JP2009030129A - Aluminum alloy plate for planographic printing plate, and method for producing the same - Google Patents

Aluminum alloy plate for planographic printing plate, and method for producing the same Download PDF

Info

Publication number
JP2009030129A
JP2009030129A JP2007196879A JP2007196879A JP2009030129A JP 2009030129 A JP2009030129 A JP 2009030129A JP 2007196879 A JP2007196879 A JP 2007196879A JP 2007196879 A JP2007196879 A JP 2007196879A JP 2009030129 A JP2009030129 A JP 2009030129A
Authority
JP
Japan
Prior art keywords
plate
heat treatment
proof stress
yso
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007196879A
Other languages
Japanese (ja)
Other versions
JP5080160B2 (en
Inventor
Jun Yamazaki
純 山崎
Hirokazu Sawada
宏和 澤田
Akio Uesugi
彰男 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Furukawa Sky KK
Original Assignee
Fujifilm Corp
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Furukawa Sky KK filed Critical Fujifilm Corp
Priority to JP2007196879A priority Critical patent/JP5080160B2/en
Publication of JP2009030129A publication Critical patent/JP2009030129A/en
Application granted granted Critical
Publication of JP5080160B2 publication Critical patent/JP5080160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy plate for a planographic printing plate having excellent uniformity in appearance after roughening treatment and stain resistance, and also having excellent thermal softening resistance. <P>SOLUTION: The aluminum alloy plate for a planographic printing plate is composed of an aluminum alloy having a composition containing 0.1 to 0.5% Fe, 0.01 to 0.20% Si, 0.005 to 0.07% Cu, 0.10 to 0.25% Mg, 0.003 to 0.03% Ti and 0.0005 to <0.004% Zr, and the balance Al with inevitable impurities, and in which the amount of simple substance Si is ≤0.02%. The average length of crystal grains in a direction perpendicular to the rolling direction is ≤100 μm, and further, heat treatment temperature at which a proof stress difference before and after heat treatment in a product plate reaches 1/2 of a proof stress difference between that before heat treatment and that after heating at 500°C for 10 min is ≥240°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、粗面化処理したアルミニウム合金板表面に陽極酸化処理を施し、さらに感光性物質を塗布して形成される平版印刷版に使用されるアルミニウム合金板に関するものであり、より詳しくは粗面化処理後の外観の均一性および非画像部の耐インク汚れ性に優れ、しかも耐熱軟化性に優れた平版印刷版用アルミニウム合金板およびその製造方法に関するものである。   The present invention relates to an aluminum alloy plate used for a lithographic printing plate formed by anodizing the surface of a roughened aluminum alloy plate and further applying a photosensitive material. The present invention relates to an aluminum alloy plate for a lithographic printing plate excellent in uniformity in appearance after surface treatment and ink stain resistance in non-image areas, and excellent in heat-resistant softening properties, and a method for producing the same.

一般に平版印刷版としては、アルミニウムもしくはアルミニウム合金の表面に粗面化処理、陽極酸化皮膜処理などの表面処理を施してなる支持体上に感光性物質を塗布して用いるのが通常である。このような平版印刷版のうちで通常広く用いられているのは、予め支持体上に感光性物質を塗布しておき、直ちに焼き付けられる状態になっている、いわゆるPS版である。   In general, a lithographic printing plate is usually used by applying a photosensitive substance on a support obtained by subjecting the surface of aluminum or an aluminum alloy to a surface treatment such as a roughening treatment or an anodized film treatment. Among such lithographic printing plates, what is usually widely used is a so-called PS plate in which a photosensitive material is previously applied on a support and is ready to be baked.

このような平版印刷版を実際に印刷版として使用するにあたっては、画像露光、現像、水洗、ラッカー盛り等の製版処理を施す。ここで、現像処理による未溶解の感光層は画像部を形成し、感光層が除去されてその下のアルマイト層が露出した部分は親水性のため水受容部となり、非画像部を形成する。このようにして作られた印刷版は、印刷機の回転する円筒形版胴に巻付けて、湿し水の存在下でインキを画像部上に付着させ、ゴムブランケットに転写して、紙面に印刷することになる。   When such a lithographic printing plate is actually used as a printing plate, plate making processes such as image exposure, development, washing, and lacquer are applied. Here, the undissolved photosensitive layer formed by the development process forms an image portion, and the portion where the photosensitive layer is removed and the alumite layer under the photosensitive layer is hydrophilic becomes a water receiving portion because of hydrophilicity, and forms a non-image portion. The printing plate made in this way is wound around a rotating cylindrical plate cylinder of a printing press, and ink is deposited on the image area in the presence of fountain solution, transferred to a rubber blanket, and printed on the paper surface. Will be printed.

従来このような用途のアルミニウムおよびアルミニウム合金(以下総称してアルミニウム合金とする)としては、JIS1050、JIS1100、JIS3003等が主として用いられる。通常これらのアルミニウム合金板は、表面を機械的方法、化学的方法および電気化学的方法のいずれか一つ、あるいは二つ以上を組合せた工程による粗面化方法により粗面化し、その後好ましくは陽極酸化処理を施して使用される。   Conventionally, JIS1050, JIS1100, JIS3003, etc. are mainly used as aluminum and aluminum alloys (hereinafter collectively referred to as aluminum alloys) for such applications. Usually, these aluminum alloy plates are roughened by a roughening method using a mechanical method, a chemical method, an electrochemical method, or a combination of two or more, and then preferably an anode. Used with oxidation treatment.

ところで近年は、耐刷性の向上を目的とし、平版印刷版を通常の方法で露光、現像処理した後に、高温で加熱処理(バーニング処理)することによって画像部を強化することが広く行なわれている。バーニング処理は、通常、加熱温度200〜290℃、加熱時間3〜9分の条件で行なうが、このようなバーニング処理時にアルミニウム合金板の強度が低下することがないように、耐熱軟化性(耐バーニング性)が優れていることが望まれている。   By the way, in recent years, for the purpose of improving printing durability, it has been widely practiced to reinforce the image area by subjecting the lithographic printing plate to exposure and development processing by a usual method and then heat treatment (burning treatment) at high temperature. Yes. The burning treatment is usually performed under the conditions of a heating temperature of 200 to 290 ° C. and a heating time of 3 to 9 minutes. However, in order to prevent the strength of the aluminum alloy plate from being reduced during such burning treatment, It is desired that the burning property is excellent.

また印刷版については、より鮮明に印刷し得ることが要求されるとともに、同じ印刷版を用いてより多くの部数の印刷が可能となることが強く要望されており、そのために、印刷中に非画像部にインク汚れが生じないことが特に重要となっている。   In addition, printing plates are required to be able to print more clearly, and there is a strong demand to be able to print a larger number of copies using the same printing plate. It is particularly important that no ink smear occurs in the image area.

これらの要求を満たすための方策としては、既に、熱間圧延における各種温度および熱間圧延後の平均冷却速度を規定する事によって、粗面化処理後の外観均一性、耐熱軟化性を解決する提案がなされている(例えば特許文献1参照)。   As measures for satisfying these requirements, the appearance uniformity after heat roughening and heat softening resistance are already resolved by prescribing various temperatures in hot rolling and the average cooling rate after hot rolling. Proposals have been made (see, for example, Patent Document 1).

また一方、準安定相であるAlFe系金属間化合物粒子の分布を調整することにより、粗面化処理後の外観均一性を解決する提案もなされている(例えば特許文献2参照)。   On the other hand, there is also a proposal for solving the appearance uniformity after the surface roughening treatment by adjusting the distribution of AlFe-based intermetallic compound particles that are metastable phases (see, for example, Patent Document 2).

さらに、各種元素の添加量を調整したアルミニウム合金材に対して特定の熱間圧延条件を適用して結晶粒径を制御することにより、粗面化処理後の外観均一性、耐熱軟化性、反復曲げ疲労強さを解決する提案もなされている(例えば特許文献3参照)。   Furthermore, by applying specific hot rolling conditions to the aluminum alloy material with the added amount of various elements adjusted to control the crystal grain size, the appearance uniformity after the surface roughening treatment, heat softening resistance, repetitiveness Proposals for solving the bending fatigue strength have also been made (see, for example, Patent Document 3).

そのほか、各種元素の添加量を調整することにより、粗面化処理面後の外観均一性、耐熱軟化性を解決する提案もなされている(例えば特許文献4参照)。   In addition, proposals have been made to solve the appearance uniformity and heat-softening resistance after the roughened surface by adjusting the addition amount of various elements (see, for example, Patent Document 4).

また、準安定層の金属間化合物粒子を調整して粗面化均一性を解決した例もある(例えば特許文献5参照)。
特開平10−306355号公報 特開2002−088434号公報 特開2004−250794号公報 特開2005−015912号公報 特開2005−002429号公報
In addition, there is an example in which roughening uniformity is solved by adjusting intermetallic compound particles in the metastable layer (see, for example, Patent Document 5).
Japanese Patent Laid-Open No. 10-306355 JP 2002-088434 A JP 2004-250794 A JP 2005-015912 A JP-A-2005-002429

前述のような従来の各種の提案のうち、特許文献1に示される提案においては、熱間圧延での各温度の制御だけでは、充分な耐熱軟化性を得ることは困難であり、また平均冷却速度の制御だけでは結晶粒を微細にすることが困難であって、粗面化処理後の外観均一性も充分とはいえないことが判明している。   Among the conventional proposals as described above, in the proposal shown in Patent Document 1, it is difficult to obtain sufficient heat-softening property only by controlling each temperature in hot rolling. It has been found that it is difficult to make crystal grains fine only by controlling the speed, and the appearance uniformity after the surface roughening treatment is not sufficient.

また特許文献2に示される提案の場合、準安定相粒子の制御のみでは、必ずしも粗面化処理後の外観均一性が良好とはいえず、更なる改善が必要であると言わざるを得ない。   In the case of the proposal shown in Patent Document 2, it cannot be said that the appearance uniformity after the roughening treatment is necessarily good only by controlling the metastable phase particles, and further improvement is necessary. .

さらに、特許文献3に示される提案の場合、板表面上に熱間圧延上がりで再結晶していない領域が存在し、この場合、粗面化処理面にストリークが発生して、外観の均一性に劣る問題がある。   Furthermore, in the case of the proposal shown in Patent Document 3, there is a region that is not hot-rolled and recrystallized on the plate surface. In this case, streaks occur on the roughened surface, and the appearance is uniform. There is a problem inferior to

そしてまた特許文献4に示される提案の場合、アルミニウム合金のMn含有量が多いことから、Al−Mn系の粗大化合物が発生し易く、この場合Al−Mn系粗大化合物の大きな脱落跡が生じて、粗面化処理後の外観均一性が劣ってしまう問題がある。   In the case of the proposal shown in Patent Document 4, since the Mn content of the aluminum alloy is large, an Al—Mn-based coarse compound is likely to be generated, and in this case, a large drop mark of the Al—Mn-based coarse compound is generated. There is a problem that the appearance uniformity after the roughening treatment is inferior.

また特許文献5に示される提案では、合金の成分組成を調整すると同時に、準安定相の金属間化合物粒子の制御を、鋳塊に対する均熱工程を行なわないかまたは均熱工程を550℃以下の低温で行なうことによって実施しているが、この方法では、Feの固溶量が不充分となって、この発明で規定する熱処理前後の耐力差条件を満たすことができず、耐熱軟化性が不充分となってしまう。すなわち、ある温度で熱処理を行なったときの熱処理前後の耐力差が、500℃で加熱したときの加熱前後の耐力差の1/2以上となるような熱処理温度が熱処理温度が240℃以上とはならず、そのためバーニング処理時における強度低下が大きくなり、充分な耐熱軟化性を確保し得なかったのが実情である。   In addition, in the proposal shown in Patent Document 5, the alloy composition is adjusted, and at the same time, the control of the metastable phase intermetallic compound particles is not performed. Although this method is carried out at a low temperature, this method results in an insufficient amount of solid solution of Fe, so that the difference in proof stress before and after the heat treatment specified in the present invention cannot be satisfied, and the heat softening property is inferior. It will be enough. That is, the heat treatment temperature at which the difference in yield strength before and after the heat treatment when the heat treatment is performed at a certain temperature is 1/2 or more of the difference in yield strength before and after the heating at 500 ° C. is that the heat treatment temperature is 240 ° C. or more. However, the actual situation is that the strength reduction during the burning treatment becomes large and sufficient heat-softening property cannot be ensured.

この発明は以上の事情を背景としてなされたもので、粗面化処理後の外観の均一性や非画像部の耐インク汚れ性など、通常の平版印刷版に求められる性能を損なうことなく、耐熱軟化性が良好で、バーニング処理により強度が低下するおそれが少ない平版印刷版用アルミニウム合金板を提供することを課題としている。   The present invention has been made against the background of the above circumstances, without impairing the performance required for ordinary lithographic printing plates, such as uniformity of appearance after roughening treatment and ink stain resistance of non-image areas. An object of the present invention is to provide an aluminum alloy plate for a lithographic printing plate that has good softening properties and is less likely to be reduced in strength by a burning treatment.

本発明者は、上述のような課題を解決するべく、鋭意研究を重ねた結果、Zr等の微量の添加元素の含有量を厳密に調整することによって、前述の課題を解決し得ることを見出し、このような知見に基づきこの発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the above-described problems can be solved by strictly adjusting the content of a trace amount of additive elements such as Zr. The present invention has been completed based on such findings.

すなわち請求項1の発明の平版印刷版用アルミニウム合金板は、Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金板であって、かつその板における単体Si量が0.02%以下であり、また圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下であり、しかもその板を500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、前記(1)式が満たされる熱処理温度が240℃以上であることを特徴とするものである。   That is, the aluminum alloy plate for a lithographic printing plate according to the first aspect of the present invention comprises Fe 0.1 to 0.5%, Si 0.01 to 0.20%, Cu 0.005 to 0.07%, Mg 0.10 to 0.25. %, Ti 0.003 to 0.03%, Zr 0.0005% or more, less than 0.004%, the balance being an aluminum alloy plate made of Al and inevitable impurities, and the amount of simple Si in the plate is The average length of the crystal grains in the direction perpendicular to the rolling direction is not more than 100 μm and the proof stress YSO before heating when the plate is heated at 500 ° C. for 10 minutes and heating The difference between the proof stress value YSA after that is ΔYSA (= YSO−YSA), and the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment when the heat treatment is performed for 10 minutes at a certain temperature on the plate. The difference between the above and the difference is ΔYSB (= YSO−YSB), and the heat treatment temperature that satisfies the expression (1) is 240 ° C. or more.

また請求項2の発明の平版印刷版用アルミニウム合金板は、Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満、Mn0.001〜0.01%、Zn0.001〜0.01%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金板であって、かつその板における単体Si量が0.02%以下であり、また圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下であり、しかもその板を500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、前記(1)式が満たされる熱処理温度が240℃以上であることを特徴とするものである。   The aluminum alloy plate for a lithographic printing plate according to the second aspect of the present invention comprises Fe 0.1 to 0.5%, Si 0.01 to 0.20%, Cu 0.005 to 0.07%, Mg 0.10 to 0.25. %, Ti 0.003-0.03%, Zr 0.0005% or more, less than 0.004%, Mn 0.001-0.01%, Zn 0.001-0.01%, the balance being Al and inevitable An aluminum alloy plate made of impurities, the amount of elemental Si in the plate is 0.02% or less, and the average length of crystal grains in the direction perpendicular to the rolling direction is 100 μm or less, and the plate The difference between the proof stress value YSO before heating and the proof stress value YSA after heating when heated at 500 ° C. for 10 minutes is ΔYSA (= YSO−YSA), and heat treatment is held for 10 minutes at the temperature on the plate. Done The difference between the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment is ΔYSB (= YSO−YSB), and the heat treatment temperature satisfying the formula (1) is 240 ° C. or more. It is.

一方請求項3の発明の平版印刷版用アルミニウム合金板の製造方法は、Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とし、鋳塊に対して熱間圧延を施すにあたり、最終圧延パスにおける圧下量が3mm以上、熱間圧延上り温度が280〜360℃の範囲内、熱間圧延上り板厚が1.0〜4.0mmの範囲内となるように制御し、得られた熱延板に対し、その後中間焼鈍を施すことなく製品板厚まで冷間圧延して、圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下でかつ単体Si量が0.02%以下であり、しかも500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、前記(1)式が満たされる熱処理温度が240℃以上であることを特徴とするものである。   On the other hand, the method for producing an aluminum alloy plate for a lithographic printing plate according to claim 3 is as follows: Fe 0.1-0.5%, Si 0.01-0.20%, Cu 0.005-0.07%, Mg 0.10 0.25%, Ti 0.003-0.03%, Zr 0.0005% or more, less than 0.004%, with the balance being aluminum alloy consisting of Al and inevitable impurities, heat to the ingot In performing the hot rolling, the reduction amount in the final rolling pass is 3 mm or more, the hot rolling up temperature is in the range of 280 to 360 ° C., and the hot rolling up plate thickness is in the range of 1.0 to 4.0 mm. The obtained hot-rolled sheet is then cold-rolled to a product sheet thickness without intermediate annealing, and the average length of crystal grains in a direction perpendicular to the rolling direction is 100 μm or less and single Si amount is 0.02% or less In addition, the difference between the proof stress value YSO before heating and the proof stress value YSA after heating when heated at 500 ° C. for 10 minutes is ΔYSA (= YSO−YSA), and the heat treatment is held for 10 minutes at the temperature on the plate. The difference between the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment is ΔYSB (= YSO−YSB), and the heat treatment temperature satisfying the formula (1) is 240 ° C. or more. To do.

また請求項4の発明の平版印刷版用アルミニウム合金板の製造方法は、Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満、Mn0.001〜0.01%、Zn0.001〜0.01%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とし、鋳塊に対して熱間圧延を施すにあたり、最終圧延パスにおける圧下量が3mm以上、熱間圧延上り温度が280〜360℃の範囲内、熱間圧延上り板厚が1.0〜4.0mmの範囲内となるように制御し、得られた熱延板に対し、その後中間焼鈍を施すことなく製品板厚まで冷間圧延して、圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下でかつ単体Si量が0.02%以下であり、しかも500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、前記(1)式が満たされる熱処理温度が240℃以上であることを特徴とするものである。   Moreover, the manufacturing method of the aluminum alloy plate for planographic printing plates of the invention of Claim 4 is Fe0.1-0.5%, Si0.01-0.20%, Cu0.005-0.07%, Mg0.10-0. 0.25%, Ti 0.003-0.03%, Zr 0.0005% or more, less than 0.004%, Mn 0.001-0.01%, Zn 0.001-0.01%, the balance being Al In addition, when an aluminum alloy made of inevitable impurities is used as a raw material and the hot rolling is performed on the ingot, the amount of reduction in the final rolling pass is 3 mm or more, the hot rolling up temperature is in the range of 280 to 360 ° C., hot The rolled up sheet thickness is controlled to be within a range of 1.0 to 4.0 mm, and the obtained hot-rolled sheet is then cold-rolled to the product sheet thickness without intermediate annealing, and the rolling direction Average length of grains perpendicular to The difference between the proof stress YSO before heating and the proof stress YSA after heating when heated at 500 ° C. for 10 minutes is ΔYSA (= YSO−YSA). And the difference between the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment when the heat treatment is performed for 10 minutes at a certain temperature on the plate is defined as ΔYSB (= YSO−YSB). ) The heat treatment temperature that satisfies the formula is 240 ° C. or higher.

請求項1および請求項2の発明の平版印刷版用アルミニウム合金板は、粗面化処理後の外観の均一性が優れると同時に、非画像部の耐インク汚れ性にも優れ、しかもそればかりでなく、耐熱軟化性に優れていて、バーニング処理による強度の低下が少なく、したがって平版印刷版支持体として極めて良好な性能、商品価値を有している。   The aluminum alloy plate for a lithographic printing plate according to the first and second aspects of the present invention is excellent in the uniformity of the appearance after the roughening treatment, and at the same time, is excellent in the ink stain resistance of the non-image area. The heat resistance softening property is excellent, the strength is not significantly lowered by the burning treatment, and therefore, the lithographic printing plate support has extremely good performance and commercial value.

また請求項3、請求項4の発明の製造方法によれば、上述のような優れた性能、商品価値を有する平版印刷版用アルミニウム合金板を確実かつ安定して得ることができ、またそればかりでなく、熱間圧延後の中間焼鈍を省略することにより、工程数減少、省エネルギにより低コスト化を図ることができる。   Moreover, according to the manufacturing method of the invention of Claim 3 and Claim 4, the aluminum alloy plate for lithographic printing plates which has the above outstanding performance and commercial value can be obtained reliably and stably, and it is only that. In addition, by omitting the intermediate annealing after the hot rolling, it is possible to reduce the number of processes and reduce the cost by saving energy.

以下、この発明について、詳細に説明する。   The present invention will be described in detail below.

先ずこの発明で用いるアルミニウム合金の成分組成限定理由について説明する。   First, the reasons for limiting the component composition of the aluminum alloy used in the present invention will be described.

Fe:0.1〜0.5%
Fe量が0.1%未満では、再結晶時の結晶粒径が粗大となって粗面化処理により生成されるピットが不均一となって、粗面化処理後の外観に面質ムラが発生し、外観が不均一となる。一方Fe量が0.5%を越えれば、Al−Fe系、Al−Fe−Si系の粗大化合物が多量に生成されて、粗面化処理後のピットが不均一となり、前記同様に粗面化処理後の外観不均一が生じる。そのためFe量は0.1〜0.5%の範囲とした。なおより好ましくは、Fe量は0.12〜0.29%の範囲内とする。
Fe: 0.1 to 0.5%
If the amount of Fe is less than 0.1%, the crystal grain size at the time of recrystallization becomes coarse, and the pits generated by the roughening treatment become non-uniform, resulting in uneven surface quality on the appearance after the roughening treatment. Occurs and the appearance becomes uneven. On the other hand, if the amount of Fe exceeds 0.5%, a large amount of Al-Fe-based and Al-Fe-Si-based coarse compounds are generated, and the pits after the surface roughening treatment become non-uniform. Appearance non-uniformity after crystallization treatment occurs. Therefore, the amount of Fe is set in the range of 0.1 to 0.5%. More preferably, the amount of Fe is in the range of 0.12 to 0.29%.

Si:0.01〜0.20%
Si量が0.01%未満では、粗面化処理後のピットが不均一となることから、粗面化処理後に面質ムラが発生し、外観が不均一となる。またSi量が0.20%を越えれば、Al−Fe−Si系の粗大化合物が多量に生成されて、粗面化処理後のピットが不均一となり、粗面化処理後に面質ムラが生じ、外観が不均一となり、さらには、後述する単体Siの析出が生じやすくなるため、非画像部のインク汚れも生じやすくなる。そのためSi量は0.01〜0.20%の範囲内とした。なお好ましくはSi量は0.03〜0.15%の範囲内とする。
Si: 0.01-0.20%
If the amount of Si is less than 0.01%, the pits after the surface roughening treatment will be non-uniform, resulting in surface unevenness after the surface roughening treatment, and the appearance will be non-uniform. On the other hand, if the amount of Si exceeds 0.20%, a large amount of Al-Fe-Si-based coarse compounds are produced, and the pits after the surface roughening treatment become non-uniform, resulting in surface quality unevenness after the surface roughening treatment. In addition, the appearance becomes non-uniform, and further, precipitation of simple substance Si, which will be described later, is likely to occur, so that ink stains in non-image areas are also likely to occur. Therefore, the Si amount is set in the range of 0.01 to 0.20%. Preferably, the Si amount is in the range of 0.03 to 0.15%.

Cu:0.005〜0.07%
Cuは電解グレーニング性に大きな影響を及ぼす元素である。Cu量が0.005%未満では、粗面化処理後のピットが不均一になり、前記同様に外観不均一となる。一方Cu量が0.07%を越えても粗面化処理後のピットが不均一となり、また粗面化処理後の色調が黒味を帯びすぎて商品価値を損なう。そのためCu量は0.005〜0.07%の範囲内とした。なお、好ましくはCu量は0.005〜0.05%の範囲内とする。
Cu: 0.005-0.07%
Cu is an element that greatly affects the electrolytic graining property. If the amount of Cu is less than 0.005%, the pits after the surface roughening treatment become non-uniform, and the appearance becomes non-uniform as described above. On the other hand, even if the amount of Cu exceeds 0.07%, the pits after the surface roughening treatment become non-uniform, and the color tone after the surface roughening treatment becomes too blackish, thereby impairing the commercial value. Therefore, the amount of Cu is set within a range of 0.005 to 0.07%. In addition, Preferably Cu amount shall be in the range of 0.005-0.05%.

Mg:0.10〜0.25%
Mgは再結晶化を促進するとともに、大部分がアルミニウムに固溶して耐熱軟化性を向上させる元素である。またMgは、Mg2Siとして析出するため、単体Si量を減少させる作用も果たす。Mg量が0.10%未満では、これらの効果が充分に得られず、一方Mg量が0.25%を越えれば、粗面化処理後のピットが不均一になり、外観も不均一となる。
Mg: 0.10 to 0.25%
Mg is an element that promotes recrystallization and is mostly dissolved in aluminum to improve heat softening resistance. Moreover, since Mg precipitates as Mg 2 Si, it also serves to reduce the amount of elemental Si. If the Mg content is less than 0.10%, these effects cannot be sufficiently obtained. On the other hand, if the Mg content exceeds 0.25%, the pits after the surface roughening treatment become non-uniform and the appearance is also non-uniform. Become.

Zr:0.0005%以上、0.004%未満
Zrは、電解粗面化処理時におけるカソード溶解効率を良好にし、粗面化処理により形成されるエッチピットの微妙な形状差に起因する粗面化面の縞模様の発生を抑制する効果がある。Zr量が0.0005%未満では、この効果を充分に得ることが困難である。一方Zr量が0.004%以上となれば、鋳造および圧延の過程でAl3Zrとして析出するため、ストリークの原因となる。ストリークが発生すれば、粗面化処理後のピットが不均一になり、外観の均一性を損なう。そこでZr量は0.0005%以上、0.004%未満の範囲内とした。なおより好ましいZr量は0.001〜0.003%の範囲内である。
Zr: 0.0005% or more and less than 0.004% Zr improves the cathode dissolution efficiency during the electrolytic surface roughening treatment, and is a rough surface due to a subtle shape difference of etch pits formed by the surface roughening treatment. This has the effect of suppressing the occurrence of striped patterns on the surface. If the amount of Zr is less than 0.0005%, it is difficult to sufficiently obtain this effect. On the other hand, if the amount of Zr is 0.004% or more, it will precipitate as Al 3 Zr in the process of casting and rolling, causing streaks. If streaks occur, the pits after the roughening process become non-uniform and the appearance uniformity is impaired. Therefore, the amount of Zr is set in the range of 0.0005% or more and less than 0.004%. A more preferable Zr amount is in the range of 0.001 to 0.003%.

Ti:0.003〜0.03%
Tiは電解グレーニング性に大きな影響を及ぼし、またアルミニウム合金鋳塊の組織状態にも大きな影響を及ぼす元素である。Ti量が0.003%未満では、粗面化処理後のピットが不均一になり、また鋳塊の結晶粒が微細化されずに粗大な結晶粒組織になるため、マクロ組織に圧延方向に沿う帯状の筋が発生して、粗面化処理後にも帯状の筋が残存し、平版印刷版用支持体として好ましくなくなる。一方Ti量が0.03%を越えれば、上記効果が飽和するばかりでなく、粗大なAl−Ti系化合物が形成されてその化合物が圧延板に筋状に分布し、その結果陽極酸化皮膜に欠陥が生じ、感光層の欠陥となって、きれいな印刷が困難となる。そのためTi量は0.003〜0.03%の範囲内とした。なおより好ましいTi量は0.005〜0.03%の範囲内である。
Ti: 0.003 to 0.03%
Ti is an element having a great influence on the electrolytic graining property and also having a great influence on the structure of the aluminum alloy ingot. If the amount of Ti is less than 0.003%, the pits after the surface roughening treatment become non-uniform, and the crystal grains of the ingot are not refined and become a coarse crystal grain structure. A band-shaped streak is generated, and the strip-shaped streak remains after the roughening treatment, which is not preferable as a support for a lithographic printing plate. On the other hand, if the amount of Ti exceeds 0.03%, not only the above effect is saturated, but also a coarse Al-Ti compound is formed, and the compound is distributed in a streak pattern on the rolled plate. Defects occur, resulting in defects in the photosensitive layer, making it difficult to print cleanly. Therefore, the Ti amount is set in the range of 0.003 to 0.03%. A more preferable Ti amount is in the range of 0.005 to 0.03%.

なおまた、一般にアルミニウム合金板においては、鋳塊結晶組織を微細化して圧延板のキメ、ストリークを防止するため、Tiを微量のBと組合せて添加することがあり、この発明の平版印刷版用アルミニウム合金においても、Tiとともに微量のBを添加することは許容される。但しB量が1ppm未満では、上記の効果が得られず、一方B量が50ppmを越えればBの添加効果が飽和するばかりでなく、粗大なTiB2粒子による線状欠陥が生じやすくなるから、Bを添加する場合のB添加量は、1〜50ppmの範囲内とすることが好ましい。 In general, in an aluminum alloy plate, Ti may be added in combination with a small amount of B in order to refine the ingot crystal structure and prevent texture and streak of the rolled plate. Even in an aluminum alloy, it is permissible to add a small amount of B together with Ti. However, if the amount of B is less than 1 ppm, the above effect cannot be obtained. On the other hand, if the amount of B exceeds 50 ppm, not only the addition effect of B is saturated, but also linear defects due to coarse TiB 2 particles tend to occur. When B is added, the amount of B added is preferably in the range of 1 to 50 ppm.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良いが、請求項2の発明の平版印刷版用アルミニウム合金板の場合は、前記各元素のほか、さらにMn、Znを含有するものとする。これらの添加理由は次の通りである。   In addition to the above elements, basically, Al and inevitable impurities may be used. In the case of the aluminum alloy plate for lithographic printing plates according to the invention of claim 2, in addition to the above elements, Mn, Zn It shall contain. The reason for these additions is as follows.

Mn:0.001〜0.01%
Mnは電解粗面を均一化する効果があり、この効果を充分に得るためには、0.001%以上のMnを添加する必要がある。一方、Mn量が0.01%を越えれば、Al−Fe−Mn系あるいはAl−Fe−Mn−Si系の粗大化合物が多量に生成されて、粗面化処理後のピットが不均一となる。そのため、Mn量の範囲は0.001〜0.01%とした。
Mn: 0.001 to 0.01%
Mn has an effect of making the electrolytic rough surface uniform, and in order to obtain this effect sufficiently, it is necessary to add 0.001% or more of Mn. On the other hand, if the amount of Mn exceeds 0.01%, a large amount of Al-Fe-Mn-based or Al-Fe-Mn-Si-based coarse compound is generated, and the pits after the surface roughening treatment become non-uniform. . Therefore, the range of the amount of Mn is set to 0.001 to 0.01%.

Zn:0.001〜0.01%
Znはそのほとんどがアルミニウムマトリックス中に固溶し、アルミニウムマトリックスと金属間化合物との間の電位差を調整し、電解粗面を均一化する効果を示す。Zn量が0.001%未満では、このような電位差調整効果が得られない。一方Zn量が0.01%を越えれば、電解粗面化時に全面溶解面が発生し、不均一な電解粗面が形成される。そのためZn量は0.001〜0.01%の範囲内とした。
Zn: 0.001 to 0.01%
Most of Zn is dissolved in the aluminum matrix, and the effect of adjusting the potential difference between the aluminum matrix and the intermetallic compound and making the electrolytic rough surface uniform is exhibited. If the Zn content is less than 0.001%, such a potential difference adjusting effect cannot be obtained. On the other hand, if the Zn content exceeds 0.01%, the entire surface is dissolved during the electrolytic roughening, and a nonuniform electrolytic rough surface is formed. Therefore, the Zn content is set in the range of 0.001 to 0.01%.

なお請求項1の発明の平版印刷版用アルミニウム合金板においては、その成分元素としてMn、Znを規定していないが、請求項1の発明の平版印刷版用アルミニウム合金板でも、請求項2で規定するMn量(0.001〜0.01%)、Zn量(0.001〜0.01%)より少ない量のMn、Znを不純物として含有することが許容されることはもちろんである。   In the aluminum alloy plate for a lithographic printing plate of the invention of claim 1, Mn and Zn are not defined as the component elements, but the aluminum alloy plate for a lithographic printing plate of the invention of claim 1 is also defined in claim 2. Of course, it is allowed to contain Mn and Zn as impurities less than the specified Mn amount (0.001 to 0.01%) and Zn amount (0.001 to 0.01%).

この発明の平版印刷版用アルミニウム合金板においては、以上のような各成分元素のほか、不可避的不純物を含むのが通常であるが、この不可避的不純物としては、JIS1050相当の不純物量(その他合計で0.05%以下)程度であれば、平版印刷版用アルミニウム合金板としてその特性を損なうことはない。   In the aluminum alloy plate for a lithographic printing plate according to the present invention, in addition to the component elements as described above, inevitable impurities are usually included. As the inevitable impurities, the amount of impurities equivalent to JIS 1050 (total of others) 0.05% or less), the characteristics of the aluminum alloy plate for a lithographic printing plate are not impaired.

さらにこの発明の平版印刷版用アルミニウム合金板においては、製品板中に含まれる単体Si量が0.02%以下である必要がある。すなわち単体Siは、陽極酸化処理後に陽極酸化皮膜中に残存して皮膜欠陥を形成し、この欠陥が印刷中に非画像部の汚れ発生の起点となり、耐汚れ性を劣化させる原因となる。そのため単体Si量を0.02%以下に規制する必要がある。   Furthermore, in the aluminum alloy plate for lithographic printing plates according to the present invention, the amount of elemental Si contained in the product plate needs to be 0.02% or less. That is, the simple Si remains in the anodized film after the anodizing treatment to form a film defect, and this defect becomes a starting point for occurrence of stains in the non-image area during printing, and causes deterioration in stain resistance. Therefore, it is necessary to regulate the amount of simple Si to 0.02% or less.

そしてまたこの発明の平版印刷版用アルミニウム合金板においては、その結晶粒径条件として、表面における圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下の範囲内である必要がある。圧延方向に直角な方向の結晶粒の平均長さが100μmより大きければ、粗面化処理後に面質ムラが発生して、その外観が不均一となる。このような結晶粒径の制御は、後述する熱間圧延条件を制御することにより実施することができる。   Moreover, in the aluminum alloy plate for a lithographic printing plate according to the present invention, as the crystal grain size condition, the average length of crystal grains in the direction perpendicular to the rolling direction on the surface needs to be within a range of 100 μm or less. If the average length of the crystal grains in the direction perpendicular to the rolling direction is larger than 100 μm, surface quality unevenness occurs after the surface roughening treatment, and the appearance becomes non-uniform. Such control of the crystal grain size can be carried out by controlling hot rolling conditions described later.

またこの発明の平版印刷版用アルミニウム合金板においては、その耐熱軟化特性の指標として、500℃で10分間加熱したときの加熱前後の耐力差を基準(基準耐力差)とし、ある温度で10分間熱処理したときの熱処理前後の耐力差が、前述の基準耐力値の1/2となる熱処理温度が240℃以上であることを規定している。すなわち、板を500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差(基準耐力差)をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、次の(1)式
ΔYSB≧ΔYSA×1/2 ・・・(1)
が満たされる熱処理温度が240℃以上であることが必要であり、このような条件を満足することにより、バーニング処理を施しても強度低下を実質的に支障ない程度に抑制することが可能となる。上記の式を満たす熱処理温度が240℃未満では、バーニング処理時における強度低下が大きくなり、充分な耐熱軟化特性を有しているとは言えなくなるのである。
In the aluminum alloy plate for a lithographic printing plate of the present invention, as an index of heat-resistant softening properties, the difference in proof strength before and after heating when heated at 500 ° C. for 10 minutes is used as a reference (reference proof stress difference) for 10 minutes. It defines that the heat treatment temperature at which the difference in proof stress before and after the heat treatment is ½ of the above-mentioned standard proof stress value is 240 ° C. or higher. That is, the difference between the proof stress value YSO before heating and the proof stress value YSA after heating when the plate is heated at 500 ° C. for 10 minutes is defined as ΔYSA (= YSO−YSA) and is in the plate. The difference between the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment when the heat treatment is held for 10 minutes at the temperature is ΔYSB (= YSO−YSB).
ΔYSB ≧ ΔYSA × 1/2 (1)
It is necessary that the heat treatment temperature that satisfies the above is 240 ° C. or higher. By satisfying such a condition, it is possible to suppress the strength reduction to a level that does not substantially hinder the burning treatment. . If the heat treatment temperature satisfying the above formula is less than 240 ° C., the strength decrease during the burning treatment becomes large, and it cannot be said that the heat resistance softening property is sufficient.

ここで、前記(1)式を満たす熱処理温度が240℃以上となるように制御することは、マトリックス中に大部分が固溶して耐熱軟化特性を向上させる機能を果たすMg量の範囲を適切に調整し、併せて後述する熱間圧延条件を適切に制御することにより、FeやMgの固溶量を極力減少させないようにすることにより、達成可能である。   Here, controlling the heat treatment temperature satisfying the above formula (1) to be 240 ° C. or higher appropriately sets the range of the amount of Mg that fulfills the function of improving the heat-resistant softening characteristics by dissolving the majority in the matrix. It is possible to achieve this by making the amount of solid solution of Fe and Mg as small as possible by adjusting to the above and appropriately controlling the hot rolling conditions described later.

次にこの発明の製造方法について説明する。   Next, the manufacturing method of this invention is demonstrated.

まず前述のような成分組成範囲内に調整されたアルミニウム合金溶湯を、DC鋳造法等の常法に従い鋳造し、得られた鋳塊に対して必要に応じて均質化処理を施し、後述するような条件に従って熱間圧延し、その後中間焼鈍を施すことなく、冷間圧延を施して所要の板厚の製品板とする。ここで、均質化処理の条件は、金属間化合物を安定相にするとともに、Fe固溶量を増やし、これにより加熱前後の耐力低下を抑制して、耐熱軟化特性を向上させるため、550℃を越え600℃以下の範囲内の温度で1時間以上(通常は10時間以内)の保持とすることが好ましい。   First, the molten aluminum alloy adjusted to the component composition range as described above is cast according to a conventional method such as a DC casting method, and the resulting ingot is subjected to a homogenization treatment as necessary, as described later. Hot rolling in accordance with various conditions, and then cold rolling without intermediate annealing to obtain a product plate having a required thickness. Here, the conditions for the homogenization treatment are 550 ° C. in order to make the intermetallic compound a stable phase and increase the amount of Fe solid solution, thereby suppressing a decrease in yield strength before and after heating and improving heat-resistant softening characteristics. It is preferable to maintain the temperature within a range of over 600 ° C. for 1 hour or longer (usually within 10 hours).

熱間圧延は、その開始温度については、後述するような熱間圧延上り温度が確保できる温度であれば特に限定されないが、通常は400〜550℃とすれば良い。熱間圧延開始後の熱間圧延条件については、上り温度を280〜360℃の範囲内、最終パスでの圧下量を3mm以上、上り板厚を1.0〜4.0mmの範囲内とする必要がある。これらの条件を定めた理由は次の通りである。   The start temperature of hot rolling is not particularly limited as long as it is a temperature at which a hot rolling up temperature as described later can be secured, but it is usually 400 to 550 ° C. Regarding hot rolling conditions after the start of hot rolling, the ascending temperature is in the range of 280 to 360 ° C., the amount of reduction in the final pass is 3 mm or more, and the ascending plate thickness is in the range of 1.0 to 4.0 mm. There is a need. The reasons for setting these conditions are as follows.

熱間圧延上り温度:280〜360℃
熱間圧延上り温度が280℃より低温になれば、熱延板断面で再結晶せずに未再結晶組織が残存して、素板強度が高くなり過ぎる。またこの場合、熱延板表面にも未再結晶部分が残存してしまって、粗面化処理後の外観としてストリークスが発生し、外観不均一となるおそれがあり、さらにはFeやMgの析出量が多くなり、その結果としてFeやMgの固溶量も低下し、耐熱軟化性も低下してしまう。一方、熱間圧延上り温度が360℃を越える高温になれば、再結晶粒が粗大化して、この場合も粗面化処理後の外観が不均一になる。したがって適切に再結晶を生起させて外観不均一の発生を防止するとともに適切な強度を得るためには、熱間圧延上り温度を280〜360℃の範囲とする必要がある。なお熱間圧延上り温度は、上記範囲内でも特に290〜350℃の範囲内が好ましい。
Hot rolling up temperature: 280-360 ° C
If the hot rolling ascending temperature is lower than 280 ° C., the unrecrystallized structure remains without being recrystallized in the hot rolled sheet cross section, and the base plate strength becomes too high. In this case, unrecrystallized portions remain on the surface of the hot-rolled plate, streaks may occur as an appearance after the roughening treatment, and the appearance may be uneven. The amount of precipitation increases, and as a result, the solid solution amount of Fe and Mg also decreases, and the heat softening resistance also decreases. On the other hand, when the hot rolling ascending temperature is higher than 360 ° C., the recrystallized grains become coarse, and in this case also, the appearance after the roughening treatment becomes non-uniform. Therefore, in order to appropriately cause recrystallization to prevent occurrence of non-uniform appearance and to obtain an appropriate strength, it is necessary to set the hot rolling ascending temperature within a range of 280 to 360 ° C. The hot rolling up temperature is preferably in the range of 290 to 350 ° C. even within the above range.

熱間圧延上り板厚:1.0〜4.0mm
熱間圧延を施して得られた熱延板に対して冷間圧延を施して所定の製品板厚とする際に、熱延板の板厚(熱間圧延上り板厚)が1.0mmより小さい場合、冷間圧延での加工硬化による素板強度の上昇が充分に得られず、強度不足が生じるとともに、所定の耐熱軟化性を得られなくなる。一方熱間圧延上り板厚が4.0mmより大きければ、冷間圧延により所定の製品板厚とする際に、冷間加工による加工硬化によって素板強度が高くなり過ぎてしまい、その場合円筒形版胴に巻き付ける際にアルミニウム合金が切れてしまうおそれがある。
Hot rolled up plate thickness: 1.0 to 4.0 mm
When the hot rolled sheet obtained by hot rolling is cold rolled to a predetermined product sheet thickness, the thickness of the hot rolled sheet (hot rolled up sheet thickness) is from 1.0 mm. If it is small, the strength of the base plate due to work hardening in cold rolling cannot be sufficiently increased, resulting in insufficient strength, and a predetermined heat-resistant softening property cannot be obtained. On the other hand, if the hot rolled up plate thickness is larger than 4.0 mm, the base plate strength becomes too high due to work hardening by cold working when the predetermined product plate thickness is obtained by cold rolling. There is a possibility that the aluminum alloy is cut when it is wound around the plate cylinder.

熱間圧延での最終圧延パスの圧下量:3mm以上
最終パスの圧下量が3mm未満では、充分な歪を与えることができず、そのため熱間圧延上がりで再結晶させることが困難となり、熱延板表面に未再結晶組織が残存してしまって、粗面化処理後の外観が不均一になる。またこの場合、たとえ再結晶したとしても、粗大な結晶粒が発生して、同様に粗面化処理後の外観が不均一になる。なお熱間圧延最終パスの圧下量の上限は特に限定しないが、10mm以下とすることが好ましい。
Rolling amount of the final rolling pass in hot rolling: 3 mm or more If the rolling amount of the final pass is less than 3 mm, sufficient strain cannot be given, and therefore it becomes difficult to recrystallize after hot rolling, An unrecrystallized structure remains on the plate surface, and the appearance after the roughening treatment becomes non-uniform. In this case, even if recrystallization is performed, coarse crystal grains are generated, and the appearance after the surface roughening treatment is similarly uneven. The upper limit of the amount of reduction in the final hot rolling pass is not particularly limited, but is preferably 10 mm or less.

熱間圧延後は、常法に従ってコイル状に巻取り、その後、焼鈍を施すことなく冷間圧延によって所要の製品板厚に仕上げれば良い。ここで、熱間圧延を行なってコイルに巻上げた状態では、前述のように熱延板の自己保有熱による自己焼鈍によって再結晶が生起されるため、改めて再結晶のための焼鈍を行なう必要がない。また冷間圧延の条件は特に限定されるものではなく、必要な製品板強度や板厚に応じて定めれば良く、通常は圧延率60〜98%で施せば良い。   After hot rolling, it may be wound into a coil according to a conventional method and then finished to the required product thickness by cold rolling without annealing. Here, in the state in which the coil is wound by hot rolling, recrystallization is caused by self-annealing by the self-holding heat of the hot-rolled sheet as described above, so it is necessary to perform annealing for recrystallization again. Absent. The conditions for cold rolling are not particularly limited, and may be determined according to the required product plate strength and plate thickness. Usually, the rolling rate may be 60 to 98%.

このようにして得られた平版印刷版用アルミニウム合金板(製品板)を実際に平版印刷版支持体とするためには、粗面化等のための表面処理を施す。この表面処理方法は、特に限定されるものではなく、常法に従えば良いが、代表的な表面処理方法について以下に説明する。   In order to actually use the thus obtained lithographic printing plate aluminum alloy plate (product plate) as a lithographic printing plate support, surface treatment for roughening or the like is performed. The surface treatment method is not particularly limited, and may follow a conventional method. A typical surface treatment method will be described below.

粗面化のための表面処理方法としては、塩酸または硝酸電解液中で電気化学的に砂目立てする電気化学的粗面化処理方法、およびアルミニウム表面を金属ワイヤーでひっかくワイヤーブラシグレイン法、研磨球と研磨剤でアルミニウム表面を砂目立てするボールグレイン法、ナイロンブラシと研磨剤で表面を粗面化するブラシグレイン法のような機械的粗面化法などを用いることができ、上記いずれの粗面化方法は、単独あるいは組み合わせて用いることもできる。   Surface treatment methods for surface roughening include electrochemical surface roughening treatment using electrochemical graining in hydrochloric acid or nitric acid electrolyte, wire brush grain method, grinding ball with metal wire. Any of the above rough surfaces can be used, such as a ball grain method in which the aluminum surface is grained with an abrasive and an abrasive, or a mechanical graining method such as a brush grain method in which the surface is roughened with a nylon brush and an abrasive. The conversion methods can be used alone or in combination.

このように粗面化処理したアルミニウム合金板に対しては、さらに粗面化の第2段階として、酸またはアルカリにより化学的にエッチングするのが通常である。酸をエッチング剤として用いる場合は、微細構造を破棄するのに長時間を要するため、工業的に不利となるが、アルカリをエッチング剤として用いることにより改善できる。エッチングのためのアルカリ剤としては、苛性ソーダ、炭酸ソーダ、アルミン酸ソーダ、メタケイ酸ソーダ、リン酸ソーダ、水酸化カリウム、水酸化リチウム等を用いることができ、またその濃度と温度の好ましい範囲はそれぞれ1〜50%、20〜100℃であり、エッチング時のAlの溶解量が5〜20g/m2となるような条件を選択することが好ましい。 In general, the aluminum alloy plate thus roughened is chemically etched with acid or alkali as a second step of roughening. When an acid is used as an etching agent, it takes a long time to destroy the fine structure, which is industrially disadvantageous, but it can be improved by using an alkali as the etching agent. As the alkali agent for etching, caustic soda, sodium carbonate, sodium aluminate, sodium metasilicate, sodium phosphate, potassium hydroxide, lithium hydroxide, etc. can be used, and the preferred ranges of concentration and temperature are respectively It is preferable that the conditions be 1 to 50%, 20 to 100 ° C., and the conditions that the dissolution amount of Al during etching is 5 to 20 g / m 2 .

エッチング後には、表面に残留する汚れ(スマット)を除去するために酸洗浄を行なうのが通常である。酸洗浄に用いる酸としては硝酸、硫酸、リン酸、クロム酸、フッ酸およびホウフッ化水素酸などがある。特に電気化学的粗面化処理後のスマット除去には、好ましくは特開昭53−12739号公報に記載されているような50〜90℃の温度の15〜65重量%の硝酸と接触させる方法、及び特公昭48−28123号公報に記載されているアルカリエッチングする方法がある。   After the etching, acid cleaning is usually performed to remove dirt (smut) remaining on the surface. Examples of the acid used for the acid cleaning include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid. In particular, for removing smut after the electrochemical surface roughening treatment, a method of contacting with 15 to 65% by weight of nitric acid at a temperature of 50 to 90 ° C. as described in JP-A-53-12739 is preferable. In addition, there is an alkali etching method described in Japanese Patent Publication No. 48-28123.

以上のようにして処理されたアルミニウム合金板は、平版印刷版用支持体として使用することができるが、通常はさらに陽極酸化処理、苛性処理等の処理を施すことが望ましい。陽極酸化処理は、この分野で従来より行われている方法で行うことができる。具体的には、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルフォン酸等あるいはこれらの2種以上を組み合わせた水溶液または非水溶液中で、アルミニウム合金板に直流または交流を流すことにより表面に陽極酸化皮膜を形成することができる。陽極酸化の条件は、使用される電解液によって種々変化するから一概には決められないが、一般には、電解液濃度1〜80%、液温5〜70℃、電流密度0.5〜60A/dm2、電圧1〜100V、電解時間10〜100秒の範囲とすることが適当である。 The aluminum alloy plate treated as described above can be used as a support for a lithographic printing plate, but it is usually desirable to perform further treatments such as anodizing treatment and caustic treatment. The anodizing treatment can be performed by a method conventionally used in this field. Specifically, by flowing direct current or alternating current through an aluminum alloy plate in an aqueous solution or non-aqueous solution of sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, etc., or a combination of two or more thereof. An anodized film can be formed on the surface. The conditions for anodization vary depending on the electrolyte used, and are not generally determined. In general, however, the electrolyte concentration is 1 to 80%, the solution temperature is 5 to 70 ° C., and the current density is 0.5 to 60 A / day. dm 2 , voltage 1 to 100 V, and electrolysis time 10 to 100 seconds are appropriate.

以上のようにして得られた平版印刷版用アルミニウム合金板支持体をPS版に仕上げるにあたっては、常法に従って感光層、または中間層と感光層を塗布して乾燥させればよい。   In finishing the aluminum alloy plate support for a lithographic printing plate obtained as described above into a PS plate, a photosensitive layer or an intermediate layer and a photosensitive layer may be applied and dried according to a conventional method.

表1のNo.1〜No.18に示す各成分組成の合金について、DC鋳造法により厚さ600mmの鋳塊とし、No.17、No.18以外のNo.1〜No.16については、560℃で3時間保持の均質化処理を施した後、450℃で熱間圧延を開始し、表2に示す熱間圧延条件で圧延し、その後中間焼鈍を行なわずに、冷間圧延により最終板厚の0.3mmまで圧延し、製品板(平版印刷版用アルミニウム合金板)とした。また合金No.17については均質化処理を行なわず、また合金No.18については均質化処理を450℃×3時間の条件で行ない、それ以外の条件は上記と同様に処理した。さらに製品板については、熱処理前後の耐力差が前記式(1)を満たす熱処理温度を、次の方法にて測定した。
(1)製品板をJIS5号試験片に加工した後、熱処理なしの試験片、および200℃から500℃まで10℃ごとの各温度に硝石炉にて10分保持する熱処理を施した試験片を用いて、それぞれ引張り試験を行なった。
(2)熱処理なしで測定した耐力の値(YSO)と、500℃×10分の熱処理後に測定した耐力値(YSA)との差をΔYSA(=YSO−YSA)とした。
(3)熱処理なしで測定した耐力値(YSO)と、200〜450℃の範囲内の10℃ごとのそれぞれの温度で10分保持する熱処理後に測定した耐力値(YSB)との差をΔYSB(=YSO−YSB)とした。
(4)ΔYSBとΔYSAと比較し、ΔYSB≧ΔYSA/2となるときの温度を調べた。その温度が(1)式を満たす熱処理温度となる。
No. in Table 1 1-No. The alloy having each component composition shown in No. 18 was made into an ingot having a thickness of 600 mm by the DC casting method. 17, no. No. 18 other than No. 18 1-No. No. 16 was subjected to a homogenization treatment held at 560 ° C. for 3 hours, then started hot rolling at 450 ° C., rolled under the hot rolling conditions shown in Table 2, and thereafter subjected to cold annealing without intermediate annealing. The product was rolled to a final plate thickness of 0.3 mm by hot rolling to obtain a product plate (aluminum alloy plate for planographic printing plates). Alloy No. No homogenization treatment was performed for No. 17, and alloy no. For No. 18, homogenization was performed under the conditions of 450 ° C. × 3 hours, and the other conditions were the same as described above. Furthermore, about the product board, the heat processing temperature with which the proof stress difference before and behind heat processing satisfy | fills said Formula (1) was measured with the following method.
(1) After processing the product plate into a JIS No. 5 test piece, a test piece without heat treatment, and a test piece subjected to heat treatment for 10 minutes at 200 ° C. to 500 ° C. at each temperature every 10 ° C. Each was subjected to a tensile test.
(2) The difference between the proof stress value (YSO) measured without heat treatment and the proof stress value (YSA) measured after heat treatment at 500 ° C. for 10 minutes was defined as ΔYSA (= YSO−YSA).
(3) The difference between the proof stress value (YSO) measured without heat treatment and the proof stress value (YSB) measured after heat treatment held at each temperature of 10 ° C. within the range of 200 to 450 ° C. for 10 minutes is expressed as ΔYSB ( = YSO-YSB).
(4) Compared with ΔYSB and ΔYSA, the temperature when ΔYSB ≧ ΔYSA / 2 was examined. The temperature is a heat treatment temperature that satisfies the equation (1).

また製品板について、単体Si量を、特開昭60−82642号公報記載の分析方法にて測定した。   Further, the amount of simple substance Si of the product plate was measured by the analysis method described in JP-A-60-82642.

さらに、製品板表面において圧延方向に対し直角な方向の結晶粒の平均長さを次のようにして調べた。すなわち、板表面をバーカー法によりエッチングした後、偏光下で顕微鏡観察して25倍写真を撮影し、交線法により求めた。   Further, the average length of crystal grains in the direction perpendicular to the rolling direction on the product plate surface was examined as follows. That is, after etching the plate surface by the Barker method, a 25-fold photograph was taken under a microscope under polarized light, and the cross line method was used.

これらの値を表2に示す。   These values are shown in Table 2.

さらに前述のようにして得られた各製品板(平版印刷版用アルミニウム合金板)について、アルカリエッチング及びデスマット処理を施した後、極性が交互に交換する電解波形を持つ電源を用いて、1%硝酸中で陽極時電気量が150C/dm2となる電解エッチングにより電解粗面化を行った。これを硫酸浴中にて洗浄した後、以下の(1)〜(3)の要領でストリークス発生の有無、外観の均一性、および耐熱軟化性を評価し、表3中に示した。
(1)ストリークス発生の有無
粗面化処理後の外観について目視で観察し、ストリークスの発生が認められないものを○、発生が確認されるものを×とした。
(2)外観の均一性
粗面化処理後の外観について、製品板コイルの全長にわたって目視により観察し、製品板コイルの全長にわたって粗面が均一なものを○、粗面均一性が劣るものを×とした。
(3)耐熱軟化性
製品板について、前記(1)式を満たす熱処理温度が240℃以上のものを○、240℃未満のものを×とした。
Further, each product plate (aluminum alloy plate for lithographic printing plate) obtained as described above is subjected to alkali etching and desmutting treatment, and then 1% by using a power source having an electrolytic waveform in which polarities are alternately exchanged. Electrolytic roughening was performed by electrolytic etching in nitric acid with an anode electricity quantity of 150 C / dm 2 . After washing this in a sulfuric acid bath, the presence or absence of streak generation, uniformity in appearance, and heat softening resistance were evaluated according to the following procedures (1) to (3).
(1) Presence or absence of streak generation The appearance after the surface roughening treatment was visually observed.
(2) Appearance uniformity The appearance after the roughening treatment is visually observed over the entire length of the product plate coil. The product with the rough surface is uniform over the entire length of the product plate coil, and the surface roughness is inferior. X.
(3) Heat softening resistance Regarding the product plate, those having a heat treatment temperature satisfying the above formula (1) of 240 ° C. or higher were evaluated as “○” and those having a heat treatment temperature lower than 240 ° C. as “X”.

さらに、前述のようにして電解粗面化処理を施した後、液温25℃の25%硫酸電解浴にて、電流密度1.5A/dm2の条件で陽極酸化処理を行い、膜厚0.5μmの陽極酸化皮膜を生成させた。陽極酸化処理後の皮膜表面に次のような組成の感光層を、乾燥時の塗布量が2.5g/m2となるように設けた。 Furthermore, after the electrolytic surface roughening treatment was performed as described above, anodization treatment was performed in a 25% sulfuric acid electrolytic bath at a liquid temperature of 25 ° C. under the condition of a current density of 1.5 A / dm 2. A 5 μm anodic oxide film was formed. A photosensitive layer having the following composition was provided on the surface of the film after the anodizing treatment so that the coating amount upon drying was 2.5 g / m 2 .

感光層の組成:
ナフトキノン−1・2−ジアド−5−スルホニルクロライドとピロガロール、アセトン樹脂とのエステル化合物・・・0.75g
クレゾールノホラック樹脂・・・2.00g
オイルブルー#603(オリエント化学製)・・・0.04g
エチレンジクロライド・・・16g
2−メトキシエチルアセテート・・・12g
Composition of photosensitive layer:
Ester compound of naphthoquinone-1,2-diad-5-sulfonyl chloride, pyrogallol, acetone resin ... 0.75g
Cresol noholac resin ... 2.00g
Oil Blue # 603 (Orient Chemical) ... 0.04g
Ethylene dichloride ... 16g
2-methoxyethyl acetate ... 12g

このようにして感光層を形成した平版印刷版について、3kwのメタルハライドランプで1mの距離から60秒画像露光し、ついでSiO2/Na2Oのモル比が1.2でSiO2含有量が1.5%の珪酸ナトリウム水溶液で現像処理し、水洗乾燥後、オフセット輪転機を用いて20万部の印刷試験を行ない、耐汚れ性(非画像部のインク汚れ性)を、次のように評価して、表3中に示した。すなわち、印刷機にて20万部印刷後、非画像部の汚れを調べ、汚れがなく良好なものを○、若干汚れがあったものを△、汚れが多発したものを×とした。 The lithographic printing plate having the photosensitive layer formed in this way was image-exposed for 60 seconds from a distance of 1 m with a 3 kw metal halide lamp, and then the SiO 2 / Na 2 O molar ratio was 1.2 and the SiO 2 content was 1. Developed with 5% sodium silicate aqueous solution, washed with water and dried, and then 200,000 copies were printed using an offset rotary press, and the stain resistance (ink stain resistance of non-image areas) was evaluated as follows. The results are shown in Table 3. That is, after printing 200,000 copies with a printing machine, the non-image portion was checked for stains. Good ones with no stains were marked with ○, ones with slight stains were marked with Δ, and ones with frequent stains were marked with ×.

Figure 2009030129
Figure 2009030129

Figure 2009030129
Figure 2009030129

Figure 2009030129
Figure 2009030129

表3に示すように、この発明の範囲内のNo.1〜No.7の例では、いずれもストリークの発生がなく、粗面の均一性が良好で、また耐汚れ性、耐熱軟化性にも優れていることが判明した。   As shown in Table 3, No. 4 within the scope of the present invention. 1-No. In the case of No. 7, it was found that none of the streaks occurred, the uniformity of the rough surface was good, and the stain resistance and heat softening resistance were excellent.

一方、No.8〜No.18の比較例では、いずれか一つ以上の性能が劣っていた。   On the other hand, no. 8-No. In 18 comparative examples, any one or more performance was inferior.

すなわち、No.8の例では、熱間圧延上り温度が低いため、板表面に加工組織が残存しストリークが発生し、またMgの含有量が多いこともあって、粗面化面の均一性が劣ってしまった。   That is, no. In Example 8, since the hot rolling up temperature is low, the processed structure remains on the plate surface, streaks occur, and the Mg content is high, so the uniformity of the roughened surface is poor. It was.

またNo.9の例では、Fe含有量が少なく、かつ熱間圧延上り温度が高めに外れるとともに、熱間圧延最終パス圧下量が小さいため、再結晶粒が粒成長して粒径が大きくなり、さらにZr含有量が少ないため、粗面化処理面に縞模様が発生し、粗面化面の均一性が劣ってしまった。   No. In the example 9, since the Fe content is small and the hot rolling temperature rises off and the hot rolling final pass reduction is small, the recrystallized grains grow and the grain size increases, and the Zr Since there was little content, the striped pattern generate | occur | produced on the roughening process surface and the uniformity of the roughening surface was inferior.

さらにNo.10の例では、Si含有量が多くかつMg含有量が少ないため、単体Siが多量に析出して、耐汚れ性が劣るとともに、Al−Fe−Si系の粗大な金属間化合物が生成され、粗面化面の均一性が劣ってしまった。またMg含有量が少ないため、耐熱軟化性が劣ってしまった。   Furthermore, no. In the example of 10, since the Si content is large and the Mg content is small, a large amount of simple substance Si is precipitated, the stain resistance is inferior, and an Al-Fe-Si based coarse intermetallic compound is generated, The uniformity of the roughened surface was inferior. Moreover, since there was little Mg content, heat-resistant softening property was inferior.

またNo.11の例では、Fe含有量多くてSi含有量が少なく、かつ熱間圧延最終パスでの圧下量が少なかったため、充分な歪が与えられず、その結果結晶粒が粗大となって、粗面化面の均一性が劣ってしまった。また熱間圧延上り板厚が薄いため、充分な耐熱軟化性が得られなかった。   No. In the example 11, since the Fe content was high, the Si content was small, and the reduction amount in the final hot rolling pass was small, sufficient strain was not given, and as a result, the crystal grains became coarse and the rough surface The uniformity of the chemical surface was inferior. Moreover, since the hot rolled up plate thickness was thin, sufficient heat-resistant softening property could not be obtained.

No.12の例では、CuおよびMnの含有量が多いため、粗面化面の均一性が劣った。また、熱間圧延上り板厚が厚いために冷間圧延で結晶粒が延ばされてストリークが発生した。加えてMg含有量が多いため、素板強度が高くなり過ぎて、円筒形版胴に巻き付けた際に板が切れてしまった。   No. In Example 12, since the contents of Cu and Mn were large, the uniformity of the roughened surface was inferior. Further, since the hot rolled up plate thickness was large, the crystal grains were extended by cold rolling and streaks were generated. In addition, since the Mg content is large, the strength of the base plate is too high, and the plate is cut when wound around the cylindrical plate cylinder.

No.13の例では、Cu添加量が少なくTi含有量が多いため、粗面化面の均一性が劣った。また熱間圧延上り温度が低いため、板表面に加工組織が残存して、ストリークスが発生した。   No. In Example 13, since the amount of Cu added was small and the Ti content was large, the uniformity of the roughened surface was poor. In addition, since the hot rolling up temperature was low, the processed structure remained on the plate surface and streaks were generated.

No.14の例では、Mg含有量が少ないため、単体Siが多量に析出し、その結果耐汚れ性が劣るとともに、耐熱軟化性も劣った。またZr含有量が多いため、Al3Zrが析出して、ストリークが発生した。さらにZn含有量が多いため、電解粗面化処理時に全面溶解が生じてしまって、粗面化面の均一性が劣ってしまった。 No. In Example 14, since the Mg content was small, a large amount of simple substance Si was precipitated. As a result, the soil resistance was inferior and the heat softening resistance was also inferior. Further, since the Zr content was large, Al 3 Zr was precipitated and streaks were generated. Furthermore, since there was much Zn content, the whole surface melt | dissolved during the electrolytic surface roughening process, and the uniformity of the roughened surface was inferior.

No.15の例では、Si含有量が多いため、単体Siが多量に析出し、その結果耐汚れ性が劣ってしまった。またZr含有量が多いためにAl3Zrが析出したことと、Ti含有量が少なくて鋳塊組織を充分に微細化することができずにフェザー組織が残存したこととが相俟って、ストリークが発生した。またFe含有量が少ないために再結晶粒径が大きくなったことと、Si含有量が多くてAl−Fe−Si系の粗大な金属間化合物が生成されたこととが相俟って、粗面化面の均一性が劣ってしまった。なおMn含有量が多いことにより電解粗面化処理時に全面溶解が起こったことも、粗面化面の均一性が劣る原因であった。 No. In Example 15, since the Si content was large, a large amount of simple Si was precipitated, and as a result, the stain resistance was poor. Moreover, combined with the fact that Al 3 Zr was precipitated due to the high Zr content and that the Fe content was not able to sufficiently refine the ingot structure due to the low Ti content, A streak occurred. In addition, the combination of the fact that the recrystallized grain size was increased due to the low Fe content and the fact that the Si content was high and an Al—Fe—Si based coarse intermetallic compound was produced, The uniformity of the surface has been inferior. The fact that the entire surface was dissolved during the electrolytic surface roughening treatment due to the large Mn content was also a cause of poor uniformity of the roughened surface.

No.16の例では、Si含有量が多いために単体Siが多量に析出し、その結果耐汚れ性が劣った。またZr含有量が多くてAl3Zrが析出したため、ストリークが発生した。さらに熱間圧延上り温度が高めに外れたため、再結晶粒が粒成長して結晶粒径が大きくなり、そのため粗面化面の均一性が劣った。 No. In Example 16, since the Si content was large, a large amount of simple Si was precipitated, resulting in poor stain resistance. Further, since the Zr content was large and Al 3 Zr was precipitated, streaks were generated. Furthermore, since the hot rolling ascending temperature deviated to a higher level, the recrystallized grains grew and the crystal grain size increased, resulting in poor uniformity of the roughened surface.

No.17の例では、Cu含有量が少なく、Ti含有量が多いため、粗面化面の均一性に劣り、また熱間圧延上り温度が低いため、板表面に加工組織が存在して、ストリークが発生した。   No. In Example 17, since the Cu content is small and the Ti content is large, the uniformity of the roughened surface is inferior, and since the hot rolling up temperature is low, there is a processed structure on the plate surface, streaks. Occurred.

No.18の例でも、Cu含有量が少なく、Ti含有量が多いため、粗面化面の均一性に劣り、さらに均質化処理温度が低いため、Fe固溶量が少なくなり、その結果耐熱軟化性が劣ってしまった。   No. Even in the example 18, since the Cu content is small and the Ti content is large, the uniformity of the roughened surface is inferior, and the homogenization treatment temperature is low, so the Fe solid solution amount is reduced, and as a result, the heat softening resistance Was inferior.

Claims (4)

Fe0.1〜0.5%(mass%、以下同じ)、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金板であって、かつその板における単体Si量が0.02%以下であり、また圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下であり、しかもその板を500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、下記(1)式が満たされる熱処理温度が240℃以上であることを特徴とする、平版印刷版用アルミニウム合金板。
ΔYSB≧ΔYSA×1/2 ・・・(1)
Fe 0.1-0.5% (mass%, the same shall apply hereinafter), Si 0.01-0.20%, Cu 0.005-0.07%, Mg 0.10-0.25%, Ti 0.003-0.03 %, Zr 0.0005% or more and less than 0.004%, the balance being an aluminum alloy plate made of Al and inevitable impurities, and the amount of elemental Si in the plate is 0.02% or less, and The average length of crystal grains in the direction perpendicular to the rolling direction is 100 μm or less, and the difference between the proof stress value YSO before heating and the proof stress value YSA after heating when the plate is heated at 500 ° C. for 10 minutes is ΔYSA (= YSO−YSA) and the difference between the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment when the heat treatment is performed for 10 minutes at a certain temperature on the plate is ΔYSB (= YSO−YSB) As, wherein the heat treatment temperature to the following equation (1) is satisfied is 240 ° C. or higher, aluminum alloy strip for lithographic printing plates.
ΔYSB ≧ ΔYSA × 1/2 (1)
Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満、Mn0.001〜0.01%、Zn0.001〜0.01%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金板であって、かつその板における単体Si量が0.02%以下であり、また圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下であり、しかもその板を500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、下記(1)式が満たされる熱処理温度が240℃以上であることを特徴とする、平版印刷版用アルミニウム合金板。
ΔYSB≧ΔYSA×1/2 ・・・(1)
Fe 0.1-0.5%, Si 0.01-0.20%, Cu 0.005-0.07%, Mg 0.10-0.25%, Ti 0.003-0.03%, Zr 0.0005% or more , Less than 0.004%, Mn 0.001 to 0.01%, Zn 0.001 to 0.01%, the balance being an aluminum alloy plate made of Al and unavoidable impurities, and simple substance Si in the plate The amount is 0.02% or less, the average length of the crystal grains in the direction perpendicular to the rolling direction is 100 μm or less, and the proof stress YSO before heating when the plate is heated at 500 ° C. for 10 minutes. And YSA (= YSO-YSA) as the difference between the proof stress value after heating and the proof stress value after heating, the proof stress value YSO before the heat treatment and the proof stress value after the heat treatment when the heat treatment is performed for 10 minutes at a certain temperature on the plate. With YSB The aluminum alloy plate for a lithographic printing plate is characterized in that the heat treatment temperature at which the following formula (1) is satisfied is 240 ° C. or higher, where ΔYSB (= YSO−YSB).
ΔYSB ≧ ΔYSA × 1/2 (1)
Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とし、鋳塊に対して熱間圧延を施すにあたり、最終圧延パスにおける圧下量が3mm以上、熱間圧延上り温度が280〜360℃の範囲内、熱間圧延上り板厚が1.0〜4.0mmの範囲内となるように制御し、得られた熱延板に対し、その後中間焼鈍を施すことなく製品板厚まで冷間圧延して、圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下でかつ単体Si量が0.02%以下であり、しかも500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、下記(1)式が満たされる熱処理温度が240℃以上であることを特徴とする、平版印刷版用アルミニウム合金板の製造方法。
ΔYSB≧ΔYSA×1/2 ・・・(1)
Fe 0.1-0.5%, Si 0.01-0.20%, Cu 0.005-0.07%, Mg 0.10-0.25%, Ti 0.003-0.03%, Zr 0.0005% or more When the hot rolling is performed on the ingot, the reduction amount in the final rolling pass is 3 mm or more when hot rolling is performed using an aluminum alloy containing less than 0.004%, the balance being Al and inevitable impurities. Control the temperature so that the ascending temperature is within the range of 280 to 360 ° C. and the hot rolled ascending sheet thickness is within the range of 1.0 to 4.0 mm, and then subject the obtained hot-rolled sheet to intermediate annealing. And cold rolled to the product sheet thickness, the average length of the crystal grains in the direction perpendicular to the rolling direction is 100 μm or less, the amount of elemental Si is 0.02% or less, and heated at 500 ° C. for 10 minutes. Proof stress YSO before heating The difference between the proof stress value YSA after that is ΔYSA (= YSO−YSA) and the proof stress value YSO before the heat treatment and the proof stress value YSB after the heat treatment when the heat treatment is performed for 10 minutes at a certain temperature on the plate. A method for producing an aluminum alloy plate for a lithographic printing plate, wherein the difference in the above is ΔYSB (= YSO−YSB), and the heat treatment temperature that satisfies the following formula (1) is 240 ° C. or higher.
ΔYSB ≧ ΔYSA × 1/2 (1)
Fe0.1〜0.5%、Si0.01〜0.20%、Cu0.005〜0.07%、Mg0.10〜0.25%、Ti0.003〜0.03%、Zr0.0005%以上、0.004%未満、Mn0.001〜0.01%、Zn0.001〜0.01%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とし、鋳塊に対して熱間圧延を施すにあたり、最終圧延パスにおける圧下量が3mm以上、熱間圧延上り温度が280〜360℃の範囲内、熱間圧延上り板厚が1.0〜4.0mmの範囲内となるように制御し、得られた熱延板に対し、その後中間焼鈍を施すことなく製品板厚まで冷間圧延して、圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下でかつ単体Si量が0.02%以下であり、しかも500℃で10分間加熱したときの加熱前の耐力値YSOと加熱後の耐力値YSAとの差をΔYSA(=YSO−YSA)とするとともに、その板にある温度で10分間保持する熱処理を行なったときの熱処理前の耐力値YSOと熱処理後の耐力値YSBとの差をΔYSB(=YSO−YSB)として、下記(1)式が満たされる熱処理温度が240℃以上であることを特徴とする、平版印刷版用アルミニウム合金板の製造方法。
ΔYSB≧ΔYSA×1/2 ・・・(1)
Fe 0.1-0.5%, Si 0.01-0.20%, Cu 0.005-0.07%, Mg 0.10-0.25%, Ti 0.003-0.03%, Zr 0.0005% or more Less than 0.004%, 0.001% to 0.01% Mn, 0.001% to 0.01% Zn, the balance being Al and inevitable impurities made of an aluminum alloy, hot against the ingot In rolling, the reduction amount in the final rolling pass is 3 mm or more, the hot rolling up temperature is in the range of 280 to 360 ° C., and the hot rolling up plate thickness is in the range of 1.0 to 4.0 mm. The obtained hot-rolled sheet is then cold-rolled to a product sheet thickness without intermediate annealing, and the average length of crystal grains in the direction perpendicular to the rolling direction is 100 μm or less and single Si The amount is 0.02% or less, and The difference between the proof stress value YSO before heating and the proof stress value YSA after heating when heated at 00 ° C. for 10 minutes is ΔYSA (= YSO−YSA), and heat treatment is performed for 10 minutes at the temperature on the plate. The difference between the proof stress value YSO before heat treatment and the proof stress value YSB after heat treatment is ΔYSB (= YSO−YSB), and the heat treatment temperature satisfying the following formula (1) is 240 ° C. or higher. The manufacturing method of the aluminum alloy plate for lithographic printing plates.
ΔYSB ≧ ΔYSA × 1/2 (1)
JP2007196879A 2007-07-30 2007-07-30 Aluminum alloy plate for lithographic printing plate and method for producing the same Expired - Fee Related JP5080160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007196879A JP5080160B2 (en) 2007-07-30 2007-07-30 Aluminum alloy plate for lithographic printing plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196879A JP5080160B2 (en) 2007-07-30 2007-07-30 Aluminum alloy plate for lithographic printing plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009030129A true JP2009030129A (en) 2009-02-12
JP5080160B2 JP5080160B2 (en) 2012-11-21

Family

ID=40400946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196879A Expired - Fee Related JP5080160B2 (en) 2007-07-30 2007-07-30 Aluminum alloy plate for lithographic printing plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5080160B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057185A (en) * 2010-09-03 2012-03-22 Fujifilm Corp Aluminum alloy plate for lithographic printing plate and method of manufacturing the same
JP2013174018A (en) * 2013-04-11 2013-09-05 Kobe Steel Ltd Method for producing high-strength aluminum alloy sheet for printing plate of automatic plate making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306355A (en) * 1997-04-30 1998-11-17 Furukawa Electric Co Ltd:The Aluminum alloy substrate for lithographic plate, and its production
JP2001049409A (en) * 1998-07-30 2001-02-20 Nippon Light Metal Co Ltd Manufacture of aluminum alloy substrate for lithographic plate and stock sheet for the substrate
JP2005042187A (en) * 2003-07-25 2005-02-17 Mitsubishi Alum Co Ltd Aluminum alloy sheet for planographic printing plate, its manufacturing method, and planographic printing plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306355A (en) * 1997-04-30 1998-11-17 Furukawa Electric Co Ltd:The Aluminum alloy substrate for lithographic plate, and its production
JP2001049409A (en) * 1998-07-30 2001-02-20 Nippon Light Metal Co Ltd Manufacture of aluminum alloy substrate for lithographic plate and stock sheet for the substrate
JP2005042187A (en) * 2003-07-25 2005-02-17 Mitsubishi Alum Co Ltd Aluminum alloy sheet for planographic printing plate, its manufacturing method, and planographic printing plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057185A (en) * 2010-09-03 2012-03-22 Fujifilm Corp Aluminum alloy plate for lithographic printing plate and method of manufacturing the same
JP2013174018A (en) * 2013-04-11 2013-09-05 Kobe Steel Ltd Method for producing high-strength aluminum alloy sheet for printing plate of automatic plate making

Also Published As

Publication number Publication date
JP5080160B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JPH0576530B2 (en)
JPS6347349A (en) Aluminum alloy support for lithographic printing plate
JPH0528197B2 (en)
JP4630968B2 (en) Aluminum alloy plate for planographic printing plate, method for producing the same and planographic printing plate
JPH07305133A (en) Supporting body for planographic printing plate and its production
JP5080160B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JPH07100844B2 (en) Method for manufacturing aluminum alloy support for offset printing
JPS6223794A (en) Substrate of aluminum alloy for offset printing
JP4714576B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2000108534A (en) Support for lithographic printing plate
JPH05201166A (en) Manufacture of supporter for lithographic plate
JPH0473392B2 (en)
JP5209918B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4016310B2 (en) Aluminum alloy support for lithographic printing plate and method for producing base plate for support
JP5886619B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4593332B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JPH04254545A (en) Aluminum alloy substrate for planographic printing plate
JPH05301478A (en) Support of planograpahic printing plate and production thereof
JP5495298B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3506265B2 (en) Method for producing aluminum alloy support for lithographic printing plate
JP3662418B2 (en) Support for lithographic printing plate
JPH0637116B2 (en) Aluminum alloy support for lithographic printing plates
JP4832779B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3600081B2 (en) Element of aluminum alloy support for PS plate and method for producing aluminum alloy support for PS plate
JPH0892679A (en) Aluminum alloy substrate for planographic printing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees