0の条件範囲において、表面処理
性、バーニング性、インク汚れ性の3特性を同時
に満足するSi量範囲(但しCu−Mg量および中間
焼鈍温度に応じたSi量範囲)が存在することを見
出し、この発明を完成した。 具体的には、この発明の印刷用アルミニウム合
金素板は、アルミニウム合金素材に300〜550℃、
24時間以下の中間焼鈍後、20〜95%の加工率の冷
間圧延を施して得られる圧延板であつて、合金組
成がSi0.08%以下、Fe0.05〜1.0%、Cu0.03%以
下、Ti0.10%以下、不純物としてのMg0.03%以
下、残部不可避的不純物およびAlとされ、かつ
Si量(Si%)が、Cu量(Cu%)、Mg量(Mg%)
および中間焼鈍温度T(℃)に応じて、次の(1)、
(2)式を満足する範囲内、またCu量とMg量との差
が次の(3)式を満足する範囲内としたことを特徴と
する、表面処理性、バーニング性およびインク汚
れ性の3特性に優れた印刷用アルミニウム合金素
板である。 (Si%)≧0.08−4{(Cu%)−(Mg%)} ……(1) (Si%≦2T/625−1.28 ……(2) 0≦{(Cu%)−(Mg%)}≦0.03 ……(3) さらにこの発明の印刷用アルミニウム合金素板
について詳細に説明する。 先ず表面処理性については、前述のように素材
中のSi量が多い程、粗面化処理後の表面の凹凸が
均一となり、またそのためのSi量はCu量とMg量
との差、すなわち(Cu−Mg)量に影響され、
(Cu−Mg)量が多いほどより低いSi量まで均一
な凹凸が得られるようになる。本発明者等の詳細
な実験の結果、優れた表面処理性を得るために
は、素材中のSi量が(Cu−Mg)量に応じて前記
(1)式を満足していることが必要であることが判明
した。この(1)式のSi量の範囲と中間焼鈍温度Tの
範囲とを、(Cu−Mg)量が0.01%の場合を例に
とつて示せば、第1図の線ABよりも上の領域と
なる。この直線ABより下の領域では、粗面化処
理後の粗面の凹凸が不規則となり、均一な粗面を
形成することができない。なおこの直線ABの位
置は、(1)式に従つて(Cu−Mg)量により上下
し、特に(Cu−Mg)量が多くなるに従つて直線
ABは下方に下がる。 次にバーニング性に対しては、Si量と中間焼鈍
温度が関係し、Si量が少ない程、また中間焼鈍温
度が高い程、バーニング処理後の強度低下が少な
い。本発明者等の詳細な実験によれば、Si量が中
間焼鈍温度T(℃)に関連して、前記(2)式の範囲
内を満足する場合に、バーニング処理後の強度低
下を実用上支障ない程度まで抑制できることが判
明した。この(2)式の範囲を図示すれば、第1図の
直線CDよりも右側の領域となる。この直線CDよ
り左側の領域では、バーニング処理後の強度低下
が大きく、例えば270℃×7分のバーニング処理
後に0.2%耐力が5Kg/mm2以下となり好ましくな
い。 さらにインク汚れ性については、素材中のSi量
が少ないほど非画像部のインク汚れが少ない。本
発明者等の詳細な実験によれば、良好なインク汚
れ性を得るためには素材中のSi量を0.08%以下と
する必要があることが判明した。このSi0.08%以
下の領域は、第1図において直線EFよりも下側
の領域となる。Siが0.08%よりも多ければ、印刷
中に非画像部にインクが付着して印刷物が汚れ易
くなる。 さらに中間焼鈍温度Tは後に説明するように
300〜550℃の範囲内とする必要があり、この範囲
は第1図の直線GHの右側、直線IJの左側の領域
となる。結局、以上の諸条件を第1図についてま
とめれば、4直線AB、CD、EF、IJによつて囲
まれる斜線領域、すなわちP1−P2−P3−P4の範
囲内の領域が、前述の3特性すなわち表面処理
性、バーニング性およびインク汚れ性を満足する
Si量、中間焼鈍温度の範囲となる。 なお、直線ABの位置は前述のように(1)式に従
つて(Cu−Mg)量により上下し、(Cu−Mg)
量が減少して0%となれば直線ABが直線EFと一
致してしまう。したがつてP1−P2−P3−P4の領
域が実際に存在するためには、(Cu−Mg)量が
0%以上であることが必要である。逆に(Cu−
Mg)量が増大すれば直線ABが下方に下がつて、
3特性を満足する領域が拡大する。但し、後述す
るようにCu量は最大0.03%、Mg量は最小0%で
あるから、(Cu−Mg)量は最大限0.03%である。
したがつて(Cu−Mg)量については(3)式に示す
ように0.03〜0%の範囲と規定した。なお(Cu−
Mg)量が0.03%以下であれば、バーニング性、
インク汚れ性になんら影響を及ぼさない。 さらにこの発明の印刷用アルミニウム合金素板
の素材成分のうち、Si以外の成分についてその限
定理由を説明する。 Feは0.05%未満では表面処理性が劣り、機械的
特性も不足する。一方Feが1.0%を越えればイン
ク汚れ性が劣化し、粗面化処理後の色調が黒みを
帯び過ぎ、好ましくない。したがつてFeは0.05〜
1.0%の範囲内とした。 Tiは鋳塊の結晶粒を均一かつ微細とする目的
で添加されるものであるが、0.10%を越えればそ
の効果は飽和し、いたずらにコスト上昇を招くだ
けであるから、0.10%以下に限定した。なおこの
目的のためのTi添加手段としては、Al−Ti母合
金を用いるよりもAl−Ti−B母合金を用いた方
が効果が大きい。この場合Bを含有することにな
るが、TiB2粒子による線状欠陥の発生を防ぐた
めにBの含有量は0.02%以下に抑えることが好ま
しい。 Cuは表面処理性を改善するために添加される
が、0.03%を越えて添加すればインク汚れ性が劣
化するから、Cuの上限は0.03%とした。 不純物であるMgは、表面処理性を劣化させる
が、Mgが0.03%以内であれば適量のCuと共存す
ることにより表面処理性を劣化させない。
Mg0.03%を越えればCuと共存しても表面処理性
を劣化させるから、Mgは0.03%以下に規制する
必要がある。 そのほかの不可避的に微量含有される不純物
は、表面処理性、インク汚れ性、バーニング性に
特に悪影響を及ぼさない。 次にこの発明の印刷用アルミニウム合金素板の
製造工程条件について説明すると、中間焼鈍工程
の前までの工程条件は表面処理性、バーニング
性、インク汚れ性に特に影響を与えず、したがつ
て通常の方法を採用すれば良い。すなわち、中間
焼鈍までの工程は、通常は、半連続鋳造された鋳
塊の表面を面削により除去した後、必要に応じて
均質化処理を施し、熱間圧延前に所定の温度に加
熱して熱間圧延し、その後20〜95%の加工率で冷
間圧延するか、あるいは板厚12mm以下の連続鋳造
コイルを直接鋳造し、熱間圧延工程を経ることな
くそのまま冷間圧延する工程を採用する。このよ
うにして中間板厚となつた後には、300〜550℃に
おいて24時間以下の中間焼鈍を施し、続いて必要
な機械的強度を得るために20〜95%の加工率の最
終冷間圧延を施す。この中間焼鈍の条件限定理由
は次の通りである。すなわち中間焼鈍温度が300
℃未満では充分な再結晶を起さないため鋳焼鈍と
しては不適当であり、一方550℃以上では二次再
結晶が生じて再結晶粒が著しく粗大化し、さらに
表面の酸化によるムラの発生やフクレが生じて印
刷用素板として不適当となる。なお中間焼鈍温度
は実際には前述のように素材中のSi量との関係に
よつても規制される。一方中間焼鈍時間は、24時
間を越えれば焼鈍効果が飽和し、経済的に不利益
となるだけであるから、最大24時間とする。 以下に実施例をもつてこの発明の効果を明らか
にする。 実施例 第1表の試料番号1〜11に示す各種の本発明合
金及び比較合金を溶製し、半連続鋳造により450
mm×1200mm×3500mmのスラブに鋳造した。そのス
ラブに対して片面7mmずつの面削を行なつた後、
550℃で12時間の均質化処理を施し、続いて500℃
で熱間圧延を開始し、板厚5mmの熱延板に仕上げ
た。次に板厚1.2mmまで冷間圧延したのちこれを
定置式の焼鈍炉内で第2表中に示す各温度で中間
焼鈍した。この定置式焼鈍の際の昇温速度は約50
℃/Hrとし、焼鈍温度到達後の保持時間は2時
間とした。次いでこの中間焼鈍後のコイルを板厚
0.3mmまで冷間圧延することによりオフセツト印
刷用素板を得た。これらの試料1〜11のSi量と中
間焼鈍温度を第2図中に×印でプロツトして示
す。なお第2図において、線A−P4−P3−Bは
(Cu−Mg)量が0.01%の場合における前記(1)式
によるSi量下限(0.04%)を示し、線A′−P4′−
P3′−Bは(Cu−Mg)量が0.015%の場合におけ
る前記(1)式によるSi量下限(0.02%)を示す。 この実施例により得られた各素板をブラツシン
グにより機械的に粗面化した後、10%NaOH水
溶液中で50℃×1分間予備エツチングし、続いて
硝酸系エツチング液を用いて35℃で交流電解を行
なうことにおり電気化学的に粗面化処理を行なつ
た。その後15%H2SO4浴中で陽極酸化処理によ
り1μmの陽極酸化皮膜を形成し、続いて感光剤
を塗布してオフセツト印刷用PS版を製造した。
これに所定の露光・現像処理した後、280℃×7
分のバーニング処理を施した。このようにして得
られた原版を用いて、湿し水の存在の下に10万部
の印刷テストを行なつた。 これらの本発明合金及び比較合金の性能の調査
結果を第2表に併せて示す。なお、表面処理性に
ついては、電気化学的粗面化処理後の粗面の凹凸
の均一性が得られたか否かをチエツクし、○…良
好、×…不良で区別した。バーニング後の強度は
280℃×7分のバーニング処理後の0.2%耐力値で
示した。またインク汚れ性については10万部印刷
後の非画像部の汚れをチエツクし、○…良好、×
…不良で区別した。
The present invention relates to an aluminum alloy base plate used as a support for offset printing or a support for lithographic printing (hereinafter referred to as an aluminum alloy base plate for printing). Conventionally, aluminum alloy base plates for printing have generally been JIS standard A1050P with a plate thickness of approximately 0.1 to 0.5 mm.
Rolled plates such as A1100P or A3003P were used. These printing blanks are usually produced by removing the surface of the ingot obtained by semi-continuous casting by face milling, applying homogenization treatment as necessary, and then heating it to a predetermined temperature to heat it. Rolled and then cold-rolled at a working rate of 20 to 95% to obtain an intermediate thickness, or directly cast a coil with a thickness of 12 mm or less by continuous casting without going through the hot rolling process. Cold rolled to an intermediate thickness, then intermediate annealed to the intermediate thickness plate, followed by final cold rolling at a reduction rate of 20-95% to obtain the required mechanical properties. It is manufactured by When actually using such a printing aluminum alloy base plate for printing, the surface of the base plate is first processed by one or more of mechanical, chemical, and electrochemical methods, or by a combination of two or more methods. After the surface is roughened by the process described above, it is preferably subjected to an anodizing treatment, then a photosensitive agent is applied and exposed, and plate making processing such as development is performed, and then the strength of the photosensitive film is improved to improve printing durability. Heat treatment at 250-300℃ for a short time (this is called burning treatment)
The ink is then wrapped around the cylindrical plate cylinder of a printing press, the ink is deposited on the image area in the presence of dampening water, and the ink is transferred to a rubber blanket and printed on the paper surface. The printing aluminum alloy base plate used as described above is required to have the following properties (A), (B), and (C). (A) It is possible to form unevenness uniformly through surface roughening treatment, there is no unevenness after surface roughening, and the surface has an appropriate color tone. The ability to roughen the surface uniformly and appropriately in this manner is hereinafter referred to as "surface treatability." (B) There is little decrease in strength due to burning treatment. Hereinafter, such performance will be referred to as "burning property". (C) No ink stains will occur in non-image areas during printing. This is hereinafter referred to as "ink stain resistance." Among these characteristics, if the surface treatment properties of (A) are poor, the color tone after roughening may become whitish or too dark, and in some cases, color unevenness may occur. Product value decreases. In addition, since the unevenness after roughening has a great effect on printing durability and image clarity, it is fundamentally important for printing plates to have good surface treatment properties and uniform unevenness after roughening. It is a condition. When the surface roughening treatment is carried out by electrolytic etching, it is natural that the condition of the roughened surface changes variously depending on the electrolytic conditions and the type of etching solution, but the phenomenon is caused by the electrochemical interaction between the aluminum surface and the electrolytic solution. Since it is a reaction, it goes without saying that the contribution of the material itself and its properties (surface treatment properties) cannot be ignored.
However, in conventional printing aluminum alloy base plates, the surface treatment properties for roughening have not been deeply studied, and the reality is that they cannot necessarily be said to have sufficient surface treatment properties. On the other hand, regarding the burning property of (B), a PS plate with an aluminum alloy plate as a support was exposed in the usual way.
It is reported in Japanese Patent Publication No. 44-27243 that it is effective to strengthen the image area by heat treatment at high temperature (so-called burning treatment) after development.
It is described in detail in Special Publication No. 44-27244,
The heating temperature and time of this burning process depend on the type of resin forming the image, but
A temperature range of 200 to 280°C for 3 to 7 minutes is customary. However, in recent years, it has become desirable to perform the burning process at a higher temperature in order to improve printing durability and shorten the burning process time. However, when the conventionally used aluminum alloy plate is heated to a high temperature of 280°C or higher, a recrystallization phenomenon occurs, resulting in an extremely low strength and loss of stiffness, making it extremely difficult to handle the plate. There are disadvantages such as the inability to set the plate on the machine and the inability to register the colors of the plate in multicolor printing. Therefore, there is a strong desire to develop an aluminum alloy plate with high heat resistance that can withstand burning treatment at high temperatures, that is, an aluminum alloy base plate for printing with excellent burning properties. Furthermore, regarding (C) ink staining, printing plates must basically avoid ink from adhering to non-image areas during printing and staining the printed matter. According to research conducted by the present inventors, it has been found that the main cause of this ink stain during printing is localized corrosion caused by the reaction of the printing plate with dampening water. This invention was made against the background of the above-mentioned circumstances, and has the above-mentioned three characteristics, namely, surface treatability,
The object of the present invention is to provide an aluminum alloy base plate for printing that is excellent in all aspects of burning property and ink staining property. In order to achieve the above-mentioned purpose, the present inventors conducted extensive experiments and studies on the chemical composition of aluminum alloy blanks that affect the above-mentioned properties and the intermediate annealing conditions during the blank manufacturing process, and found that the surface treatment The Si layer, Cu content, and Mg content in the material affect the
The inventors discovered that the amount of Si in the material and the intermediate annealing temperature have a strong influence on the burning property, and the amount of Si has a strong influence on the ink staining property, leading to the creation of this invention. In other words, first of all, regarding surface treatment properties, the higher the amount of Si in the material, the more uniformly rough the surface can be obtained.
It is influenced by the difference between the Si content and the Mg content, that is, the (Cu−Mg) content, and the higher the (Cu−Mg) content, the lower the Si
It has been found that the range in which a good rough surface can be obtained is expanded depending on the amount. On the other hand, regarding burnability, it was found that the lower the amount of Si in the material and the higher the intermediate annealing temperature, the less the decrease in strength after burning treatment. Furthermore, regarding ink stain resistance, it was found that the smaller the amount of Si in the material, the better the ink stain resistance. And from these findings,
In the condition range of (Cu-Mg)≧0, there is a Si amount range that simultaneously satisfies the three properties of surface treatment properties, burning properties, and ink stain resistance (however, the Si amount range depending on the Cu-Mg amount and intermediate annealing temperature). discovered that it exists and completed this invention. Specifically, the printing aluminum alloy base plate of the present invention is heated to an aluminum alloy material of 300 to 550°C.
A rolled plate obtained by cold rolling at a processing rate of 20 to 95% after intermediate annealing for 24 hours or less, with an alloy composition of Si 0.08% or less, Fe 0.05 to 1.0%, Cu 0.03%. Below, Ti is 0.10% or less, Mg is 0.03% or less as impurities, and the remainder is unavoidable impurities and Al.
Si amount (Si%), Cu amount (Cu%), Mg amount (Mg%)
And depending on the intermediate annealing temperature T (℃), the following (1),
The surface treatment property, the burning property, and the ink stain resistance are within the range that satisfies the formula (2), and the difference between the Cu content and the Mg content is within the range that satisfies the following formula (3). This is an aluminum alloy base plate for printing with excellent three properties. (Si%)≧0.08−4 {(Cu%)−(Mg%)} ……(1) (Si%≦2T/625−1.28 ……(2) 0≦{(Cu%)−(Mg%) }≦0.03 ...(3) Further, the aluminum alloy base plate for printing of the present invention will be explained in detail. First, regarding surface treatment properties, as mentioned above, the higher the amount of Si in the material, the more difficult it will be after roughening treatment. The unevenness of the surface becomes uniform, and the amount of Si for this purpose is influenced by the difference between the amount of Cu and the amount of Mg, that is, the amount of (Cu−Mg),
The larger the amount of (Cu-Mg), the more uniform the unevenness can be obtained even when the amount of Si is lower. As a result of detailed experiments by the present inventors, in order to obtain excellent surface treatment properties, the amount of Si in the material must be adjusted according to the amount of (Cu-Mg).
It has been found that it is necessary to satisfy equation (1). The range of Si content and the range of intermediate annealing temperature T in equation (1) are shown using the case where the (Cu-Mg) content is 0.01% as an example. becomes. In the region below this straight line AB, the unevenness of the roughened surface after the roughening treatment becomes irregular, making it impossible to form a uniform roughened surface. Note that the position of this straight line AB changes depending on the amount of (Cu−Mg) according to equation (1), and especially as the amount of (Cu−Mg) increases, the position of the straight line AB changes.
AB goes down. Next, the amount of Si and the intermediate annealing temperature are related to the burning property, and the lower the amount of Si and the higher the intermediate annealing temperature, the less the decrease in strength after the burning process. According to detailed experiments by the present inventors, when the amount of Si satisfies the range of equation (2) above in relation to the intermediate annealing temperature T (°C), the strength decrease after the burning process can be effectively reduced. It has been found that this can be suppressed to an extent that causes no problems. If the range of this equation (2) is illustrated, it is the area to the right of the straight line CD in FIG. In the region to the left of this straight line CD, the strength decreases significantly after the burning treatment, and for example, after the burning treatment at 270° C. for 7 minutes, the 0.2% yield strength becomes 5 Kg/mm 2 or less, which is not preferable. Furthermore, regarding ink stain resistance, the lower the amount of Si in the material, the less ink stain in non-image areas. According to detailed experiments conducted by the present inventors, it has been found that in order to obtain good ink stain resistance, the amount of Si in the material needs to be 0.08% or less. This region where Si is 0.08% or less is the region below the straight line EF in FIG. If the Si content is more than 0.08%, ink will adhere to non-image areas during printing, making printed matter more likely to become stained. Furthermore, the intermediate annealing temperature T is as explained later.
It needs to be within the range of 300 to 550°C, and this range is the area on the right side of the straight line GH and the left side of the straight line IJ in FIG. After all, if we summarize the above conditions with respect to Figure 1, the diagonally shaded area surrounded by the four straight lines AB, CD, EF, and IJ, that is, the area within the range of P 1 - P 2 - P 3 - P 4 , is Satisfies the three properties mentioned above, namely surface treatment properties, burning properties, and ink staining properties.
The range of Si content and intermediate annealing temperature. In addition, as mentioned above, the position of the straight line AB increases or decreases depending on the amount of (Cu−Mg) according to equation (1), and (Cu−Mg)
If the amount decreases to 0%, the straight line AB will coincide with the straight line EF. Therefore, in order for the region P1 - P2 - P3 - P4 to actually exist, the amount of (Cu-Mg) needs to be 0% or more. On the contrary, (Cu−
As the amount of Mg) increases, the straight line AB will move downward,
The area that satisfies the three characteristics will expand. However, as will be described later, the maximum amount of Cu is 0.03% and the minimum amount of Mg is 0%, so the maximum amount of (Cu-Mg) is 0.03%.
Therefore, the amount of (Cu-Mg) was specified to be in the range of 0.03 to 0% as shown in equation (3). Note that (Cu−
If the amount of Mg) is 0.03% or less, burning property,
It has no effect on ink staining properties. Furthermore, the reasons for limiting the components other than Si among the material components of the printing aluminum alloy base plate of the present invention will be explained. If Fe is less than 0.05%, surface treatment properties are poor and mechanical properties are also insufficient. On the other hand, if Fe exceeds 1.0%, the ink stain resistance deteriorates and the color tone after surface roughening treatment becomes too dark, which is not preferable. Therefore, Fe is 0.05 ~
It was set within the range of 1.0%. Ti is added to make the crystal grains of the ingot uniform and fine, but if it exceeds 0.10%, its effect will be saturated and it will only unnecessarily increase costs, so it should be limited to 0.10% or less. did. Note that as a means for adding Ti for this purpose, it is more effective to use an Al-Ti-B mother alloy than to use an Al-Ti mother alloy. In this case, B is contained, but it is preferable to suppress the B content to 0.02% or less in order to prevent the generation of linear defects due to TiB 2 particles. Cu is added to improve surface treatment properties, but if added in excess of 0.03%, ink staining properties deteriorate, so the upper limit of Cu was set at 0.03%. Mg, which is an impurity, deteriorates surface treatment properties, but if Mg is within 0.03%, it coexists with an appropriate amount of Cu and does not deteriorate surface treatment properties.
If Mg exceeds 0.03%, surface treatment properties deteriorate even if it coexists with Cu, so Mg needs to be regulated to 0.03% or less. Other impurities that are unavoidably contained in trace amounts do not particularly adversely affect surface treatment properties, ink staining properties, and burning properties. Next, to explain the manufacturing process conditions of the printing aluminum alloy base plate of the present invention, the process conditions before the intermediate annealing process do not particularly affect surface treatment properties, burning properties, and ink stain resistance, and therefore are normal. You should adopt this method. In other words, in the process up to intermediate annealing, the surface of the semi-continuously cast ingot is removed by face milling, then homogenized if necessary, and heated to a predetermined temperature before hot rolling. The coil is hot-rolled and then cold-rolled at a processing rate of 20 to 95%, or a continuously cast coil with a thickness of 12 mm or less is directly cast and then cold-rolled without going through the hot-rolling process. adopt. After reaching the intermediate thickness in this way, it is subjected to intermediate annealing at 300 to 550°C for up to 24 hours, followed by final cold rolling at a working rate of 20 to 95% to obtain the necessary mechanical strength. administer. The reasons for limiting the intermediate annealing conditions are as follows. That is, the intermediate annealing temperature is 300
At temperatures below 550°C, sufficient recrystallization does not occur, making it unsuitable for casting annealing.On the other hand, at temperatures above 550°C, secondary recrystallization occurs, causing the recrystallized grains to become significantly coarser and causing unevenness due to surface oxidation. Blisters occur and the plate becomes unsuitable as a printing plate. Note that the intermediate annealing temperature is actually regulated also by the relationship with the amount of Si in the material as described above. On the other hand, the intermediate annealing time is set to a maximum of 24 hours because if it exceeds 24 hours, the annealing effect will be saturated and it will only be economically disadvantageous. The effects of this invention will be clarified with examples below. Examples Various inventive alloys and comparative alloys shown in sample numbers 1 to 11 in Table 1 were melted and semi-continuously cast to 450
It was cast into a slab of mm x 1200 mm x 3500 mm. After facing the slab by 7mm on each side,
Homogenization treatment at 550°C for 12 hours followed by 500°C
Hot rolling was started, and a hot-rolled plate with a thickness of 5 mm was completed. Next, after cold rolling to a thickness of 1.2 mm, this was intermediately annealed in a stationary annealing furnace at each temperature shown in Table 2. The temperature increase rate during this stationary annealing is approximately 50
°C/Hr, and the holding time after reaching the annealing temperature was 2 hours. Next, the coil after this intermediate annealing is made into a plate with a plate thickness.
A base plate for offset printing was obtained by cold rolling to 0.3 mm. The Si content and intermediate annealing temperature of these samples 1 to 11 are plotted with x marks in FIG. In FIG. 2, the line A-P 4 -P 3 -B indicates the lower limit of the amount of Si (0.04%) according to the above formula (1) when the amount of (Cu-Mg) is 0.01%, and the line A'-P 4′−
P 3 '-B indicates the lower limit of the amount of Si (0.02%) according to the above formula (1) when the amount of (Cu-Mg) is 0.015%. After roughening the surface of each blank plate obtained in this example mechanically by brushing, it was pre-etched in a 10% NaOH aqueous solution at 50°C for 1 minute, followed by alternating current etching at 35°C using a nitric acid-based etching solution. The surface was roughened electrochemically by electrolysis. Thereafter, a 1 μm thick anodic oxide film was formed by anodizing in a 15% H 2 SO 4 bath, and then a photosensitizer was applied to produce a PS plate for offset printing.
After the prescribed exposure and development treatment, 280℃ x 7
Burning treatment was applied. Using the original plate thus obtained, a 100,000-copy printing test was conducted in the presence of dampening water. Table 2 also shows the results of investigating the performance of these invention alloys and comparative alloys. Regarding the surface treatment properties, it was checked whether the roughness of the roughened surface after the electrochemical surface roughening treatment was uniform, and the results were classified as ○: good, and ×: poor. The strength after burning is
It is shown as the 0.2% proof stress value after burning treatment at 280°C for 7 minutes. Regarding ink stain resistance, we checked the stains in the non-image area after printing 100,000 copies, ○...Good, ×
...Distinguished by defect.

【表】【table】

【表】【table】

【表】 第2表に示すように、この発明の範囲内の印刷
用アルミニウム合金素板の場合(試料番号1、
2、3)には、表面処理性、バーニング性、イン
ク汚れ性のすべての点で優れていることが明らか
である。一方比較例の合金(試料番号4〜11)の
うち、試料番号4、5、8、10、11はSi量が
(Cu−Mg)量との関連において前記(1)式を満足
しないため、表面処理性が劣り、また試料番号
7、8、9、10はSi量が中間焼鈍温度との関連に
おいて前記(2)式を満足しないためバーニング処理
後の耐力が劣り、さらに試料番号6、9、10、11
はSi量が0.08%を越えているためインク汚れ性が
劣つている。したがつて表面処理性、バーニング
性、インク汚れ性の全てを満足するためには、こ
の発明の全ての条件を満足する必要があることが
わかる。 なお上述の実施例においては、中間焼鈍を定置
式のバツチ式焼鈍で行なつた例について示したが
コイルを巻き戻しながら高温に保持された加熱炉
内を通過させることによつて焼鈍を行なういわゆ
る連続焼鈍方式による中間焼鈍を適用しても良い
ことは勿論である。 前述の説明で明らかなように、この発明の印刷
用アルミニウム合金素板は、粗面化処理に対する
表面処理性が優れていて、粗面化処理性によつて
均一にムラなく凹凸を形成することができるとと
もに粗面化処理によつて適切な色調を得ることが
でき、またバーニング性が優れていて、バーニン
グ処理後の機械的強度の低下が少なく、そのため
耐刷性向上とバーニング処理時間の短縮のために
高温で短時間のバーニング処理を行なうことが可
能となり、さらにはインク汚れ性が優れていて、
印刷中における非画像部へのインクの付着による
印刷物の汚れを有効に防止でき、この素板を用い
た印刷版で印刷したところ良好な印刷物を得るこ
とができた。したがつてこの発明の印刷用アルミ
ニウム合金素板は、オフセツト印刷用支持体ある
いは平版印刷用支持体として極めて有益なもので
ある。
[Table] As shown in Table 2, in the case of aluminum alloy base plates for printing within the scope of this invention (sample number 1,
2 and 3) are clearly superior in all aspects of surface treatment properties, burning properties, and ink staining properties. On the other hand, among the comparative example alloys (sample numbers 4 to 11), sample numbers 4, 5, 8, 10, and 11 do not satisfy formula (1) above in relation to the amount of Si in (Cu-Mg), so In addition, sample numbers 7, 8, 9, and 10 have poor yield strength after burning treatment because the amount of Si does not satisfy the above formula (2) in relation to the intermediate annealing temperature. , 10, 11
Since the Si content exceeds 0.08%, the ink stain resistance is poor. Therefore, it can be seen that in order to satisfy all of the surface treatment properties, burning properties, and ink staining properties, it is necessary to satisfy all the conditions of the present invention. In the above embodiments, intermediate annealing was performed by stationary batch annealing, but it is also possible to perform annealing by passing the coil through a heating furnace maintained at a high temperature while unwinding it. Of course, intermediate annealing using a continuous annealing method may be applied. As is clear from the above description, the printing aluminum alloy base plate of the present invention has excellent surface treatment properties for surface roughening treatment, and can form irregularities evenly and evenly through surface roughening treatment. It is possible to obtain an appropriate color tone through surface roughening treatment, and it also has excellent burning properties, resulting in less decrease in mechanical strength after burning treatment, which improves printing durability and shortens burning treatment time. This makes it possible to perform a burning process at high temperatures for a short time, and it also has excellent ink stain resistance.
It was possible to effectively prevent printed matter from staining due to ink adhesion to non-image areas during printing, and when printing with a printing plate using this base plate, good printed matter could be obtained. Therefore, the printing aluminum alloy base plate of the present invention is extremely useful as a support for offset printing or a support for lithographic printing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のアルミニウム合金素材にお
ける素材中のSi量(wt%)および中間焼鈍温度
(℃)の条件範囲を示すための線図、第2図は実
施例の各合金のSi量および中間焼鈍温度を第1図
同様の線図にプロツトして示す図である。
Fig. 1 is a diagram showing the Si content (wt%) in the aluminum alloy material of the present invention and the condition range of intermediate annealing temperature (°C), and Fig. 2 shows the Si content and condition range of each alloy of the examples. 2 is a diagram showing intermediate annealing temperatures plotted on a diagram similar to FIG. 1; FIG.

Claims (1)

【特許請求の範囲】 1 アルミニウム合金素材に300〜550℃、24時間
以下の中間焼鈍後20〜95%の加工率の冷間圧延を
施して得られる印刷用アルミニウム合金素板にお
いて、 素材の合金組成が、Si0.08%(重量%、以下同
じ)以下、Fe0.05〜1.0%、Cu0.03%以下、
Ti0.10%以下、不純物としてのMg0.03%以下、
残部不可避的不純物およびAlとされ、 かつSi量(Si%)がCu量(Cu%)およびMg量
(Mg%)、中間焼鈍温度T(℃)に応じて下記(1)、
(2)式を満足する範囲内にあり、さらにCu量とMg
量の差が下記(3)式を満足する範囲内にあることを
特徴とする印刷用アルミニウム合金素板。 (Si%)≧0.08−4{(Cu%)−(Mg%)} ……(1) (Si%)≦2T/625−1.28 ……(2) 0≦{(Cu%)−(Mg%)}≦0.03 ……(3)
[Scope of Claims] 1. In an aluminum alloy base plate for printing obtained by subjecting an aluminum alloy material to intermediate annealing at 300 to 550°C for 24 hours or less and then cold rolling at a processing rate of 20 to 95%, the alloy of the material The composition is less than 0.08% Si (weight%, same below), less than 0.05 to 1.0% Fe, less than 0.03% Cu,
Ti 0.10% or less, Mg 0.03% or less as impurities,
The remainder is considered as inevitable impurities and Al, and the amount of Si (Si%) is as follows (1) depending on the amount of Cu (Cu%), the amount of Mg (Mg%), and the intermediate annealing temperature T (℃),
It is within the range that satisfies formula (2), and the amount of Cu and Mg
An aluminum alloy base plate for printing, characterized in that the difference in quantity is within a range that satisfies the following formula (3). (Si%)≧0.08−4 {(Cu%)−(Mg%)} ……(1) (Si%)≦2T/625−1.28 …(2) 0≦{(Cu%)−(Mg% )}≦0.03 ……(3)
JP59069824A 1984-04-06 1984-04-06 Blank aluminum alloy plate for printing Granted JPS60215728A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59069824A JPS60215728A (en) 1984-04-06 1984-04-06 Blank aluminum alloy plate for printing
EP85104145A EP0158941B2 (en) 1984-04-06 1985-04-04 Aluminium alloy material plate for printing
DE8585104145T DE3582263D1 (en) 1984-04-06 1985-04-04 ALUMINUM ALLOY FOR PRINTING PLATES.
US07/089,111 US4861396A (en) 1984-04-06 1987-08-25 Aluminum alloy material plate for printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069824A JPS60215728A (en) 1984-04-06 1984-04-06 Blank aluminum alloy plate for printing

Publications (2)

Publication Number Publication Date
JPS60215728A JPS60215728A (en) 1985-10-29
JPH0368939B2 true JPH0368939B2 (en) 1991-10-30

Family

ID=13413890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069824A Granted JPS60215728A (en) 1984-04-06 1984-04-06 Blank aluminum alloy plate for printing

Country Status (1)

Country Link
JP (1) JPS60215728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2007083797A1 (en) 2006-01-23 2007-07-26 Terumo Kabushiki Kaisha Stent
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140894A (en) * 1985-12-16 1987-06-24 Sky Alum Co Ltd Aluminum alloy support for planographic plate
JP2654827B2 (en) * 1989-05-09 1997-09-17 住友軽金属工業株式会社 Aluminum alloy material for lithographic printing plate and method for producing support using the same
JP2544215B2 (en) * 1989-12-06 1996-10-16 スカイアルミニウム株式会社 Method for producing aluminum alloy base plate for printing plate support
KR101465389B1 (en) * 2013-09-27 2014-11-25 성균관대학교산학협력단 aluminum alloy composition, extrusion tube and fin material with improved penetration durability comprising the same and the heat exchanger constructed the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
WO2007083797A1 (en) 2006-01-23 2007-07-26 Terumo Kabushiki Kaisha Stent
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element

Also Published As

Publication number Publication date
JPS60215728A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
US4861396A (en) Aluminum alloy material plate for printing
US20060254680A1 (en) Aluminium alloy for lithographic sheet
JPS625080B2 (en)
JP3693485B2 (en) Manufacturing method of aluminum alloy base plate for lithographic printing plate
EP0657559B1 (en) Aluminum alloy substrate for electrolytically grainable lithographic printing plate and process of producing same
JP2544215B2 (en) Method for producing aluminum alloy base plate for printing plate support
JPH0368939B2 (en)
JPS60215725A (en) Blank aluminum alloy plate for printing
JPS6280255A (en) Manufacture of aluminum alloy support for offset printing
JP3662959B2 (en) Method for producing aluminum alloy base plate for electrolytic roughened lithographic printing plate
JPH04165041A (en) Aluminum alloy plate for printing supporting body and manufacture thereof
US20180056698A1 (en) Aluminum-manganese-zinc alloy
JPS60215727A (en) Blank aluminum alloy plate for printing
JPS60215726A (en) Blank aluminum alloy plate for printing
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JPS6274693A (en) Aluminum alloy support for offset print
JPS6223794A (en) Substrate of aluminum alloy for offset printing
JP5886619B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JPS62149856A (en) Production of aluminum alloy base for lithographic printing plate
JPS61272357A (en) Manufacture of aluminum alloy material sheet for printing
JPS61274993A (en) Aluminum alloy support for offset printing
JP2001191654A (en) Method for manufacturing rolled plate of molten aluminum alloy for ps plate support, and rolled plate of molten aluminum alloy for ps plate support
JP3662418B2 (en) Support for lithographic printing plate
JP4021743B2 (en) Aluminum alloy material for lithographic printing plates
JP2009030129A (en) Aluminum alloy plate for planographic printing plate, and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees