JP5209918B2 - Aluminum alloy plate for lithographic printing plate and method for producing the same - Google Patents
Aluminum alloy plate for lithographic printing plate and method for producing the same Download PDFInfo
- Publication number
- JP5209918B2 JP5209918B2 JP2007225289A JP2007225289A JP5209918B2 JP 5209918 B2 JP5209918 B2 JP 5209918B2 JP 2007225289 A JP2007225289 A JP 2007225289A JP 2007225289 A JP2007225289 A JP 2007225289A JP 5209918 B2 JP5209918 B2 JP 5209918B2
- Authority
- JP
- Japan
- Prior art keywords
- plate
- width direction
- less
- aluminum alloy
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000006104 solid solution Substances 0.000 claims description 19
- 239000013078 crystal Substances 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052790 beryllium Inorganic materials 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 73
- 238000007788 roughening Methods 0.000 description 64
- 238000000034 method Methods 0.000 description 39
- 239000000956 alloy Substances 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003513 alkali Substances 0.000 description 7
- 238000000265 homogenisation Methods 0.000 description 7
- 229910000765 intermetallic Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000007743 anodising Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 206010016807 Fluid retention Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Printing Plates And Materials Therefor (AREA)
Description
この発明は、粗面化処理したアルミニウム合金板表面に陽極酸化処理を施し、さらに感光性物質を塗布して形成される平版印刷版に使用されるアルミニウム合金板に関するものであり、より詳しくは、粗面化処理後の粗面外観の均一性に優れ、しかも耐熱軟化特性に優れており、かつ板の全幅にわたり、板幅方向において粗面化処理後の粗面外観および耐熱軟化特性にばらつきのない平版印刷版用アルミニウム合金板およびその製造方法に関するものである。 The present invention relates to an aluminum alloy plate used for a lithographic printing plate formed by anodizing the surface of a roughened aluminum alloy plate and further applying a photosensitive substance. Excellent uniformity in the appearance of the rough surface after the roughening treatment, excellent heat resistance softening characteristics, and variation in the rough surface appearance and heat resistance softening characteristics after the roughening treatment in the width direction of the plate over the entire width of the plate. The present invention relates to an aluminum alloy plate for lithographic printing plates and a method for producing the same.
一般に平版印刷版としては、アルミニウムもしくはアルミニウム合金の表面に粗面化処理、陽極酸化皮膜処理などの表面処理を施してなる支持体上に感光性物質を塗布して用いるのが通常である。このような平版印刷版のうちで通常広く用いられているのは、予め支持体上に感光性物質を塗布しておき、直ちに焼き付けられる状態とした、いわゆるPS版である。 In general, a lithographic printing plate is usually used by applying a photosensitive substance on a support obtained by subjecting the surface of aluminum or an aluminum alloy to a surface treatment such as a roughening treatment or an anodized film treatment. Among such lithographic printing plates, what is generally widely used is a so-called PS plate in which a photosensitive material is applied on a support in advance and immediately baked.
このような平版印刷版を実際に印刷版として使用するにあたっては、画像露光、現像、水洗、ラッカー盛り等の製版処理を施す。ここで、現像処理による未溶解の感光層は画像部を形成し、感光層が除去されてその下のアルマイト層が露出した部分は親水性のため水受容部となり、非画像部を形成する。このようにして作られた印刷版は、印刷機の回転する円筒形版胴に巻付けて、湿し水の存在下でインキを画像部上に付着させ、ゴムブランケットに転写して、紙面に印刷することになる。 When such a lithographic printing plate is actually used as a printing plate, plate making processes such as image exposure, development, washing, and lacquer are applied. Here, the undissolved photosensitive layer formed by the development process forms an image portion, and the portion where the photosensitive layer is removed and the alumite layer under the photosensitive layer is hydrophilic becomes a water receiving portion because of hydrophilicity, and forms a non-image portion. The printing plate made in this way is wound around a rotating cylindrical plate cylinder of a printing press, and ink is deposited on the image area in the presence of fountain solution, transferred to a rubber blanket, and printed on the paper surface. Will be printed.
従来このような用途のアルミニウムおよびアルミニウム合金(以下総称してアルミニウム合金とする)としては、JIS1050、JIS1100、JIS3003等が主として用いられる。通常これらのアルミニウム合金板は、表面を機械的方法、化学的方法および電気化学的方法のいずれか一つ、あるいは二つ以上を組合せた工程による粗面化方法により粗面化し、その後好ましくは陽極酸化処理を施して使用される。 Conventionally, JIS1050, JIS1100, JIS3003, etc. are mainly used as aluminum and aluminum alloys (hereinafter collectively referred to as aluminum alloys) for such applications. Usually, these aluminum alloy plates are roughened by a roughening method using a mechanical method, a chemical method, an electrochemical method, or a combination of two or more, and then preferably an anode. Used with oxidation treatment.
ところで近年は、耐刷性の向上を目的とし、平版印刷版を通常の方法で露光、現像処理した後に、高温で加熱処理(バーニング処理)することによって画像部を強化することが広く行なわれている。バーニング処理は、通常、加熱温度200〜290℃、加熱時間3〜9分の条件で行なうが、このようなバーニング処理時にアルミニウム合金板の強度が低下することがないように、耐熱軟化特性(耐バーニング性)が優れていることが必要である。また一般にこのような平版印刷版は、元板(平版印刷版用アルミニウム合金板)の全幅から、種々の幅に切断して得るところから、元板の全幅にわたり、耐熱軟化特性および粗面化処理後の粗面外観が、板の幅方向に均一であることも必要である。 By the way, in recent years, for the purpose of improving printing durability, it has been widely practiced to reinforce the image area by subjecting the lithographic printing plate to exposure and development processing by a usual method and then heat treatment (burning treatment) at a high temperature. Yes. The burning treatment is usually performed under the conditions of a heating temperature of 200 to 290 ° C. and a heating time of 3 to 9 minutes. However, in order to prevent the strength of the aluminum alloy plate from being reduced during such burning treatment, It is necessary that the burning property is excellent. In general, such a lithographic printing plate is obtained by cutting the entire width of the base plate (aluminum alloy plate for lithographic printing plate) into various widths. It is also necessary that the subsequent rough surface appearance be uniform in the width direction of the plate.
さらにこの種のアルミニウム合金板については、平版印刷版として、感光層との密着性、およびアルミニウム板の保水性を向上させるために、粗面化処理によって適度な深さ、直径を有しかつそれらの大きさが均一であるピットを、板表面全体に均一に形成し得ることが要求されている。 Further, this type of aluminum alloy plate has a suitable depth and diameter as a lithographic printing plate by roughening in order to improve adhesion to the photosensitive layer and water retention of the aluminum plate. It is required that pits having a uniform size can be uniformly formed on the entire plate surface.
これらの要求を満たすための方策としては、既に、熱間圧延における各種温度および熱間圧延後の平均冷却速度を規定する事によって、粗面化処理後の外観の均一性、耐熱軟化特性を解決する提案がなされている(例えば特許文献1参照)。 As measures to meet these requirements, we have already solved the uniformity of appearance after heat treatment and heat softening characteristics by prescribing various temperatures in hot rolling and the average cooling rate after hot rolling. (For example, refer patent document 1).
また一方、準安定相であるAlFe系金属間化合物粒子の分布を調整することにより、粗面化処理後の外観の均一性を解決する提案もなされている(例えば特許文献2参照)。 On the other hand, proposals have also been made to solve the uniformity of the appearance after the surface roughening treatment by adjusting the distribution of AlFe-based intermetallic compound particles that are metastable phases (see, for example, Patent Document 2).
さらに、各種元素の添加量を調整したアルミニウム合金材に対して特定の熱間圧延条件を適用して結晶粒径を制御することにより、粗面化処理後の外観均一性、耐熱軟化性、反復曲げ疲労強さを解決する提案もなされている(例えば特許文献3参照)。 Furthermore, by applying specific hot rolling conditions to the aluminum alloy material with the added amount of various elements adjusted to control the crystal grain size, the appearance uniformity after the surface roughening treatment, heat softening resistance, repetitiveness Proposals for solving the bending fatigue strength have also been made (see, for example, Patent Document 3).
そのほか、各種元素の添加量および準安定相のAlFe系金属間化合物粒子の分布を調整することにより、粗面化処理面後の外観均一性を解決する提案もなされている(例えば特許文献4参照)。 In addition, proposals have been made to solve the appearance uniformity after the roughened surface by adjusting the amount of various elements added and the distribution of AlFe-based intermetallic compound particles in the metastable phase (see, for example, Patent Document 4). ).
また、準安定層の金属間化合物粒子を調整して粗面化均一性を解決した例もある(例えば特許文献5参照)。
前述のような従来の各種の提案のうち、特許文献1に示される提案の場合、熱間圧延工程における各温度の制御だけでは、充分な耐熱軟化性を得ることは困難であり、また平均冷却速度の制御だけでは結晶粒を微細にすることが困難であって、粗面化処理後の外観の均一性も充分とはいえないことが判明している。 Among the various conventional proposals as described above, in the case of the proposal shown in Patent Document 1, it is difficult to obtain sufficient heat-softening property only by controlling each temperature in the hot rolling process. It has been found that it is difficult to make the crystal grains fine by controlling the speed alone, and the uniformity of the appearance after the roughening treatment is not sufficient.
また特許文献2に示される提案の場合、準安定相粒子の制御のみでは、必ずしも粗面化処理後の外観均一性が良好とはならず、さらなる改善が必要であると言わざるを得ない。 In addition, in the case of the proposal shown in Patent Document 2, it is necessary to say that the appearance uniformity after the roughening treatment is not always good only by controlling the metastable phase particles, and further improvement is necessary.
さらに、特許文献3に示される提案の場合、板表面上に熱間圧延上がりで再結晶していない領域が存在し、この場合、粗面化処理面にストリークが発生して、外観の均一性に劣る問題がある。 Furthermore, in the case of the proposal shown in Patent Document 3, there is a region that is not hot-rolled and recrystallized on the plate surface. In this case, streaks occur on the roughened surface, and the appearance is uniform. There is a problem inferior to
そしてまた特許文献4に示される提案による成分組成の調整とAlFe系金属間化合物粒子の制御だけでは、粗面化処理後の外観均一性が必ずしも良好とはならず、さらなる改善が望まれる。 Further, only by adjusting the component composition and controlling the AlFe-based intermetallic compound particles according to the proposal shown in Patent Document 4, the appearance uniformity after the roughening treatment is not always good, and further improvement is desired.
また特許文献5に示される提案では、合金の成分組成を調整すると同時に、準安定相の金属間化合物粒子の制御を、鋳塊に対する均質化処理を行なわないかまたは均質化処理を550℃以下の低温とすることによって実施しているが、この方法では、Feの固溶量が不充分となり、耐熱軟化性が不充分となるとともに、板幅方向に耐熱軟化性がばらついてしまう。すなわち本願発明では、Fe固溶量を0.001〜0.005%の範囲内と規定するとともに、270℃で10分の熱処理を行なった後の板幅方向の耐力差のばらつきを20%以内に抑えることとしているが、引用文献5に記載されている方法の場合は、このような条件を満たすことはできず、そのためバーニング処理時における強度低下が大きくなって、充分な耐熱軟化性を示し得ないばかりでなく、板幅方向に熱軟化性がばらついてしまうのが実情である。 In addition, in the proposal shown in Patent Document 5, the alloy composition is adjusted, and at the same time, the control of the intermetallic compound particles in the metastable phase is not performed, or the ingot is not homogenized or the homogenization is performed at 550 ° C. or less. This method is carried out at a low temperature. However, in this method, the solid solution amount of Fe becomes insufficient, the heat softening property becomes insufficient, and the heat softening property varies in the plate width direction. That is, in the present invention, the amount of Fe solid solution is specified to be within the range of 0.001 to 0.005%, and the variation in the proof stress difference in the sheet width direction after heat treatment at 270 ° C. for 10 minutes is within 20%. However, in the case of the method described in the cited document 5, such a condition cannot be satisfied, so that the strength decrease during the burning process becomes large, and sufficient heat-softening resistance is exhibited. In fact, the thermal softening property varies in the sheet width direction as well as not being obtained.
この発明は以上の事情を背景としてなされたもので、粗面化処理後の外観(粗面)の均一性が優れるとともに、耐熱軟化性が良好で、バーニング処理により強度が低下するおそれが少なく、しかも板の全幅にわたり、その幅方向に耐熱軟化特性および粗面化処理後の粗面外観のばらつきがない平版印刷版用アルミニウム合金板を提供することを課題としている。 This invention was made against the background of the above circumstances, the uniformity of the appearance after the roughening treatment (rough surface) is excellent, the heat softening resistance is good, and there is little risk of the strength being reduced by the burning treatment, Moreover, it is an object of the present invention to provide an aluminum alloy plate for a lithographic printing plate that has no heat-softening property and no variation in the appearance of the rough surface after the roughening treatment in the width direction over the entire width of the plate.
本発明者は、上述のような課題を解決するべく、鋭意研究を重ねた結果、一般の平版印刷版用アルミニウム合金板に含有されている通常の元素の含有量を適切に調整するだけではなく、微量元素のNi、Sn、Beを適切に制御し、併せて板表面に極微量含まれるLiの濃度を適切に規制することによって、前述の課題を解決し得ることを新規に見出し、この発明をなすに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor not only appropriately adjusts the content of ordinary elements contained in a general lithographic printing plate aluminum alloy plate. The present invention has newly found that the above-mentioned problems can be solved by appropriately controlling the trace elements Ni, Sn, and Be, and also appropriately regulating the concentration of Li contained in the trace amount on the plate surface. It came to make.
すなわち請求項1の発明の平版印刷版用アルミニウム合金板は、Fe:0.1〜0.5%、Si:0.05〜0.20%、Cu:0.005〜0.07%、Mg:0.051〜0.15%、Ti:0.003〜0.03%、Zr:0.0005%以上0.004%未満を含有し、さらにNi、Sn、およびBeのうちの1種または2種以上を、合計量で0.001%以上0.01%未満含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金よりなり、板表面のLi濃度が2ppm以下であり、かつ板表面における圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下であり、しかも270℃で10分保持する熱処理を行なった後の板幅方向の中央部と端部の耐力差が、その熱処理後の板幅方向中央部の耐力値の20%以内であり、さらに板におけるFe固溶量が、0.001〜0.005%の範囲内にあることを特徴とするものである。
That is, the aluminum alloy plate for a lithographic printing plate according to the first aspect of the present invention comprises Fe: 0.1 to 0.5%, Si: 0.05 to 0.20%, Cu: 0.005 to 0.07%, Mg 0.051 to 0.15%, Ti: 0.003 to 0.03%, Zr: 0.0005% or more and less than 0.004%, and one or more of Ni, Sn, and Be Two or more kinds are contained in a total amount of 0.001% or more and less than 0.01%, the balance is made of an aluminum alloy consisting of Al and inevitable impurities, the Li concentration on the plate surface is 2 ppm or less, and The average length of the crystal grains in the direction perpendicular to the rolling direction is 100 μm or less, and the difference in the proof stress between the center portion and the end portion in the plate width direction after heat treatment held at 270 ° C. for 10 minutes is the heat treatment. 20 of the proof stress value at the center of the rear plate width direction %, And the Fe solid solution amount in the plate is in the range of 0.001 to 0.005%.
また請求項2の発明の平版印刷版用アルミニウム合金板の製造方法は、Fe:0.1〜0.5%、Si:0.05〜0.20%、Cu:0.005〜0.07%、Mg:0.051〜0.15%、Ti:0.003〜0.03%、Zr:0.0005%以上0.004%未満を含有し、さらにNi、Sn、Beの1種または2種以上を、合計量で0.001%以上0.01%未満含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金を用い、その鋳塊に熱間圧延を行なうにあたり、熱間圧延開始温度が350〜490℃の範囲内、熱間圧延終了温度が280〜360℃の範囲内、かつ熱間圧延終了温度における板幅方向の中央部と端部の温度差が20℃以内となるように熱間圧延を行ない、その後中間焼鈍を行なわずに冷間圧延を行ない、これによって、板表面のLi濃度が2ppm以下であり、かつ板表面における圧延方向に対し直角な方向の結晶粒の平均長さが100μm以下であり、しかも270℃で10分保持する熱処理を行なった後の板幅方向の中央部と端部の耐力差が、その熱処理後の板幅方向の中央部の耐力値の20%以内であり、さらに板におけるFe固溶量が、0.001〜0.005%の範囲内にある平版印刷版用アルミニウム合金板を得ることを特徴とするものである。
The method for producing an aluminum alloy plate for a lithographic printing plate according to the second aspect of the present invention comprises Fe: 0.1 to 0.5%, Si: 0.05 to 0.20%, Cu: 0.005 to 0.07. %, Mg: 0.051 to 0.15%, Ti: 0.003 to 0.03%, Zr: 0.0005% or more and less than 0.004%, and one of Ni, Sn and Be or 2 or more types are included in a total amount of 0.001% or more and less than 0.01%, and an aluminum alloy consisting of Al and inevitable impurities is used as the balance. The temperature is in the range of 350 to 490 ° C., the hot rolling end temperature is in the range of 280 to 360 ° C., and the temperature difference between the center portion and the end portion in the sheet width direction at the hot rolling end temperature is within 20 ° C. Hot-rolled and then cold-rolled without intermediate annealing As a result, the Li concentration on the plate surface is 2 ppm or less, the average length of the crystal grains in the direction perpendicular to the rolling direction on the plate surface is 100 μm or less, and is held at 270 ° C. for 10 minutes. The difference in yield strength between the center portion and the end portion in the plate width direction after the heat treatment is within 20% of the yield strength value in the center portion in the plate width direction after the heat treatment, and the Fe solid solution amount in the plate is 0%. An aluminum alloy plate for a lithographic printing plate in a range of 0.001 to 0.005% is obtained.
請求項1の発明の平版印刷版用アルミニウム合金板は、粗面化処理後の粗面外観の均一性が優れると同時に、耐熱軟化特性に優れていて、バーニング処理による強度の低下が少なく、しかも板幅方向の全幅にわたり、耐熱軟化特性および粗面化処理後の粗面外観の板幅方向のばらつきも小さく、したがって平版印刷版支持体として極めて良好な性能、商品価値を有している。 The aluminum alloy plate for a lithographic printing plate according to the first aspect of the invention has excellent uniformity in the appearance of the rough surface after the surface roughening treatment, at the same time excellent in heat-resistant softening characteristics, and has a small decrease in strength due to the burning treatment. Over the entire width in the plate width direction, the heat softening property and the variation in the rough surface appearance after the roughening treatment in the plate width direction are small, and therefore, the lithographic printing plate support has extremely good performance and commercial value.
また請求項2の発明の製造方法によれば、上述のような優れた性能、商品価値を有する平版印刷版用アルミニウム合金板を確実かつ安定して得ることができ、またそればかりでなく、熱間圧延後の中間焼鈍を省略することにより、工程数減少、省エネルギにより低コスト化を図ることができる。 Further, according to the manufacturing method of the invention of claim 2, an aluminum alloy plate for a lithographic printing plate having excellent performance and commercial value as described above can be obtained reliably and stably, and not only that, By omitting the intermediate annealing after the hot rolling, the cost can be reduced by reducing the number of processes and saving energy.
以下、この発明について、詳細に説明する。 The present invention will be described in detail below.
先ずこの発明で用いるアルミニウム合金の成分組成限定理由について説明する。 First, the reasons for limiting the component composition of the aluminum alloy used in the present invention will be described.
Fe:0.1〜0.5%
Fe量が0.1%未満では、再結晶時の結晶粒径が粗大となって粗面化処理により生成されるピットが不均一となり、粗面化処理後の表面に面質ムラが発生し、外観が不均一となる。一方Fe量が0.5%を越えれば、Al−Fe系、Al−Fe−Si系の粗大化合物が多量に生成されて、粗面化処理後のピットが不均一となり、前記同様に粗面化処理後の外観不均一が生じる。そのためFe量は0.1〜0.5%の範囲とした。なおより好ましくは、Fe量は0.12〜0.29%の範囲内とする。
Fe: 0.1 to 0.5%
If the amount of Fe is less than 0.1%, the crystal grain size at the time of recrystallization becomes coarse and the pits generated by the roughening treatment become non-uniform, resulting in uneven surface quality on the surface after the roughening treatment. , The appearance is uneven. On the other hand, if the amount of Fe exceeds 0.5%, a large amount of Al-Fe-based and Al-Fe-Si-based coarse compounds are generated, and the pits after the surface roughening treatment become non-uniform. Appearance non-uniformity after crystallization treatment occurs. Therefore, the amount of Fe is set in the range of 0.1 to 0.5%. More preferably, the amount of Fe is in the range of 0.12 to 0.29%.
Si:0.05〜0.20%
Si量が0.05%未満では、粗面化処理後のピットが不均一となることから、粗面化処理後に面質ムラが発生し、外観が不均一となる。またSi量が0.20%を越えれば、Al−Fe−Si系の粗大化合物が多量に生成されて、粗面化処理後のピットが不均一となり、粗面化処理後に面質ムラが生じ、外観が不均一となり、さらには、後述する単体Siの析出が生じやすくなるため、非画像部のインク汚れも生じやすくなる。そのためSi量は0.05〜0.20%の範囲内とした。なお好ましくはSi量は0.06〜0.15%の範囲内とする。
Si: 0.05-0.20%
If the amount of Si is less than 0.05%, the pits after the surface roughening treatment are non-uniform, so that surface unevenness occurs after the surface roughening treatment and the appearance is non-uniform. On the other hand, if the amount of Si exceeds 0.20%, a large amount of Al-Fe-Si-based coarse compounds are produced, and the pits after the surface roughening treatment become non-uniform, resulting in surface quality unevenness after the surface roughening treatment. In addition, the appearance becomes non-uniform, and further, precipitation of simple substance Si, which will be described later, is likely to occur, so that ink stains in non-image areas are also likely to occur. Therefore, the Si amount is set in the range of 0.05 to 0.20%. Preferably, the Si amount is in the range of 0.06 to 0.15%.
Cu:0.005〜0.07%
Cuは電解粗面化処理性に大きな影響を及ぼす元素である。Cu量が0.005%未満では、粗面化処理後のピットが不均一になり、前記同様に外観不均一となる。一方Cu量が0.07%を越えても粗面化処理後のピットが不均一となり、また粗面化処理後の色調が黒味を帯びすぎて商品価値を損なう。そのためCu量は0.005〜0.07%の範囲内とした。なお、好ましくはCu量は0.005〜0.05%の範囲内とする。
Cu: 0.005-0.07%
Cu is an element having a great influence on the electrolytic surface-roughening processability. If the amount of Cu is less than 0.005%, the pits after the surface roughening treatment become non-uniform, and the appearance becomes non-uniform as described above. On the other hand, even if the amount of Cu exceeds 0.07%, the pits after the surface roughening treatment become non-uniform, and the color tone after the surface roughening treatment becomes too blackish, thereby impairing the commercial value. Therefore, the amount of Cu is set within a range of 0.005 to 0.07%. In addition, Preferably Cu amount shall be in the range of 0.005-0.05%.
Mg:0.051〜0.15%
Mgは再結晶化を促進するとともに、その大部分がアルミニウムマトリックスに固溶して、耐熱軟化特性を向上させる元素である。またMgは、Mg2Siとしても析出するため、単体Si量を減少させる作用も果たす。Mg量が0.051%未満では、これらの効果が充分に得られず、一方Mg量が0.15%を越えれば、粗面化処理後のピットが不均一になり、外観も不均一となる。なおより好ましいMg量は0.051〜0.13%の範囲内である。
Mg: 0.051 to 0.15%
Mg is an element that promotes recrystallization, and most of which is dissolved in an aluminum matrix to improve heat-resistant softening characteristics. Further, since Mg is precipitated as Mg 2 Si, it also serves to reduce the amount of elemental Si. If the Mg content is less than 0.051% , these effects cannot be sufficiently obtained. On the other hand, if the Mg content exceeds 0.15%, the pits after the surface roughening treatment become non-uniform and the appearance is also non-uniform. Become. A more preferable amount of Mg is in the range of 0.051 to 0.13%.
Zr:0.0005%以上、0.004%未満
Zrは、電解粗面化処理時におけるカソード溶解効率を良好にし、粗面化処理により形成されるエッチピットの微妙な形状差に起因する粗面化面の縞模様の発生を抑制する効果がある。Zr量が0.0005%未満では、この効果を充分に得ることが困難である。一方Zr量が0.004%以上となれば、鋳造および圧延の過程でAl3Zrとして析出するため、ストリークの原因となる。ストリークが発生すれば、粗面化処理後のピットが不均一になり、外観の均一性を損なう。そこでZr量は0.0005%以上、0.004%未満の範囲内とした。なおより好ましいZr量は0.001〜0.003%の範囲内である。
Zr: 0.0005% or more and less than 0.004% Zr improves the cathode dissolution efficiency during the electrolytic surface roughening treatment, and is a rough surface due to a subtle shape difference of etch pits formed by the surface roughening treatment. This has the effect of suppressing the occurrence of striped patterns on the surface. If the amount of Zr is less than 0.0005%, it is difficult to sufficiently obtain this effect. On the other hand, if the amount of Zr is 0.004% or more, it will precipitate as Al 3 Zr in the process of casting and rolling, causing streaks. If streaks occur, the pits after the roughening process become non-uniform and the appearance uniformity is impaired. Therefore, the amount of Zr is set in the range of 0.0005% or more and less than 0.004%. A more preferable Zr amount is in the range of 0.001 to 0.003%.
Ti:0.003〜0.03%
Tiは電解粗面化処理性に大きな影響を及ぼし、またアルミニウム合金鋳塊の組織状態にも大きな影響を及ぼす元素である。Ti量が0.003%未満では、粗面化処理後のピットが不均一になり、また鋳塊の結晶粒が微細化されずに粗大な結晶粒組織になるため、マクロ組織に圧延方向に沿う帯状の筋が発生して、粗面化処理後にも帯状の筋が残存し、平版印刷版用支持体として好ましくなくなる。一方Ti量が0.03%を越えれば、上記効果が飽和するばかりでなく、粗大なAl−Ti系化合物が形成されてその化合物が圧延板に筋状に分布し、その結果陽極酸化皮膜に欠陥が生じ、感光層の欠陥となって、きれいな印刷が困難となる。そのためTi量は0.003〜0.03%の範囲内とした。なおより好ましいTi量は0.005〜0.06%の範囲内である。
Ti: 0.003 to 0.03%
Ti is an element that has a great influence on the electrolytic surface roughening processability and also has a great influence on the structure of the aluminum alloy ingot. If the amount of Ti is less than 0.003%, the pits after the surface roughening treatment become non-uniform, and the crystal grains of the ingot are not refined and become a coarse crystal grain structure. A band-shaped streak is generated, and the strip-shaped streak remains after the roughening treatment, which is not preferable as a support for a lithographic printing plate. On the other hand, if the amount of Ti exceeds 0.03%, not only the above effect is saturated, but also a coarse Al-Ti compound is formed, and the compound is distributed in a streak pattern on the rolled plate. Defects occur, resulting in defects in the photosensitive layer, making it difficult to print cleanly. Therefore, the Ti amount is set in the range of 0.003 to 0.03%. A more preferable Ti amount is in the range of 0.005 to 0.06%.
なおまた、一般にアルミニウム合金板においては、鋳塊結晶組織を微細化して圧延板のキメ、ストリークを防止するため、Tiを微量のBと組合せて添加することがあり、この発明の平版印刷版用アルミニウム合金においても、Tiとともに微量のBを添加することは許容される。但しB量が1ppm未満では、上記の効果が得られず、一方B量が50ppmを越えればBの添加効果が飽和するばかりでなく、粗大なTiB2粒子による線状欠陥が生じやすくなるから、Tiに併せてBを添加する場合のB添加量は、1〜50ppmの範囲内とすることが好ましい。 In general, in an aluminum alloy plate, Ti may be added in combination with a small amount of B in order to refine the ingot crystal structure and prevent texture and streak of the rolled plate. Even in an aluminum alloy, it is permissible to add a small amount of B together with Ti. However, if the amount of B is less than 1 ppm, the above effect cannot be obtained. On the other hand, if the amount of B exceeds 50 ppm, not only the addition effect of B is saturated, but also linear defects due to coarse TiB 2 particles tend to occur. When adding B together with Ti, the amount of B added is preferably in the range of 1 to 50 ppm.
Ni、Sn、Be:合計量で0.001%以上、0.01%未満
Ni、Sn、Beは、いずれも粗面化処理時にエッチングを促進し、均一かつ微細なピットを形成する効果があるから、これらのうちの1種または2種以上を添加することとした。但し、合計量で0.01%以上含まれれば、粗面化処理時に微細なピットが形成されず、外観が不均一になるとともに、耐食性が著しく低下する。一方、合計量で0.001%未満の場合も、上述の効果が充分に得られず、粗面化処理により微細なピットが得られず、外観が不均一となる。そこでこれらの元素は合計量で0.001%以上、0.01%未満の範囲内とした。なおこれらの元素のそれぞれの含有量は特に限定しないが、Niは0.008%未満、Snは0.008%未満、Beは0.001%未満の範囲内とすることが好ましい。
Ni, Sn, Be: 0.001% or more and less than 0.01% in total amount Ni, Sn, and Be all have the effect of accelerating etching during the roughening treatment to form uniform and fine pits. Therefore, it was decided to add one or more of these. However, if it is contained in a total amount of 0.01% or more, fine pits are not formed during the surface roughening treatment, the appearance becomes uneven, and the corrosion resistance is remarkably lowered. On the other hand, even when the total amount is less than 0.001%, the above-described effects cannot be sufficiently obtained, and fine pits cannot be obtained by the surface roughening treatment, and the appearance becomes non-uniform. Therefore, the total amount of these elements is within the range of 0.001% or more and less than 0.01%. Although the content of each of these elements is not particularly limited, it is preferable that Ni is less than 0.008%, Sn is less than 0.008%, and Be is less than 0.001%.
以上の各元素のほかは、Alおよび不可避的不純物とすれば良い。ここで、不可避的不純物としては、JIS1050相当の不純物量(その他合計で0.05%以下)程度であれば、平版印刷版用アルミニウム合金板としてその特性を損なうことはない。 In addition to the above elements, Al and inevitable impurities may be used. Here, as an inevitable impurity, if it is about JIS1050 equivalent impurities amount (0.05% or less in total), the characteristic will not be impaired as an aluminum alloy plate for planographic printing plates.
さらに、アルミニウム合金板においては、地金やスクラップに由来して、極微量ながらLi(リチウム)が不可避的に含有されるのが通常であるが、板に含有されるLi、特に板表面に含まれるLiは外観特性に影響を与えるから、この発明の平版印刷版用アルミニウム合金板では、板表面のLi濃度を2ppm以下に規制することとした。板表面のLi濃度が2ppmを越えれば、空気中の水分と反応して腐食し、そのため、コイルの外観上不適切となるばかりでなく、粗面化処理時にピット形成を阻害して、粗面化処理後の外観が不均一となる。そこで板表面のLi濃度は2ppm以下とする必要がある。 Furthermore, in an aluminum alloy plate, it is usually inevitable that Li (lithium) is inevitably contained from a metal or scrap, but Li contained in the plate, especially included in the plate surface Since Li affects the appearance characteristics, in the aluminum alloy plate for a lithographic printing plate of the present invention, the Li concentration on the plate surface is regulated to 2 ppm or less. If the Li concentration on the plate surface exceeds 2 ppm, it reacts with moisture in the air and corrodes, which not only makes the coil appearance inappropriate, but also inhibits pit formation during the roughening process, The appearance after the conversion treatment becomes non-uniform. Therefore, the Li concentration on the plate surface needs to be 2 ppm or less.
ここでLiは、250℃以上の高温雰囲気中に曝されれば板表面に濃化する。しかるに平版印刷版用アルミニウム合金板の製造においては、均質化処理や熱間圧延等の工程において250℃以上に加熱されるのが通常であるため、必然的にLiの表面濃化が起こり、板表面のLi濃度が高くなってしまう。このような板表面のLi濃度を2ppm以下に制御するための具体的方法としては、(1)合金板全体のLi含有量を0.4ppm以下にする方法、(2)表面濃化した板表面を除去する方法とがある。 Here, Li is concentrated on the surface of the plate when exposed to a high temperature atmosphere of 250 ° C. or higher. However, in the production of an aluminum alloy plate for a lithographic printing plate, it is usually heated to 250 ° C. or higher in a process such as a homogenization treatment or hot rolling. The Li concentration on the surface becomes high. Specific methods for controlling the Li concentration on the plate surface to 2 ppm or less include (1) a method for reducing the Li content of the entire alloy plate to 0.4 ppm or less, and (2) a surface concentrated plate surface. There is a method to remove.
(1)の方法を実際に適用するためには、合金溶湯の溶製時において、塩素ガスもしくは塩化物系フラックスを吹き込むフラクシング処理等を施すことにより、地金中に通常10ppm程度存在しているLi量を、0.4ppm以下まで低減させれば良い。 In order to actually apply the method of (1), about 10 ppm is usually present in the bullion by performing a fluxing process in which chlorine gas or a chloride-based flux is blown when the molten alloy is melted. What is necessary is just to reduce the amount of Li to 0.4 ppm or less.
また(2)の方法を実際に適用するためには、250℃以上の雰囲気に曝される工程を全て終了した後のいずれかの段階で、アルミニウム合金板の表面をアルカリ等でエッチングして、Liが表面濃化した板表面部分を除去すれば良い。あるいは、冷間圧延ロールの粗度を大きくして、アルミニウム合金板と圧延ロールとの摩擦係数が大きくなるようにすることにより、Liが表面濃化した板表面部分を冷間圧延工程において除去することもできる。 Moreover, in order to actually apply the method of (2), the surface of the aluminum alloy plate is etched with an alkali or the like at any stage after all the steps exposed to the atmosphere of 250 ° C. or higher are completed, What is necessary is just to remove the plate | board surface part which the surface of Li concentrated. Alternatively, by increasing the roughness of the cold rolling roll so as to increase the friction coefficient between the aluminum alloy plate and the rolling roll, the surface portion of the plate on which the surface of Li is concentrated is removed in the cold rolling process. You can also.
なお板表面のLi濃度の測定は、例えば次のようにして行なえば良い。すなわち、グロー放電発光分光分析装置(GDS)によりLiの深さ方向の濃度分布分析(デプスプロファイル測定)を行ない、表面の最もLi濃度の高いピーク高さ(X)と、板厚方向中心部のアルミ地中のLiピーク高さ(Y)との比(X/Y)を算出する。ここで、板厚方向中心部は表面濃化によるLi濃度の減少が少ないところから、中心部のLi濃度はマトリックス中のLi含有量(合金板全体におけるLi量)と同じとみなし、前述のようにして算出した比(X/Y)と、別途通常の分析方法により測定した合金板全体のLi含有量とを乗じることにより、板表面のLi濃度を求めれば良く、後述する実施例でもこのような手法に従って板表面のLi濃度を測定した。なおLiの深さ方向の濃度分布は、前記のGDSのほか、二次イオン質量分析装置(SIMS)やオージェ電子分光分析装置(AES)等によっても分析することができる。 The measurement of the Li concentration on the plate surface may be performed, for example, as follows. That is, concentration distribution analysis (depth profile measurement) in the depth direction of Li is performed by a glow discharge emission spectroscopic analyzer (GDS), and the peak height (X) with the highest Li concentration on the surface and the central portion in the plate thickness direction are measured. The ratio (X / Y) to the Li peak height (Y) in the aluminum ground is calculated. Here, since the central portion in the plate thickness direction has a small decrease in Li concentration due to surface concentration, the central portion is considered to have the same Li concentration as the Li content in the matrix (the Li amount in the entire alloy plate), as described above. By multiplying the ratio (X / Y) calculated in this way and the Li content of the entire alloy plate separately measured by a normal analysis method, the Li concentration on the surface of the plate can be obtained. According to various techniques, the Li concentration on the plate surface was measured. The concentration distribution of Li in the depth direction can be analyzed by a secondary ion mass spectrometer (SIMS), an Auger electron spectrometer (AES), or the like in addition to the GDS.
さらにこの発明の平版印刷版用アルミニウム合金板においては、板表面において圧延方向に対し直角な方向の結晶粒の平均長さが、100μm以下の範囲内である必要がある。上記方向の結晶粒平均長さが100μmを越えれば、粗面化処理後の外観が不均一(面質ムラ発生)となる。このような結晶粒径の制御は、後述する熱間圧延条件を制御することによって実施することができる。なお後述する実施例において、上記方向の板表面の結晶粒の平均長さの測定は、板表面をバーカー法によりエッチング後、偏光下で顕微鏡観察して25倍写真を撮影後、交線法により求めた。 Furthermore, in the aluminum alloy plate for a lithographic printing plate of the present invention, the average length of crystal grains in the direction perpendicular to the rolling direction on the plate surface needs to be within a range of 100 μm or less. If the average grain length in the above direction exceeds 100 μm, the appearance after the roughening treatment becomes non-uniform (occurrence of surface quality unevenness). Such control of the crystal grain size can be carried out by controlling hot rolling conditions described later. In the examples described later, the average length of the crystal grains on the plate surface in the above direction is measured by the crossing method after etching the plate surface by the Barker method, observing under a microscope under polarized light and taking a 25 × photograph. Asked.
またこの発明の平版印刷版用アルミニウム合金板においては、耐熱軟化特性についての板幅方向のばらつきに関する指標として、270℃で10分保持する熱処理を行なった後における板幅方向中央部と板幅方向端部との耐力差を、その熱処理後の板幅方向中央部の耐力値の20%以下の範囲内とすることと規定している。上記の耐力差が板幅方向中央部の耐力値の20%を越えれば、板幅方向に耐熱軟化特性が異なるため、特に板幅方向の端部から切断して得られた平版印刷版の耐熱軟化特性が劣ることになる。またこの場合、粗面化処理後に実施する乾燥工程において板幅方向に強度差が発生してしまい、板幅方向の端部が板幅方向中央部と比較して、より伸ばされてしまって板幅方向端部に歪が発生し、その部分から切断して得られた平版印刷版については現像露光時に焦点ボケが発生して、緻密な画像が得られなくなってしまう。 Moreover, in the aluminum alloy plate for lithographic printing plates according to the present invention, as an index for variation in the plate width direction with respect to heat-resistant softening properties, the plate width direction center portion and the plate width direction after heat treatment held at 270 ° C. for 10 minutes It is defined that the proof stress difference with the end portion is within a range of 20% or less of the proof stress value in the center portion in the plate width direction after the heat treatment. If the above proof stress difference exceeds 20% of the proof stress value at the central part in the plate width direction, the heat resistance softening characteristics differ in the plate width direction, so that the lithographic printing plate obtained by cutting from the edge in the plate width direction is particularly heat resistant. The softening properties will be inferior. In this case, a difference in strength occurs in the plate width direction in the drying process performed after the roughening treatment, and the end in the plate width direction is more elongated than the center portion in the plate width direction. Distortion occurs in the end portion in the width direction, and a lithographic printing plate obtained by cutting from that portion is defocused during development exposure, and a dense image cannot be obtained.
なお、270℃×10分の熱処理後の板幅方向中央部と板幅方向端部との耐力差は、この発明の実施例では以下の方法により測定した。 In addition, in the Example of this invention, the proof stress difference of the board width direction center part after 270 degreeC x 10 minutes heat processing and the board width direction edge part was measured with the following method.
すなわち、製品板の板幅方向中央部と板幅方向端部からサンプルを採取してJIS5号引張試験片に加工した後、270℃で10分保持する熱処理を施し、その熱処理後の試験片を用いて引張試験を行なった。そして板幅方向中央部の測定結果(耐力)をYS(c)、板幅端部の測定結果(耐力)をYS(e)とし、その差ΔYS(=|YS(c)−YS(e)|:絶対値)を算出した。そして板幅中央部の耐力値との比率α(=ΔYS/YS(c)×100)を算出した。 That is, a sample is taken from the center in the plate width direction and the end in the plate width direction of the product plate and processed into a JIS No. 5 tensile test piece, and then subjected to a heat treatment that is held at 270 ° C. for 10 minutes. A tensile test was carried out. The measurement result (proof strength) at the center in the plate width direction is YS (c), the measurement result (proof strength) at the end of the plate width is YS (e), and the difference ΔYS (= | YS (c) −YS (e) |: Absolute value) was calculated. Then, a ratio α (= ΔYS / YS (c) × 100) with the yield strength value of the central portion of the plate width was calculated.
またこの発明の平版印刷版用アルミニウム合金板においては、製品板におけるFe固溶量を0.001〜0.005%の範囲内とする必要がある。すなわち、Alマトリックス中に固溶しているFeは、耐熱軟化特性の向上および強度向上に寄与し、製品板におけるFe固溶量を特に0.001%以上とすることにより、300℃付近の高いバーニング温度においても軟化を最小限に抑えることができ、高い耐熱軟化特性を得ることができる。Fe固溶量が0.001%未満では耐熱軟化特性に劣り、一方0.005%を越えれば、素板強度が高くなり過ぎてしまい、平版印刷版を円筒形版胴に巻きつける際に破断してしまうおそれが生じる。すなわち、平版印刷版を円筒形版胴に巻付ける際には、溝に差し込むように巻き付けるため、折り曲げることになり、印刷版の強度が高ければ破断してしまうおそれがある。なおFe固溶量は、後述する熱間圧延条件を制御することにより制御することができる。なおまた、製品板のFe固溶量の測定は、この発明の実施例では、特公平7−69322号記載のフェノール溶解方法により実施した。 Moreover, in the aluminum alloy plate for planographic printing plates of this invention, it is necessary to make Fe solid solution amount in a product plate into the range of 0.001 to 0.005%. That is, Fe dissolved in the Al matrix contributes to improvement of heat-resistant softening properties and strength, and by making the amount of Fe solid solution in the product plate particularly 0.001% or more, it is high around 300 ° C. Softening can be minimized even at the burning temperature, and high heat-resistant softening characteristics can be obtained. If the amount of Fe solid solution is less than 0.001%, the heat-softening property is inferior. On the other hand, if it exceeds 0.005%, the base plate strength becomes too high and breaks when winding a lithographic printing plate around a cylindrical plate cylinder. There is a risk of doing so. That is, when a lithographic printing plate is wound around a cylindrical plate cylinder, the lithographic printing plate is wound so as to be inserted into the groove, so that it is bent. If the printing plate has high strength, it may be broken. The amount of Fe solid solution can be controlled by controlling the hot rolling conditions described later. In addition, the Fe solid solution amount of the product plate was measured by the phenol dissolution method described in Japanese Patent Publication No. 7-69322 in the examples of the present invention.
この発明の請求項1に係る平版印刷版用アルミニウム合金板は、前述のような合金成分組成条件を満たし、かつ板表面のLi濃度条件、板表面における圧延方向に対し直角な方向の結晶粒条件、270℃×10分の熱処理後における板幅方向中央部と端部の耐力差条件、さらに板でのFe固溶量条件が、前述のような範囲内であれば、その製造方法は特に限定されるものではなく、いずれの製造方法であっても良いが、次に述べるような請求項2に係る製造方法により製造することが、生産工程の簡略化等の点で好ましい。 An aluminum alloy plate for a lithographic printing plate according to claim 1 of the present invention satisfies the above-mentioned alloy component composition conditions, and the Li concentration condition on the plate surface, the crystal grain condition in the direction perpendicular to the rolling direction on the plate surface If the proof stress difference condition between the central part and the end part in the plate width direction after heat treatment at 270 ° C. × 10 minutes and the Fe solid solution amount condition in the plate are within the above-mentioned ranges, the production method is particularly limited. However, any manufacturing method may be used, but manufacturing by the manufacturing method according to claim 2 described below is preferable in terms of simplification of the production process.
すなわち、前述のような成分組成のアルミニウム合金を用い、その鋳塊に熱間圧延を施すにあたり、熱間圧延開始温度を350〜490℃、熱間圧延終了温度を280〜360℃とし、かつ熱間圧延終了温度において板幅方向の中央部と端部の温度差が20℃以内となるように熱間圧延し、その後、中間焼鈍を行なわずに冷間圧延を施して、所要の板厚の平版印刷版用アルミニウム合金を得ることが望ましい。 That is, when an aluminum alloy having the above-described component composition is used and hot rolling is performed on the ingot, the hot rolling start temperature is 350 to 490 ° C., the hot rolling end temperature is 280 to 360 ° C., and Hot rolling is performed so that the temperature difference between the center portion and the end portion in the sheet width direction is within 20 ° C. at the end temperature of the cold rolling, and then cold rolling is performed without performing intermediate annealing to obtain a required sheet thickness. It is desirable to obtain an aluminum alloy for lithographic printing plates.
以下にこのような請求項2で規定する製造方法について、さらに詳細に説明する。 The manufacturing method defined in claim 2 will be described in more detail below.
前記合金組成範囲に調整されたアルミニウム合金溶湯を、DC鋳造法などの常法に従って鋳造し、得られた鋳塊に対して、必要に応じて均質化処理を施し、熱間圧延を板厚1〜5mmまで施す。均質化処理の条件は、金属間化合物を安定相にするとともに、Fe固溶量を増やし、これにより加熱前後の耐力低下を抑制して、耐熱軟化性を向上させるために、550℃を越え600℃以下の温度範囲で1時間以上(通常は10時間以内)の保持とすることが好ましい。 The molten aluminum alloy adjusted to the alloy composition range is cast according to a conventional method such as a DC casting method, and the resulting ingot is subjected to homogenization treatment as necessary, and hot rolling is performed with a plate thickness of 1 Apply to ~ 5mm. The conditions for the homogenization treatment are over 550 ° C. and 600 in order to make the intermetallic compound a stable phase and increase the amount of Fe solid solution, thereby suppressing a decrease in yield strength before and after heating and improving heat softening resistance. It is preferable to hold for 1 hour or longer (usually within 10 hours) in a temperature range of ℃ or lower.
熱間圧延は、350〜490℃の範囲内の温度で開始し、280〜360℃の範囲内の温度で終了させ、かつ終了温度における板幅方向の中央部と端部の温度差が20℃以内となるように制御する。これらの熱間圧延条件を定めた理由は次の通りである。 Hot rolling starts at a temperature in the range of 350 to 490 ° C. and ends at a temperature in the range of 280 to 360 ° C., and the temperature difference between the center portion and the end portion in the sheet width direction at the end temperature is 20 ° C. Control to be within. The reason for determining these hot rolling conditions is as follows.
熱間圧延開始温度:350〜490℃
熱間圧延開始温度が350℃未満では、前述のFe固溶量を得ることができず、耐熱軟化特性が劣るとともに、熱間粗圧延上りで板表面に加工組織が残存して粗面化処理後の表面にストリークが発生して、外観不均一となるおそれがある。また熱間圧延開始温度が490℃を越えれば、熱間粗圧延上りで再結晶した再結晶粒が粗大となり、粗面化処理後の外観にスジが発生し、外観均一性に劣るものとなる。
Hot rolling start temperature: 350-490 ° C
When the hot rolling start temperature is less than 350 ° C., the above-mentioned Fe solid solution amount cannot be obtained, the heat softening property is inferior, and the roughening treatment is performed with the processed structure remaining on the surface of the plate after hot rough rolling. There is a risk that streaks will occur on the subsequent surface, resulting in a non-uniform appearance. If the hot rolling start temperature exceeds 490 ° C, the recrystallized grains recrystallized after hot rough rolling will become coarse, streaks appear on the appearance after the roughening treatment, and the appearance uniformity will be poor. .
熱間圧延終了温度:280〜360℃
熱間圧延終了温度が280℃未満では、板表面に加工組織が残存して、粗面化処理後にストリークが発生し、外観の均一性が劣ってしまい、またFeやMgの析出量が多くなって、その結果これらの固溶量が低下し、前述のようなFe固溶量を得ることができず、耐熱軟化特性が劣ってしまう。一方熱間圧延終了温度が360℃を越えれば、再結晶粒が粗大化し、粗面化処理後の外観の均一性が劣ってしまう。
Hot rolling finish temperature: 280-360 ° C
When the hot rolling finish temperature is less than 280 ° C., the processed structure remains on the surface of the plate, streaks occur after the surface roughening treatment, the appearance uniformity is inferior, and the precipitation amount of Fe and Mg increases. As a result, the amount of these solid solutions decreases, the amount of Fe solid solution as described above cannot be obtained, and the heat-resistant softening characteristics are deteriorated. On the other hand, if the hot rolling finish temperature exceeds 360 ° C., the recrystallized grains become coarse, and the appearance uniformity after the surface roughening treatment is inferior.
熱間圧延終了温度における板幅方向中央部と板幅方向端部との温度差:20℃以内
熱間圧延終了温度において、板幅方向の中央部と端部との温度差が20℃を越えれば、板幅方向の中央部と端部とで再結晶粒径に差が発生し、粗面化処理後の外観についても板幅方向の中央部と端部とで差が発生し、板幅方向で均一な粗面を得ることができなくなり、また板幅方向でFeやMgの固溶量に差が発生し、その結果耐熱軟化特性についても、板幅方向で差が発生し、前述のような製品板における板幅方向の中央部と端部の熱処理後の耐力差を得ることができない。
Temperature difference between the center part in the sheet width direction and the end part in the sheet width direction at the end temperature of hot rolling: within 20 ° C. At the end temperature of hot rolling, the temperature difference between the center part in the sheet width direction and the end part exceeds 20 ° C. For example, a difference occurs in the recrystallized grain size between the center portion and the end portion in the plate width direction, and a difference occurs between the center portion and the end portion in the plate width direction with respect to the appearance after the surface roughening treatment. It becomes impossible to obtain a uniform rough surface in the direction, and a difference occurs in the solid solution amount of Fe and Mg in the plate width direction. As a result, the heat softening characteristics also differ in the plate width direction. In such a product plate, it is impossible to obtain a difference in yield strength after heat treatment between the center portion and the end portion in the plate width direction.
熱間圧延後は、常法に従ってコイル状に巻取り、その後、焼鈍を施すことなく冷間圧延によって所要の製品板厚に仕上げれば良い。ここで、熱間圧延を行なってコイルに巻上げた状態では、熱延板の自己保有熱による自己焼鈍によって再結晶が生起されるため、改めて再結晶のための焼鈍を行なう必要がない。また冷間圧延の条件は特に限定されるものではなく、必要な製品板強度や板厚に応じて定めれば良く、通常は圧延率60〜98%で施せば良い。 After hot rolling, it may be wound into a coil according to a conventional method and then finished to the required product thickness by cold rolling without annealing. Here, in a state where hot rolling is performed and the coil is wound up, recrystallization is caused by self-annealing due to self-holding heat of the hot-rolled sheet, so that it is not necessary to perform annealing for recrystallization again. The conditions for cold rolling are not particularly limited, and may be determined according to the required product plate strength and plate thickness. Usually, the rolling rate may be 60 to 98%.
このようにして得られた平版印刷版用アルミニウム合金板(製品板)を実際に平版印刷版支持体とするためには、粗面化等のための表面処理を施す。この表面処理方法は、特に限定されるものではなく、常法に従えば良いが、代表的な表面処理方法について以下に説明する。 In order to actually use the thus obtained lithographic printing plate aluminum alloy plate (product plate) as a lithographic printing plate support, surface treatment for roughening or the like is performed. The surface treatment method is not particularly limited, and may follow a conventional method. A typical surface treatment method will be described below.
粗面化のための表面処理方法としては、塩酸または硝酸電解液中で電気化学的に砂目立てする電気化学的粗面化処理方法、およびアルミニウム表面を金属ワイヤーでひっかくワイヤーブラシグレイン法、研磨球と研磨剤でアルミニウム表面を砂目立てするボールグレイン法、ナイロンブラシと研磨剤で表面を粗面化するブラシグレイン法のような機械的粗面化法などを用いることができ、上記いずれの粗面化方法は、単独あるいは組み合わせて用いることもできる。 Surface treatment methods for surface roughening include electrochemical surface roughening treatment using electrochemical graining in hydrochloric acid or nitric acid electrolyte, wire brush grain method, grinding ball with metal wire. Any of the above rough surfaces can be used, such as a ball grain method in which the aluminum surface is grained with an abrasive and an abrasive, or a mechanical graining method such as a brush grain method in which the surface is roughened with a nylon brush and an abrasive. The conversion methods can be used alone or in combination.
このように粗面化処理したアルミニウム合金板に対しては、さらに粗面化の第2段階として、酸またはアルカリにより化学的にエッチングするのが通常である。酸をエッチング剤として用いる場合は、微細構造を破棄するのに長時間を要するため、工業的に不利となるが、アルカリをエッチング剤として用いることにより改善できる。エッチングのためのアルカリ剤としては、苛性ソーダ、炭酸ソーダ、アルミン酸ソーダ、メタケイ酸ソーダ、リン酸ソーダ、水酸化カリウム、水酸化リチウム等を用いることができ、またその濃度と温度の好ましい範囲はそれぞれ1〜50%、20〜100℃であり、エッチング時のAlの溶解量が5〜20g/m2となるような条件を選択することが好ましい。 In general, the aluminum alloy plate thus roughened is chemically etched with acid or alkali as a second step of roughening. When an acid is used as an etching agent, it takes a long time to destroy the fine structure, which is industrially disadvantageous, but it can be improved by using an alkali as the etching agent. As the alkali agent for etching, caustic soda, sodium carbonate, sodium aluminate, sodium metasilicate, sodium phosphate, potassium hydroxide, lithium hydroxide, etc. can be used, and the preferred ranges of concentration and temperature are respectively It is preferable that the conditions be 1 to 50%, 20 to 100 ° C., and the conditions that the dissolution amount of Al during etching is 5 to 20 g / m 2 .
エッチング後には、表面に残留する汚れ(スマット)を除去するために酸洗浄を行なうのが通常である。酸洗浄に用いる酸としては硝酸、硫酸、リン酸、クロム酸、フッ酸およびホウフッ化水素酸などがある。特に電気化学的粗面化処理後のスマット除去には、好ましくは特開昭53−12739号公報に記載されているような50〜90℃の温度の15〜65重量%の硝酸と接触させる方法、及び特公昭48−28123号公報に記載されているアルカリエッチングする方法がある。 After the etching, acid cleaning is usually performed to remove dirt (smut) remaining on the surface. Examples of the acid used for the acid cleaning include nitric acid, sulfuric acid, phosphoric acid, chromic acid, hydrofluoric acid, and borohydrofluoric acid. In particular, for removing smut after the electrochemical surface roughening treatment, a method of contacting with 15 to 65 wt% nitric acid at a temperature of 50 to 90 ° C. as described in JP-A-53-12739 is preferable. In addition, there is an alkali etching method described in Japanese Patent Publication No. 48-28123.
以上のようにして処理されたアルミニウム合金板は、平版印刷版用支持体として使用することができるが、通常はさらに陽極酸化処理、苛性処理等の処理を施すことが望ましい。陽極酸化処理は、この分野で従来より行われている方法で行うことができる。具体的には、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルフォン酸等あるいはこれらの2種以上を組み合わせた水溶液または非水溶液中で、アルミニウム合金板に直流または交流を流すことにより表面に陽極酸化皮膜を形成することができる。陽極酸化の条件は、使用される電解液によって種々変化するから一概には決められないが、一般には、電解液濃度1〜80%、液温5〜70℃、電流密度0.5〜60A/dm2、電圧1〜100V、電解時間10〜100秒の範囲とすることが適当である。 The aluminum alloy plate treated as described above can be used as a support for a lithographic printing plate, but it is usually desirable to perform further treatments such as anodizing treatment and caustic treatment. The anodizing treatment can be performed by a method conventionally used in this field. Specifically, by flowing direct current or alternating current through an aluminum alloy plate in an aqueous solution or non-aqueous solution of sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, etc., or a combination of two or more thereof. An anodized film can be formed on the surface. The conditions for anodization vary depending on the electrolyte used, and are not generally determined. In general, however, the electrolyte concentration is 1 to 80%, the solution temperature is 5 to 70 ° C., and the current density is 0.5 to 60 A / day. dm 2 , voltage 1 to 100 V, and electrolysis time 10 to 100 seconds are appropriate.
以上のようにして得られた平版印刷版用アルミニウム合金板支持体をPS版に仕上げるにあたっては、常法に従って感光層、または中間層と感光層を塗布して乾燥させればよい。 In finishing the aluminum alloy plate support for a lithographic printing plate obtained as described above into a PS plate, a photosensitive layer or an intermediate layer and a photosensitive layer may be applied and dried according to a conventional method.
表1の合金No.1〜No.15に示す成分組成のアルミニウム合金溶湯を溶製し、DC鋳造法により厚さ600mmの鋳塊とし、No.14、No.15以外のNo.1〜No.13については、560℃で3時間の均質化処理を施した後、表2中に示す条件で熱間圧延を行なって板厚4mmの熱延板を得、その後中間焼鈍を行なわずに冷間圧延により最終板厚の0.3mmまで圧延した。また合金No.14については均質化処理を行なわず、また合金No.15については均質化処理を450℃×3時間の条件で行ない、それ以外の条件は上記と同様に処理した。なお製品板表面のLi濃度の制御のため、合金No.1〜No.3と合金No.7〜No.9については、フラクシング処理により合金全体のLi含有量を0.4ppmとし、また合金No.4、No.5、No.10、No.11、No.13については、250℃以上の温度に曝される工程を終了した後の冷間圧延途中で板表面をアルカリエッチングした。
Alloy No. 1 in Table 1 1- No. A molten aluminum alloy having the composition shown in FIG. 15 was melted to form a 600 mm-thick ingot by a DC casting method . 14, no. No. 15 other than 15 1- No. For No. 13 , after homogenizing at 560 ° C. for 3 hours, hot rolling was performed under the conditions shown in Table 2 to obtain a hot-rolled sheet having a thickness of 4 mm, followed by cold without intermediate annealing. Rolling was performed to a final plate thickness of 0.3 mm. Alloy No. No homogenization treatment was performed on alloy No. 14 , and alloy no . For No. 15 , homogenization was performed under the conditions of 450 ° C. × 3 hours, and the other conditions were the same as described above. In order to control the Li concentration on the surface of the product plate, the alloy no. 1- No. 3 and alloy no . 7-No. For No. 9 , the Li content of the whole alloy was set to 0.4 ppm by fluxing treatment . 4, no. 5, no. 10, no. 11, no. For No. 13 , the plate surface was subjected to alkali etching in the middle of cold rolling after finishing the step exposed to a temperature of 250 ° C. or higher.
その後、既に述べた方法により、板表面のLi濃度、270℃×10分の熱処理後における製品板の板幅方向の中央部と端部の耐力差、製品板表面における圧延方向に対し垂直な方向の結晶粒の平均長さ、製品板のFe固溶量を測定したので、これらを表2中に示す。 Thereafter, according to the method described above, the Li concentration on the plate surface, 270 ° C. × 10 minutes after heat treatment, the difference in yield strength between the center and the end in the plate width direction of the product plate, the direction perpendicular to the rolling direction on the product plate surface Since the average length of the crystal grains and the Fe solid solution amount of the product plate were measured, these are shown in Table 2.
さらに上述のようにして得られた各製品板(平版印刷版用アルミニウム合金板)について、アルカリエッチングおよびデスマット処理を施した後、極性が交互に交換する電解波形を持つ電源を用いて、1%硝酸中で陽極時電気量が150C/dm2となる電解エッチングにより電解粗面化を行なった。これを硫酸浴中にて洗浄した後、以下の(1)〜(3)の要領でストリーク発生の有無、外観の均一性、および耐熱軟化特性の幅方向均一性を評価し、表3に示した。
(1)ストリーク発生の有無
粗面化処理後の外観について目視で観察し、ストリークの発生が認められないものを良好(○印)、発生しているものを不良(×印)と評価した。
(2)外観の均一性
粗面化処理後の外観について板の全幅にわたって目視で観察し、均一性が全幅にわたり良好なものを良好(○印)、劣っているものを不良(×印)と評価した。
(3)耐熱軟化特性の幅方向均一性
270℃×10分の熱処理の後における製品板の板幅方向中央部と板幅方向端部の耐力差を測定した結果、20%以下の場合を良好(○印)、20%より大きい場合を不良(×印)と評価した。
Further, each product plate (aluminum alloy plate for lithographic printing plate) obtained as described above is subjected to alkali etching and desmutting treatment, and then 1% using a power source having an electrolytic waveform in which polarities are alternately exchanged. Electrolytic roughening was performed by electrolytic etching in nitric acid with an anodic electricity amount of 150 C / dm 2 . After washing this in a sulfuric acid bath, the presence or absence of streak, the appearance uniformity, and the widthwise uniformity of the heat-resistant softening properties were evaluated in the following manners (1) to (3). It was.
(1) Presence / absence of streak The appearance after the roughening treatment was visually observed, and the case where no streak was observed was evaluated as good (◯ mark), and the generated one was evaluated as defective (× mark).
(2) Appearance uniformity The appearance after the roughening treatment is visually observed over the entire width of the plate, and the one with good uniformity over the entire width is good (○ mark), and the one with inferiority is bad (× mark). evaluated.
(3) Uniformity in the width direction of heat-resistant softening characteristics As a result of measuring the proof stress difference between the plate width direction center portion and the plate width direction end portion of the product plate after the heat treatment at 270 ° C. for 10 minutes, the case of 20% or less is good (Circle), the case where it was larger than 20% was evaluated as defective (x).
表3に示すように、本発明例のNo.1〜No.5の例では、ストリークの発生がなく、粗面の外観均一性が優れていて、板幅方向に粗面外観のばらつきがなく、また板幅方向に均一で良好な耐熱軟化特性が得られた。
As shown in Table 3, No. of the present invention example. 1- No. In the case of No. 5 , no streak was generated, the appearance uniformity of the rough surface was excellent, there was no variation in the appearance of the rough surface in the plate width direction, and good heat resistance softening characteristics that were uniform in the plate width direction were obtained. .
これに対し、比較例のNo.6の例では、板表面のLi濃度が大きいため、腐食が発生して粗面化処理時にピット形成を阻害したこと、またZr量が少ないために粗面化処理後の外観に縞模様が発生したことから、粗面の均一性が劣り、さらにMg量が多いことから素板強度が高くなり、版切れが発生し、しかも熱間圧延終了温度における板幅方向中央部と板幅方向端部との温度差が大きいため、板幅方向中央部と端部の耐熱軟化特性に大きな差が発生し、板幅方向で均一な耐熱軟化特性が得られなかった。
In contrast, No. of the comparative example . In example 6 , since the Li concentration on the surface of the plate is large, corrosion occurred and hindered pit formation during the roughening treatment, and because of the small amount of Zr, a striped pattern appeared on the appearance after the roughening treatment. As a result, the uniformity of the rough surface is inferior, and since the amount of Mg is large, the strength of the base plate increases, plate breakage occurs, and the plate width direction center and the plate width direction end at the hot rolling end temperature. Therefore, a large difference in heat resistance softening characteristics between the central part and the edge part in the sheet width direction occurred, and uniform heat resistance softening characteristics in the sheet width direction could not be obtained.
また比較例のNo.7の例では、Ni、Sn、Beの合計量が多いため、微細なピットが均一に形成されず、そのため粗面化処理後の外観の均一性が劣り、またFe量が低くかつ熱間圧延開始温度が高いため、再結晶粒が粗大となり、粗面化処理後の外観にスジが発生して均一性が劣ってしまった。
The comparative example No. In Example 7 , since the total amount of Ni, Sn, and Be is large, fine pits are not formed uniformly, so that the uniformity of the appearance after the roughening treatment is poor, the Fe amount is low, and hot rolling is performed. Since the starting temperature was high, the recrystallized grains became coarse, streaks were generated in the appearance after the roughening treatment, and the uniformity was poor.
さらに比較例のNo.8の例では、Si量が多くて粗大なAl−Fe−Si系粗大化合物が多数存在したこと、およびMg量が低くかつ熱間圧延終了温度が高いために再結晶粒が粗大化したことから、粗面化処理後の外観が不均一になり、また熱間圧延開始温度が高いため、再結晶粒が粗大となり、そのため粗面化処理後の外観にスジ(ストリーク)が発生し、さらにはFe固溶量が多いため素板強度が高くなり、版切れが発生した。
Furthermore, No. of the comparative example . In the example of FIG. 8, the recrystallized grains became coarse due to the presence of a large number of coarse Al—Fe—Si coarse compounds having a large amount of Si and the low Mg amount and the high hot rolling end temperature. In addition, the appearance after the surface roughening treatment becomes non-uniform, and the hot rolling start temperature is high, so the recrystallized grains become coarse, and as a result, streaks (streaks) occur in the surface appearance after the surface roughening treatment. Since the amount of Fe solid solution was large, the strength of the base plate was increased and the plate was broken.
また比較例のNo.9の例では、Fe量が多いために粗大な化合物が生成され、かつSi量が低いため、粗面化処理後のピットが不均一となって粗面外観が不均一となり、また熱間圧延終了温度における板幅方向中央部と端部との温度差が大きいため、板幅方向中央部と端部の耐熱軟化特性に大きな差が発生し、板幅方向で均一な耐熱軟化特性が得られなかった。
The comparative example No. In example 9, since the amount of Fe is large, a coarse compound is generated, and since the amount of Si is low, the pits after the surface roughening treatment are non-uniform and the rough surface appearance is non-uniform, and hot rolling Due to the large temperature difference between the center and end in the plate width direction at the end temperature, a large difference occurs in the heat and softening characteristics between the center and end in the plate width direction, and uniform heat and softening characteristics are obtained in the plate width direction. There wasn't.
さらに比較例のNo.10の例では、Ni、Sn、Beの合計量が少ないため、均一微細なピットが得られなかったこと、およびCu量が多いためにピットが不均一となったことから、粗面化処理後の外観が不均一となり、また熱間圧延終了温度における板幅方向中央部と端部との温度差が大きいため、板幅方向中央部と端部の耐熱軟化特性に大きな差が発生し、板幅方向で均一な耐熱軟化特性が得られなかった。
Furthermore, No. of the comparative example . In example 10 , since the total amount of Ni, Sn, and Be was small, uniform fine pits were not obtained, and the pits became non-uniform because of the large amount of Cu. And the temperature difference between the center part and the end part in the sheet width direction at the end temperature of hot rolling is large, resulting in a large difference in heat-resistant softening characteristics between the center part and the end part in the sheet width direction. Uniform heat-resistant softening characteristics could not be obtained in the width direction.
また比較例のNo.11の例では、Cu量が少ないためにピットが均一に形成されず、粗面化処理後の外観均一性が劣り、また熱間圧延開始温度が低くて熱間圧延終了温度も低くなったため、板表面に加工組織が残存し、ストリークが発生した。
The comparative example No. In the example of 11, since the amount of Cu is small, the pits are not formed uniformly, the appearance uniformity after the roughening treatment is inferior, and the hot rolling start temperature is low and the hot rolling end temperature is low, The processed structure remained on the plate surface and streaks occurred.
さらに比較例のNo.12の例では、Zr量が多いことからAl3Zrが析出して、ストリークが発生し、また板表面のLi濃度が高いため、腐食が発生して粗面化処理時にピット形成を阻害したこと、および熱間圧延終了温度が高くて再結晶粒が粗大化したことから、粗面化処理後の外観均一性が劣った。
Furthermore, No. of the comparative example . In the case of No. 12 , since the amount of Zr is large, Al 3 Zr is precipitated, streaks occur, and the Li concentration on the surface of the plate is high, which causes corrosion and inhibits pit formation during the roughening treatment. And, since the end temperature of hot rolling was high and the recrystallized grains became coarse, the appearance uniformity after the surface roughening treatment was inferior.
そしてまた比較例のNo.13の例では、Zr含有量が高くてAl3Zrが析出したことと、Ti含有量が少ないために、鋳塊組織を充分に微細化することができずにフェザー組織が残存してしまったため、ストリークが発生し、またFe含有量が低いために再結晶粒径が大きくなったことと、Si含有量が高くてAl−Fe−Si系の粗大な金属間化合物が生成されたことから、粗面化面の均一性が劣った。
And again , No. of the comparative example . In the example 13 , since the Zr content was high and Al 3 Zr was precipitated, and the Ti content was low, the ingot structure could not be sufficiently refined and the feather structure remained. From the fact that streak occurred and the recrystallized grain size was large because the Fe content was low, and that the Si content was high and an Al-Fe-Si based coarse intermetallic compound was produced. The uniformity of the roughened surface was inferior.
さらに比較例のNo.14の例では、Cu含有量が少ないためにピットが均一に形成されず、粗面化処理後の外観均一性に劣り、また熱間圧延開始温度が低いため熱間圧延終了温度も低くなり、そのため板表面に加工組織が残存し、ストリークが発生した。
Furthermore, No. of the comparative example . In the example of 14 , since the Cu content is small, the pits are not formed uniformly, the appearance uniformity after the roughening treatment is inferior, and the hot rolling start temperature is low, so the hot rolling end temperature is also low, Therefore, the processed structure remained on the plate surface and streaks occurred.
また比較例のNo.15の例でも、Cu含有量が少ないためにピットが均一に形成されず、粗面化処理後の外観均一性に劣り、さらに均質化処理温度が低いため、Fe固溶量が少なくなって、耐熱軟化性に劣ることが判明した。 The comparative example No. Even in the 15 example, because the Cu content is small, the pits are not uniformly formed, the appearance uniformity after the roughening treatment is inferior, and the homogenization treatment temperature is low, so the Fe solid solution amount is reduced, It was found that the heat softening resistance was poor.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007225289A JP5209918B2 (en) | 2007-08-31 | 2007-08-31 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007225289A JP5209918B2 (en) | 2007-08-31 | 2007-08-31 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009057595A JP2009057595A (en) | 2009-03-19 |
JP5209918B2 true JP5209918B2 (en) | 2013-06-12 |
Family
ID=40553611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007225289A Active JP5209918B2 (en) | 2007-08-31 | 2007-08-31 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5209918B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6685079B2 (en) * | 2014-04-11 | 2020-04-22 | 株式会社Uacj | Aluminum alloy plate with excellent surface quality |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108659A (en) * | 1994-10-07 | 1996-04-30 | Fuji Photo Film Co Ltd | Production of lithographic printing substrate |
JP3693485B2 (en) * | 1998-03-09 | 2005-09-07 | 日本軽金属株式会社 | Manufacturing method of aluminum alloy base plate for lithographic printing plate |
JP2003328094A (en) * | 2002-05-17 | 2003-11-19 | Sky Alum Co Ltd | Production method for rolled aluminum alloy plate for lithographic printing form plate support |
-
2007
- 2007-08-31 JP JP2007225289A patent/JP5209918B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009057595A (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5078805A (en) | Method of producing support for planographic printing-plate | |
JPH0576530B2 (en) | ||
JPS61146598A (en) | Supporter for lithographic printing plate and its manufacture | |
JPH07305133A (en) | Supporting body for planographic printing plate and its production | |
US5507887A (en) | Support for planographic printing plate | |
JP5149582B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP2008138277A (en) | High strength aluminum alloy plate for printing plate | |
JP3250687B2 (en) | Method for producing a lithographic printing plate support | |
JP4181597B2 (en) | High-strength aluminum alloy plate for printing plates | |
JP5209918B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP5080160B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP3177079B2 (en) | Method for producing a lithographic printing plate support | |
JP4714576B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP3650507B2 (en) | Aluminum alloy support for lithographic printing plate and method for producing the same | |
JP2000108534A (en) | Support for lithographic printing plate | |
JP4593332B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP2982093B2 (en) | Method for producing a lithographic printing plate support | |
EP0652298A1 (en) | Aluminum alloy support for planographic printing plate | |
JPH08108659A (en) | Production of lithographic printing substrate | |
JPH05301478A (en) | Support of planograpahic printing plate and production thereof | |
JP5314396B2 (en) | Aluminum alloy plate for lithographic printing plates | |
JPH0473392B2 (en) | ||
JP4016310B2 (en) | Aluminum alloy support for lithographic printing plate and method for producing base plate for support | |
US8118951B2 (en) | Aluminum alloy sheet for lithographic printing plate | |
JP3506265B2 (en) | Method for producing aluminum alloy support for lithographic printing plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100407 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20100604 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100604 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5209918 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |